

H2 Mathematics (9758) Chapter 6B 3D Vector Geometry (Lines & Planes) Discussion Questions Solutions

Level 1

- **1** Find the equation of the following planes in parametric form, scalar product form and Cartesian form.
 - (a) The plane passing through the points A(0, 1, 1), B(1, -3, 2) and C(1, 0, 1).

(**b**) The plane containing the lines
$$x = 3$$
, $\frac{y+1}{2} = z-3$ and $\mathbf{r} = \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$, $\mu \in \mathbb{R}$.

(c) The plane that includes the line $\mathbf{r} = \mathbf{i} - 2\mathbf{j} - 4\mathbf{k} + \lambda(2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k})$ and the point with position vector $2\mathbf{i} + 5\mathbf{j} - 6\mathbf{k}$.

In each case, find the coordinates of the point of intersection of the plane and the line $\mathbf{r} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix}, \alpha \in \mathbb{R}.$

Q1	Solution	
(a)	The plane is parallel to $\overrightarrow{AB} = \begin{pmatrix} 1 \\ -4 \\ 1 \end{pmatrix}$ and $\overrightarrow{AC} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$.	
	Vector equation of plane is $\mathbf{r} = \begin{pmatrix} 0\\1\\1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-4\\1 \end{pmatrix} + \mu \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \ \lambda, \mu \in \mathbb{R}.$	
	In <u>parametric form</u> , $x = \lambda + \mu$, $y = 1 - 4\lambda - \mu$, $z = 1 + \lambda$, where $\lambda, \mu \in \mathbb{R}$	
	A vector normal to the plane is $\begin{pmatrix} 1 \\ -4 \\ 1 \end{pmatrix} \times \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$.	
	$\mathbf{r} \cdot \mathbf{n} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} = 0 + 1 + 3 = 4.$	

 \therefore In <u>scalar product form</u>, the equation of the plane is $\mathbf{r} \cdot \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 4$. $\mathbf{r} \cdot \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} = 4 \implies \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} = 4$ \therefore The <u>cartesian equation</u> of the plane is x + y + 3z = 4 $\mathbf{r} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix}, \alpha \in \mathbb{R} - (1) \qquad \mathbf{r} \cdot \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix} = 4 - (2)$ Substitute (1) into (2) $\begin{pmatrix} 1+\alpha\\-2-5\alpha\\1+3\alpha \end{pmatrix} \bullet \begin{pmatrix} 1\\1\\3 \end{pmatrix} = 4$ $1 + \alpha - 2 - 5\alpha + 3 + 9\alpha = 4$ $\Rightarrow \alpha = \frac{2}{5}$ Substitute $\alpha = \frac{2}{5}$ into (1) $\mathbf{r} = \begin{pmatrix} 1 + \frac{2}{5} \\ -2 - 5\left(\frac{2}{5}\right) \\ 1 + 3\left(\frac{2}{5}\right) \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 7 \\ -20 \\ 11 \end{pmatrix}$ Thus, point of intersection is $\left(\frac{7}{5}, -4, \frac{11}{5}\right)$. Alternative: Using GC to find the point of intersection between line and plane: Using the Cartesian equation of the line and plane, we have x + y + 3z = 4x + y + 3z= 4 $x = 1 + \alpha$ Rearranging х $-\alpha = 1$ $y + 5\alpha = -2$ $y = -2 - 5\alpha$ \Rightarrow z $-3\alpha = 1$ $z = 1 + 3\alpha$ Using GC, $x = \frac{7}{5}, y = -4, z = \frac{11}{5}, \alpha = \frac{2}{5}$ Thus, point of intersection is $\left(\frac{7}{5}, -4, \frac{11}{5}\right)$.

