Optimization Problem 1

Lesson 4

Computational Models

- Using computation to help understand the world in which we live
- Experimental devices that help us to understand something that has happened or to predict the future

- Optimization models
- Statistical models
- Simulation models

Images © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

What Is an Optimization Model?

- An objective function that is to be maximized or minimized, e.g.,
 - Minimize time spent traveling from New York to Boston
- A set of constraints (possibly empty) that must be honored, e.g.,
 - Cannot spend more than \$100
 - Must be in Boston before 5:00PM

Knapsack Problems

Images © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

Knapsack Problem

- You have limited strength, so there is a maximum weight knapsack that you can carry
- You would like to take more stuff than you can carry
- •How do you choose which stuff to take and which to leave behind?
- Two variants
 - 0/1 knapsack problem
 - Continuous or fractional knapsack problem

My Least-favorite Knapsack Problem

Images © sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

0/1 Knapsack Problem, Formalized

- Each item is represented by a pair, <value, weight>
- •The knapsack can accommodate items with a total weight of no more than w
- •A vector, L, of length n, represents the set of available items. Each element of the vector is an item
- •A vector, V, of length n, is used to indicate whether or not items are taken. If V[i] = 1, item I[i] is taken. If V[i] = 0, item I[i] is not taken

0/1 Knapsack Problem, Formalized

Find a V that maximizes

$$\sum_{i=0}^{n-1} V[i] * I[i].value$$

subject to the constraint that

$$\sum_{i=0}^{n-1} V[i] * I[i].weight \le w$$

Brute Force Algorithm

- •1. Enumerate all possible combinations of items. That is to say, generate all subsets of the set of items. This is called the power set.
- •2. Remove all of the combinations whose total units exceeds the allowed weight.
- •3. From the remaining combinations choose any one whose value is the largest.

Often Not Practical

- •How big is power set?
- Recall
 - A vector, V, of length n, is used to indicate whether or not items are taken. If V[i] = 1, item I[i] is taken. If V[i] = 0, item I[i] is not taken
- •How many possible different values can V have?
 - As many different binary numbers as can be represented in n bits
- •For example, if there are 100 items to choose from, the power set is of size?
 - 1,267,650,600,228,229,401,496,703,205,376

Are We Just Being Stupid?

- •Alas, no
- 0/1 knapsack problem is inherently exponential
- But don't despair

Greedy Algorithm a Practical Alternative

- while knapsack not full
 put "best" available item in knapsack
- •But what does best mean?
 - Most valuable
 - Least expensive
 - Highest value/units

An Example

- You are about to sit down to a meal
- You know how much you value different foods, e.g., you like donuts more than apples
- •But you have a calorie budget, e.g., you don't want to consume more than 750 calories
- Choosing what to eat is a knapsack problem

A Menu

Food	wine	beer	pizza	burger	fries	coke	apple	donut
Value	89	90	30	50	90	79	90	10
calories	123	154	258	354	365	150	95	195

•Let's look at a program that we can use to decide what to order

Class Food

```
class Food(object):
    def __init__(self, n, v, w):
        self.name = n
        self.value = v
        self.calories = w
    def getValue(self):
        return self.value
    def getCost(self):
        return self.calories
    def density(self):
        return self.getValue()/self.getCost()
    def __str__(self):
        return self.name + ': <' + str(self.value)\
                 + ', ' + str(self.calories) + '>'
```

Build Menu of Foods

```
def buildMenu(names, values, calories):
    """names, values, calories lists of same length.
       name a list of strings
       values and calories lists of numbers
       returns list of Foods"""
    menu = []
    for i in range(len(values)):
        menu.append(Food(names[i], values[i],
                          calories[i]))
    return menu
```

Implementation of Flexible Greedy

```
def greedy(items, maxCost, keyFunction):
    """Assumes items a list, maxCost >= 0,
         keyFunction maps elements of items to numbers"""
    itemsCopy = sorted(items, key = keyFunction, ←
                       reverse = True)
    result = []
    totalValue, totalCost = 0.0, 0.0
    for i in range(len(itemsCopy)): 	
        if (totalCost+itemsCopy[i].getCost()) <= maxCost:</pre>
            result.append(itemsCopy[i])
            totalCost += itemsCopy[i].getCost()
            totalValue += itemsCopy[i].getValue()
    return (result, totalValue)
```