(b) $x = 3, \frac{y+1}{2} = z - 3 \Longrightarrow \mathbf{r} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \beta \in \mathbb{R}$ Vector equation of plane is $\mathbf{r} = \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}, \ \lambda, \mu \in \mathbb{R}.$ In parametric form, $x = 3 + 2\mu$, $y = -1 + 2\lambda + 4\mu$, $z = 3 + \lambda + 3\mu$, where $\lambda, \mu \in \mathbb{R}$ $\begin{pmatrix} 0\\2\\1\\1 \end{pmatrix} \times \begin{pmatrix} 2\\4\\3\\2 \end{pmatrix} = \begin{pmatrix} 2\\2\\-4\\2 \end{pmatrix} = 2 \begin{pmatrix} 1\\1\\-2\\2 \end{pmatrix}$ is a normal vector to the plane. : vector equation of plane in scalar product form is $\mathbf{r} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = -4, \text{ i.e. } \mathbf{r} \cdot \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = -4.$ From $\mathbf{r} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = -4$, let $\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. $\begin{vmatrix} x \\ y \\ z \end{vmatrix}$ $\begin{vmatrix} 1 \\ 1 \\ z \end{vmatrix} = -4$ x + v - 2z = -4**<u>Cartesian</u>** equation of plane is x + y - 2z = -4. For point of intersection between $\mathbf{r} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix} - (1) \text{ and } \mathbf{r} \cdot \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = -4 - (2)$ Substitute (1) into (2) $\begin{pmatrix} 1+\alpha\\-2-5\alpha\\1+3\alpha \end{pmatrix}, \begin{pmatrix} 1\\1\\-2 \end{pmatrix} = -4 \implies \alpha = \frac{1}{10}.$ Substitute $\alpha = \frac{1}{10}$ into (1)

(c)
A direction vector parallel to plane =
$$\begin{pmatrix} 1\\ -2\\ -4 \end{pmatrix} - \begin{pmatrix} 2\\ 5\\ -6 \end{pmatrix} = \begin{pmatrix} -1\\ -7\\ 2 \end{pmatrix}$$
.
Vector equation of plane is $\mathbf{r} = \begin{pmatrix} 1\\ -2\\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 2\\ 3\\ -6 \end{pmatrix} + \mu \begin{pmatrix} -1\\ -7\\ 2 \end{pmatrix}$, $\lambda, \mu \in \mathbb{R}$.
In parametric form.
 $x = 1 + 2\lambda - \mu, y = -2 + 3\lambda - 7\mu, z = -4 - 6\lambda + 2\mu$, where $\lambda, \mu \in \mathbb{R}$.
 $\begin{pmatrix} -1\\ -7\\ 2 \end{pmatrix} \times \begin{pmatrix} 2\\ 3\\ -6 \end{pmatrix} = \begin{pmatrix} 36\\ -2\\ 11 \end{pmatrix}$ is a normal vector to the plane.
 \therefore vector equation of plane in scalar product form is
 $\mathbf{r} \cdot \begin{pmatrix} 36\\ -2\\ 11 \end{pmatrix} = \begin{pmatrix} 1\\ -2\\ -4 \end{pmatrix} \cdot \begin{pmatrix} 36\\ -2\\ 11 \end{pmatrix} = -4$ i.e $\mathbf{r} \cdot \begin{pmatrix} 36\\ -2\\ 11 \end{pmatrix} = -4$
From $\mathbf{r} \cdot \begin{pmatrix} 36\\ -2\\ 11 \end{pmatrix} = -4$, let $\mathbf{r} = \begin{pmatrix} x\\ y\\ z \end{pmatrix}$.
 $\mathbf{r} \cdot \begin{pmatrix} 36\\ -2\\ 11 \end{pmatrix} = -4$.
For point of intersection between
 $\mathbf{r} = \begin{pmatrix} 1\\ -2\\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 1\\ -5\\ 3 \end{pmatrix} - (1)$ and $\mathbf{r} \cdot \begin{pmatrix} 36\\ -2\\ 11 \end{pmatrix} = -4$.
Substitute (1) into (2)
 $\begin{pmatrix} 1 + \alpha\\ -2 - 5\alpha\\ 1 + 3\alpha \end{pmatrix} \cdot \begin{pmatrix} 36\\ -2\\ 11 \end{pmatrix} = -4 \implies \alpha = -\frac{55}{79}$.
Substitute $\alpha = -\frac{55}{79}$ into (1)

2 Find the coordinates of the point where the line $\mathbf{r} = \mathbf{i} + \lambda(\mathbf{i} - \mathbf{k})$ intersects the plane with equation 2x - 3y + z = 1.