Using greedy

```
def testGreedy(items, constraint, keyFunction):
   taken, val = greedy(items, constraint, keyFunction)
   print('Total value of items taken =', val)
   for item in taken:
        print(' ', item)
```

Using greedy

```
def testGreedys(maxUnits):
    print('Use greedy by value to allocate', maxUnits,
          'calories')
    testGreedy(foods, maxUnits, Food.getValue)
    print('\nUse greedy by cost to allocate', maxUnits,
          'calories')
    testGreedy(foods, maxUnits,
               lambda x: 1/Food.getCost(x)) 
    print('\nUse greedy by density to allocate', maxUnits,
          'calories')
    testGreedy(foods, maxUnits, Food.density)
```

lambda

- •lambda used to create anonymous functions
 - lambda <id1, id2, ... idn>: <expression>
 - Returns a function of n arguments
- Can be very handy, as here
- Possible to write amazing complicated lambda expressions
- Don't—use def instead

Using greedy

```
def testGreedys(foods, maxUnits):
    print('Use greedy by value to allocate', maxUnits,
          'calories')
    testGreedy(foods, maxUnits, Food.getValue)
    print('\nUse greedy by cost to allocate', maxUnits,
          'calories')
    testGreedy(foods, maxUnits,
               lambda x: 1/Food.getCost(x))
    print('\nUse greedy by density to allocate', maxUnits,
          'calories')
    testGreedy(foods, maxUnits, Food.density)
names = ['wine', 'beer', 'pizza', 'burger', 'fries',
         'cola', 'apple', 'donut', 'cake']
values = [89,90,95,100,90,79,50,10]
calories = [123,154,258,354,365,150,95,195]
foods = buildMenu(names, values, calories)
testGreedys(foods, 750)
                                              Run code
```

Why Different Answers?

Sequence of locally "optimal" choices don't always yield a globally optimal solution

- Is greedy by density always a winner?
 - Try testGreedys(foods, 1000)

The Pros and Cons of Greedy

- Easy to implement
- Computationally efficient

- But does not always yield the best solution
 - Don't even know how good the approximation is

Optimization Problem 2

Lesson 4

Implementation of Flexible Greedy

```
def greedy(items, maxCost, keyFunction):
    """Assumes items a list, maxCost >= 0,
         keyFunction maps elements of items to numbers"""
    itemsCopy = sorted(items, key = keyFunction, ←
                       reverse = True)
    result = []
    totalValue, totalCost = 0.0, 0.0
    for i in range(len(itemsCopy)): 	
        if (totalCost+itemsCopy[i].getCost()) <= maxCost:</pre>
            result.append(itemsCopy[i])
            totalCost += itemsCopy[i].getCost()
            totalValue += itemsCopy[i].getValue()
    return (result, totalValue)
```

Brute Force Algorithm

- •1. Enumerate all possible combinations of items.
- •2. Remove all of the combinations whose total units exceeds the allowed weight.
- •3. From the remaining combinations choose any one whose value is the largest.

probability tree diagram.

Search Tree Implementation

- •The tree is built top down starting with the root
- •The first element is selected from the still to be considered items
 - If there is room for that item in the knapsack, a node is constructed that reflects the consequence of choosing to take that item. By convention, we draw that as the left child
 - We also explore the consequences of not taking that item. This is the right child
- •The process is then applied recursively to non-leaf children
- •Finally, chose a node with the highest value that meets constraints

A Menu

Food	wine	beer	pizza	burger	fries	coke	apple	donut
Value	89	90	30	50	90	79	90	10
calories	123	154	258	354	365	150	95	195

•Let's look at a program that we can use to decide what to order

A Search Tree Enumerates Possibilities

Computational Complexity

- •Time based on number of nodes generated
- •Number of levels is number of items to choose from
- •Number of nodes at level i is 2ⁱ
- So, if there are n items the number of nodes is
 - $\circ \sum_{i=0}^{i=0} \uparrow_{i=n} 2 \uparrow_{i}$
 - \circ I.e., O(2 $\uparrow n+1$)
- •An obvious optimization: don't explore parts of tree that violate constraint (e.g., too many calories)
 - Doesn't change complexity
- Does this mean that brute force is never useful?
 - Let's give it a try