Q2	Solution	
	Line: $\mathbf{r} = \mathbf{i} + \lambda(\mathbf{i} - \mathbf{k}) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, Plane: $2x - 3y + z = 1 \implies \mathbf{r} \cdot \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} = 1$	
	Since line intersects the plane, $\begin{bmatrix} 1\\0\\0 \end{bmatrix} + \lambda \begin{pmatrix} 1\\0\\-1 \end{bmatrix} \cdot \begin{pmatrix} 2\\-3\\1 \end{bmatrix} = 1$	
	$\Rightarrow 2 + 2\lambda - \lambda = 1 \Rightarrow \lambda = -1$	
	\therefore The position vector of the point of intersection is $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ and the coordinates are	
	(0, 0, 1).	

3 Find the equation of the line of intersection between the two planes with equations

$$\mathbf{r} \cdot \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} = 10 \text{ and } \mathbf{r} \cdot \begin{pmatrix} 5 \\ -1 \\ 2 \end{pmatrix} = 6 \text{ respectively.}$$

4 Find the acute angle between

(a) the line
$$\mathbf{r} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}, \lambda \in \mathbb{R}$$
, and the plane $x - 3y + z = 2$;
(b) the planes $\mathbf{r} \cdot \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} = 6$ and $x + 2y - 5z = 8$.

Q4	Solution		
(a)	$\mathbf{r} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}, \lambda \in \mathbb{R}, \text{ and } \mathbf{r} \cdot \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix} = 2$		
	Let θ be acute angle between the line and the plane.		
	$\sin \theta = \frac{\begin{vmatrix} 3 \\ 5 \\ 2 \end{vmatrix} \cdot \begin{vmatrix} 1 \\ -3 \\ 1 \end{vmatrix}}{\sqrt{38}\sqrt{11}} = \frac{10}{\sqrt{38}\sqrt{11}} \implies \theta = 29.3^{\circ}$		
	Required angle is 29.3°.		
(b)	$\mathbf{r} \cdot \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix} = 6 \text{ and } \mathbf{r} \cdot \begin{pmatrix} 1 \\ 2 \\ -5 \end{pmatrix} = 8$		
	Let θ be acute angle between the two planes.		
	$\cos \theta = \frac{\begin{vmatrix} 2 \\ -3 \\ 4 \end{vmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ -5 \end{vmatrix}}{\sqrt{29}\sqrt{30}} = \frac{24}{\sqrt{29}\sqrt{30}} \implies \theta = 35.5^{\circ}$		
	Required angle is 35.5°.		

Level 2

5 Find the position vector of *F*, the foot of the perpendicular from B(2, 3, -4) to the plane *p*, whose equation is 2x + y - 2z + 9 = 0.

Q5	Solution	
	$2x + y - 2z + 9 = 0 \Rightarrow \mathbf{r} \cdot \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} = -9 \dots $	
	Let l be the line through point B perpendicular to the plane p .	
	$l: \mathbf{r} = \begin{pmatrix} 2\\ 3\\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 2\\ 1\\ -2 \end{pmatrix}, \ \lambda \in \mathbb{R} $ (2)	
	Solving (1) and (2), we have	
	$\begin{bmatrix} 2\\3\\-4 \end{bmatrix} + \lambda \begin{pmatrix} 2\\1\\-2 \end{bmatrix} \cdot \begin{pmatrix} 2\\1\\-2 \end{pmatrix} = -9$	
	$\Rightarrow (4+3+8) + \lambda(4+1+4) = -9 \Rightarrow \lambda = -\frac{8}{3} \qquad \therefore \overrightarrow{OF} = \begin{pmatrix} 2\\3\\-4 \end{pmatrix} - \frac{8}{3} \begin{pmatrix} 2\\1\\-2 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -10\\1\\4 \end{pmatrix}$	

6 Find the perpendicular distance from point A(4,5,6) to the plane $\mathbf{r} \cdot \mathbf{k} = 2$.

- 7 The plane π contains the point P(2,2,4) and the line l_1 : $\mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \lambda \in \mathbb{R}$.
 - (i) Find the vector equation of the plane π in scalar product form.
 - (ii) Find the position vector of the foot of the perpendicular from the point S(1,0,-4) to π .

(iii) Verify that
$$S(1,0,-4)$$
 lies on line $l_2: \mathbf{r} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ -5 \end{pmatrix}, \mu \in \mathbb{R}$.

(iv) Find the equation of the image obtained by reflecting the line l_2 in the plane π .

8 2011(9740)/I/11

The plane p passes through the points with coordinates (4, -1, -3), (-2, -5, 2) and (4, -3, -2).

(i) Find the Cartesian equation of *p*. [4]

The line l_1 has equation $\frac{x-1}{2} = \frac{y-2}{-4} = \frac{z+3}{1}$ and the line l_2 has equation $\frac{x+2}{1} = \frac{y-1}{5} = \frac{z-3}{k}$, where k is a constant. It is given that l_1 and l_2 intersect. (ii) Find the value of k. [4]

- (iii) Show that l_1 lies in p and find the coordinates of the point at which l_2 intersects p.
- [4] [3]

(iv) Find the acute angle between l_2 and p.

(ii) Convert equations of both lines to vector form: $l_1: \mathbf{r} = \begin{pmatrix} 1\\2\\-3 \end{pmatrix} + \lambda \begin{pmatrix} 2\\-4\\1 \end{pmatrix}, \quad \lambda \in \mathbb{R} \text{ and } l_2: \mathbf{r} = \begin{pmatrix} -2\\1\\3 \end{pmatrix} + \mu \begin{pmatrix} 1\\5\\k \end{pmatrix}, \quad \mu \in \mathbb{R}$ Since the two lines intersect, $1+2\lambda = -2 + \mu$ -----(1) $2 - 4\lambda = 1 + 5\mu$ -----(2) $-3 + \lambda = 3 + k\mu$ -----(3) Solving (1) and (2) gives $\lambda = -1$ and $\mu = 1$. Substitute these values into (3) to get k = -7. $l_1: \mathbf{r} = \begin{pmatrix} 1\\2\\-3 \end{pmatrix} + \lambda \begin{pmatrix} 2\\-4\\1 \end{pmatrix} \qquad p: \mathbf{r} \cdot \begin{pmatrix} 1\\1\\2 \end{pmatrix} = -3$ (iii) Method 1: $\mathbf{n} \cdot \mathbf{d} = \begin{vmatrix} -4 \\ -4 \end{vmatrix} \cdot \begin{vmatrix} 1 \\ 1 \end{vmatrix}$ For l_1 to lie in p, = 2 - 4 + 2Condition 1: l_1 must be parallel to p = 0AND Condition 2: Any point on *l* must lie in *p*. 2 into equation of *p*: Substitute -3 LHS = $\begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \\ -2 \end{pmatrix} = 1 + 2 - 6 = -3 = RHS$ Since l_1 is parallel to p and (1, 2, -3) lies in p, l_1 lies in p. (shown)

9 2013(9740)/II/4 (modified)

The planes
$$p_1$$
 and p_2 have equations $\mathbf{r} \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = 1$ and $\mathbf{r} \cdot \begin{pmatrix} -6 \\ 3 \\ 2 \end{pmatrix} = -1$ respectively, and

meet in the line *l*.

- (i) Find the shortest distance from the origin to plane p_2 . [2]
- (ii) Find the acute angle between p_1 and p_2 . [3]
- (iii) Find a vector equation for *l*. [4]
- (iv) The point A(4, 3, c) is equidistant from the planes p_1 and p_2 . Calculate the two possible values of c. [6]