Header for Decision Tree Implementation

```
def maxVal(toConsider, avail):

"""Assumes toConsider a list of items,

avail a weight

Returns a tuple of the total value of a

solution to 0/1 knapsack problem and
the items of that solution"""
```

toConsider. Those items that nodes higher up in the tree (corresponding to earlier calls in the recursive call stack) have not yet considered

avail. The amount of space still available

Body of maxVal

```
if toConsider == [] or avail == 0:
    result = (0, ())
elif toConsider[0].getCost() > avail:
    #Explore right branch only
    result = maxVal(toConsider[1:], avail)
else:
    nextItem = toConsider[0]
    #Explore left branch
    withVal, withToTake = maxVal(toConsider[1:],
                                  avail - nextItem.getCost())
    withVal += nextItem.getValue()
    #Explore right branch
    withoutVal, withoutToTake = maxVal(toConsider[1:], avail)
    #Choose better branch
    if withVal > withoutVal:
        result = (withVal, withToTake + (nextItem,))
    else:
        result = (without Val, without To Take)
return result
```

Revisit ... Live Demo

•With calorie budget of 750 calories, chose an optimal set of foods from the menu

Food	wine	beer	pizza	burger	fries	coke	apple	donut
Value	89	90	30	50	90	79	90	10
calories	123	154	258	354	365	150	95	195

```
def testMaxVal(foods, maxUnits, printItems = True):
    print('Use search tree to allocate', maxUnits,
          'calories')
    val, taken = maxVal(foods, maxUnits)
    print('Total value of items taken =', val)
    if printItems:
        for item in taken:
            print(' ', item)
names = ['wine', 'beer', 'pizza', 'burger', 'fries',
         'cola', 'apple', 'donut']
values = [89, 90, 95, 100, 90, 79, 50, 10]
calories = [123, 154, 258, 354, 365, 150, 95, 195]
foods = buildMenu(names, values, calories)
testGreedys (foods, 750)
print('')
testMaxVal(foods, 750)
```

Search Tree Worked Great

- •Gave us a better answer
- Finished quickly
- ■But 2⁸ is not a large number
 - We should look at what happens when we have a more extensive menu to choose from

Code to Try Larger Examples

```
import random ◆
def buildLargeMenu(numItems, maxVal, maxCost):
    items = []
    for i in range(numItems):
        items.append(Food(str(i),
                     random.randint(1, maxVal),
                     random.randint(1, maxCost)))
    return items
for numItems in (5,10,15,20,25,30,35,40,45,50,55,60):
    items = buildLargeMenu(numItems, 90, 250)
    testMaxVal(items, 750, False)
```

Is It Hopeless?

- In theory, yes
- In practice, no!
- Dynamic programming to the rescue

Example: Fibonacci Number

- Fibonacci numbers
 - Leonardo of Pisa (aka Fibonacci) modeled the following challenge
 - Newborn pair of rabbits (one female, one male) are put in a pen
 - Rabbits mate at age of one month
 - Rabbits have a one month gestation period
 - Assume rabbits never die, that female always produces one new pair (one male, one female) every month from its second month on.
 - How many female rabbits are there at the end of one year?

Consolidating the idea

After one month (call it 0) – 1 female

After second month – still 1 female (now pregnant)

After third month – two females, one pregnant, one not

In general, females(n) = females(n-1) + females(n-2)

- Every female alive at month n-2 will produce one female in month n;
- These can be added those alive in month n-1 to get total alive in month n

Idea of code

- Base cases:
 - \circ Females(0) = 1
 - Females(1) = 1
- Recursive case
 - Females(n) = Females(n-1) + Females(n-2)

Recursive Implementation of Fibonnaci

```
def fib(n):
    if n == 0 or n == 1:
        return 1
    else:
        return fib(n - 1) + fib(n - 2)
fib(120) = 8,670,007,398,507,948,658,051,921
```

Call Tree for Recursive Fibonnaci(6) = 13

Clearly a Bad Idea to Repeat Work

- Trade a time for space
- Create a table to record what we've done
 - Before computing fib(x), check if value of fib(x) already stored in the table
 - If so, look it up
 - If not, compute it and then add it to table
 - Called memoization

Using a Memo to Compute Fibonnaci

```
def fastFib(n, memo = {}):
    """Assumes n is an int >= 0, memo used only by
         recursive calls
       Returns Fibonacci of n"""
    if n == 0 or n == 1:
        return 1
    try:
        return memo[n]
    except KeyError:
        result = fastFib(n-1, memo) +\
                 fastFib(n-2, memo)
        memo[n] = result
        return result
```

When Does It Work?