Q9	Solution	
(i)	Shortest distance from the origin to plane p_2	Shortest distance from <i>O</i>
	$=\frac{ -1 }{\sqrt{(-6)^2+3^2+2^2}}=\frac{1}{\sqrt{49}}=\frac{1}{7}.$	to plane $p: \mathbf{r} \cdot \mathbf{n} = \mathbf{d}$ is $\frac{ \mathbf{d} }{ \mathbf{n} }$
(ii)	$\cos\theta = \frac{\begin{vmatrix} 2\\ -2\\ 1\\ 1 \end{vmatrix} \begin{pmatrix} -6\\ 3\\ 2\\ -2\\ -2\\ 1\\ 1 \end{vmatrix}} = \frac{\begin{vmatrix} -12 - 6 + 2\\ \sqrt{4 + 4 + 1}\sqrt{36 + 9 + 4} \end{vmatrix}}{\begin{vmatrix} -16\\ 21\\ \sqrt{4 + 4 + 1}\sqrt{36 + 9 + 4} \end{vmatrix}} = \frac{16}{21}$	Question asks for acute angle, so remember to place a modulus.
		corrected to 1 decimal place.
($\theta = 40.4$ (Ia.p.)	
(iii)	$p_1: 2x - 2y + z = 1$ $p_2: -6x + 3y + 2z = -1$	IREE MP NORMAL FLOAT AUTO REAL DEGREE MP ER MODE SYSTEM MATRIX (2 × 4) 6 7 8 9 1 -2 1 6 7 8 9 -6 3 2 -1 6 7 8 9 1 -6 3 2 -1
	Using GC, the line of intersection is $\mathbf{r} = \begin{pmatrix} -\frac{1}{6} \\ -\frac{2}{3} \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -\frac{1}{6} \\ -\frac{2}{3} \\ 0 \end{pmatrix}$	$ \begin{array}{c} \frac{7}{6} \\ \frac{5}{3} \\ 1 \end{array} \right), \lambda \in \mathbb{R} \end{array} \left[\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{NORHAL FLOAT AUTO REAL DEGREE MP} \\ \hline \\ \text{SOLUTION SET} \\ \text{$x1B-\frac{1}{6}+\frac{7}{6}\times3} \\ \text{$x2=-\frac{2}{3}+\frac{5}{3}\times3} \\ \text{$x3=x3} \end{array} \right] \end{array} \right] $

10 2016(9740)/I/11

The plane *p* has equation $\mathbf{r} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} a \\ 4 \\ -2 \end{pmatrix}$, and the line *l* has equation

$$\mathbf{r} = \begin{pmatrix} a-1 \\ a \\ a+1 \end{pmatrix} + t \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix}, \text{ where } a \text{ is a constant and } \lambda, \mu \text{ and } t \text{ are parameters.}$$

- (i) In the case where a = 0,
 - (a) show that *l* is perpendicular to *p* and find the values of λ, μ and *t* which give the coordinates of the point at which *l* and *p* intersect, [5]
 - (b) find the cartesian equations of the planes such that the perpendicular distance from each plane to *p* is 12. [5]
- (ii) Find the value of a such that l and p do not meet in a unique point. [3]

Level 3

11

S (-5, -6, -7)

A ray of light passes from air into a material made into a rectangular prism. The ray of light is sent in direction $\begin{pmatrix} -2 \\ -3 \end{pmatrix}$ from a light source at the point *P* with coordinates

(2, 2, 4). The prism is placed so that the ray of light passes through the prism, entering at the point Q and emerging at the point R and is picked up by a sensor at point S with coordinates (-5, -6, -7). The acute angle between PQ and the normal to the top of the prism at Q is θ and the acute angle between QR and the same normal is β (see diagram).

It is given that the top of the prism is a part of the plane x + y + z = 1, and that the base of the prism is a part of the plane x + y + z = -9. It is also given that the ray of light along *PQ* is parallel to the ray of light along *RS* so that *P*, *Q*, *R* and *S* lie in the same plane.

- (i) Find the exact coordinates of Q and R. [5]
- (ii) Find the values of $\cos\theta$ and $\cos\beta$. [3]
- (iii) Find the thickness of the prism measured in the direction of the normal at Q. [3]

Snell's law states that $\sin \theta = k \sin \beta$, where k is a constant called the refractive index.

- (iv) Find k for the material of this prism. [1]
- (v) What can be said about the value of k for a material for which $\beta > \theta$? [1]

(iv)	$k = \sin \theta$
	$\kappa = \frac{1}{\sin \beta}$
	$= \frac{\sin\left(\cos^{-1}\frac{11}{7\sqrt{3}}\right)}{\sin\left(\cos^{-1}\frac{22}{\sqrt{510}}\right)}$ = 1.862629 = 1.86 (3 s.f.)
(v)	Since $0 < \theta < \beta < \frac{\pi}{2}$,
	$ \frac{\sin \beta}{\cos \theta} = \frac{1}{2} \qquad y = \sin \theta \\ \frac{\sin \theta}{\cos \theta} = \frac{\pi}{2} \qquad \theta $
	$0 < \sin \theta < \sin \beta < 1$
	$0 < \frac{\sin \theta}{\sin \beta} < 1$
	$\therefore 0 < k < 1$

12 2017(9758)/I/6

- (i) Interpret geometrically the vector equation $\mathbf{r} = \mathbf{a} + t\mathbf{b}$, where \mathbf{a} and \mathbf{b} are constant vectors and *t* is a parameter. [2]
- (ii) Interpret geometrically the vector equation $\mathbf{r} \cdot \mathbf{n} = d$, where \mathbf{n} is a constant unit vector and d is a constant scalar, stating what d represents. [3]
- (iii) Given that $\mathbf{b} \cdot \mathbf{n} \neq 0$, solve the equations $\mathbf{r} = \mathbf{a} + t\mathbf{b}$ and $\mathbf{r} \cdot \mathbf{n} = d$ to find \mathbf{r} in terms of \mathbf{a} , \mathbf{b} , \mathbf{n} and d. Interpret the solution geometrically. [3]

13 2008/HCI/I/12(b) (modified)

Referring to the origin O, two planes Π_1 and Π_2 are given by

$$\Pi_1: \mathbf{r} \cdot \begin{pmatrix} 1 \\ 2 \\ -4 \end{pmatrix} = 13 \text{ and } \Pi_2: \mathbf{r} \cdot \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix} = -8.$$

Find an equation of the plane which is the image of Π_2 when Π_2 is reflected in Π_1 . [9]

Q13	Solution	For equation of the plane, you will need
	$\Pi_{1}: x + 2y - 4z = 13 \qquad \dots \qquad (1)$ $\Pi_{2}: x + 3y + 3z = -8 \qquad \dots \qquad (2)$ By G.C. solve equations (1) & (2) The vector equation of the line of intersection is $l: \mathbf{r} = \begin{pmatrix} 55 \\ -21 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 18 \\ -7 \\ 1 \end{pmatrix} \qquad \text{where } \lambda \in \mathbb{R}.$ Line of intersection is also lies on the	 For equation of the plane, you will need 1) Normal vector to plane ⇒ 2 non-parallel direction vectors that are parallel to the plane 2) Position vector of a known point of the plane

Let
$$A(-8,0,0)$$
 be a point on Π_2 and F be the foot of perpendicular from A to Π_2 .
 Π_2 .
 $I_{4r}: \mathbf{r} = \begin{pmatrix} -8\\ 0\\ 0 \end{pmatrix} + \mu \begin{pmatrix} 1\\ 2\\ -4 \end{pmatrix}, \mu \in \mathbb{R}$.
 $\left(\begin{pmatrix} -8\\ 0\\ 0 \end{pmatrix} + \mu \begin{pmatrix} 1\\ 2\\ -4 \end{pmatrix}, \mu \in \mathbb{R}$.
 $u = 1$
 $\overline{OF} = \begin{pmatrix} -7\\ 2\\ -4 \end{pmatrix}$
Let A' be the reflection of point A in the plane Π_1
Using ratio theorem,
 $\overline{OF} = \frac{\overline{OA} + \overline{OA'}}{2}$
 $\overline{OA'} = \frac{\overline{OA} + \overline{OA'}}{2}$
 $\overline{OA'} = \begin{pmatrix} -6\\ 4\\ -8 \end{pmatrix}$
Let $B(55, -21, 0)$ be a point on line l .
 $\overline{A'B} = \begin{pmatrix} 55\\ -21\\ 0 \end{pmatrix} - \begin{pmatrix} -6\\ 4\\ -8 \end{pmatrix} = \begin{pmatrix} 61\\ -25\\ 8 \end{pmatrix}$
Equation of reflected plane:
 $\mathbf{r} = \begin{pmatrix} -6\\ 4\\ -8 \end{pmatrix} + \alpha \begin{pmatrix} 18\\ -7\\ 1 \end{pmatrix} + \beta \begin{pmatrix} 61\\ -25\\ 8 \end{pmatrix}, \alpha, \beta \in \mathbb{R}$. where $\lambda, \mu \in \mathbb{R}$
Note: There are many possible answers for the above depending on the position vector in the second direction vector scalar product form: $r \begin{pmatrix} 31\\ -23\\ -23 \end{pmatrix}$
Scalar product form: $r \begin{pmatrix} 31\\ 83\\ 23 \end{pmatrix} = \begin{pmatrix} -6\\ 4\\ -8 \end{pmatrix} \begin{pmatrix} 31\\ 83\\ 23 \end{pmatrix} = -38 \Rightarrow r \begin{pmatrix} 31\\ 83\\ 23 \end{pmatrix} = -38.$