Optimal substructure: a globally optimal solution can be found by combining optimal solutions to local subproblems

```
• For x > 1, fib(x) = fib(x - 1) + fib(x - 2)
```

- Overlapping subproblems: finding an optimal solution involves solving the same problem multiple times
 - Compute fib(x) or many times

What About 0/1 Knapsack Problem?

Do these conditions hold?

A Different Menu

Need Not Have Copies of Items

Item	Value	Calories
а	6	3
b	7	3
С	8	2
d	9	5

Search Tree

Each node = <taken, left, value, remaining calories>

2

5

8

9

d

What Problem is Solved at Each Node?

- Given remaining weight, maximize value by choosing among remaining items
- Set of previously chosen items, or even value of that set, doesn't matter!

Overlapping Subproblems

Modify maxVal to Use a Memo

- •Add memo as a third argument
 - o def fastMaxVal(toConsider, avail, memo = {}):
- •Key of memo is a tuple
 - (items left to be considered, available weight)
 - Items left to be considered represented by len(toConsider)
- •First thing body of function does is check whether the optimal choice of items given the the available weight is already in the memo
- Last thing body of function does is update the memo

```
def fastMaxVal(toConsider, avail, memo = {}):
    """Assumes toConsider a list of subjects, avail a weight
        memo supplied by recursive calls
    Returns a tuple of the total value of a solution to the
        0/1 knapsack problem and the subjects of that solution"""
    if (len(toConsider), avail) in memo:
        result = memo[(len(toConsider), avail)]
    elif toConsider == [] or avail == 0:
        result = (0, ())
```

```
elif toConsider[0].getCost() > avail:
    #Explore right branch only
    result = fastMaxVal(toConsider[1:], avail, memo)
else:
    nextItem = toConsider[0]
    #Explore left branch
    withVal, withToTake =\
             fastMaxVal(toConsider[1:],
                        avail - nextItem.getCost(), memo)
    withVal += nextItem.getValue()
    #Explore right branch
    withoutVal, withoutToTake = fastMaxVal(toConsider[1:],
                                             avail, memo)
    #Choose better branch
    if withVal > withoutVal:
        result = (withVal, withToTake + (nextItem,))
    else:
        result = (withoutVal, withoutToTake)
memo[(len(toConsider), avail)] = result
return result
```

Performance

len(items)	2**len(items)	Number of calls
2	4	7
4	16	25
8	256	427
16	65,536	5,191
32	4,294,967,296	22,701
64	18,446,744,073,709 ,551,616	42,569
128	Big	83,319
256	Really Big	176,614
512	Ridiculously big	351,230
1024	Absolutely huge	703,802

How Can This Be?

- Problem is exponential
- •Have we overturned the laws of the universe?
- •Is dynamic programming a miracle?
- No, but computational complexity can be subtle
- •Running time of fastMaxVal is governed by number of distinct pairs, <toConsider, avail>
 - Number of possible values of toConsider bounded by len(items)
 - Possible values of avail a bit harder to characterize
 - Bounded by number of distinct sums of weights
 - Covered in more detail in assigned reading

Summary . . .

- •Many problems of practical importance can be formulated as optimization problems
- Greedy algorithms often provide adequate (though not necessarily optimal) solutions
- Finding an optimeallosofus tighaxis sustaned by sexponentially hard
- •But dynamic programming often yields good performance for a subclass of optimization problems those with optimal substructure and overlapping subproblems
 - Solution always correct
 - Fast under the right circumstances

Quiz 02 – take home quiz

- available on IVY from 16/2
- due 28/2 5pm