Optimization Problem 1

Lesson 4

Computational Models

*Using computation to help understand the world in
which we live

*Experimental devices that help us to understand
somethin

Images © sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

*Optimization models

=Statistical models

=Simulation models

What Is an Optimization Model?

* An objective function that is to be maximized or
minimized, e.g.,
> Minimize time spent traveling from New York to Boston

= A set of constraints (possibly empty) that must be
honored, e.g.,

> Cannot spend more than $100

TravelPest...

tripadvisor: pricafiapgony
' ¥+ travelocity
> Must be in Boston before 5:00PM Sustoreen L

Higs

Frommers

CD Expedia
< book -asytobook
Do TELcscrvanons.con get a ge?aodm

Images © sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https:/focw.mit.edu/help/fag-fair-use.

Knapsack Problems

Images © sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

Knapsack Problem

*You have limited strength, so there is a maximum
weight knapsack that you can carry

*You would like to take more stuff than you can carry

"How do you choose which stuff to take and which to
leave behind?

=*Two variants
> 0/1 knapsack problem

> Continuous or fractional knapsack problem

Images © sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

My Least-favorite Knapsack Problem

A o

B "
o
.’ ' ‘&

L .o
- .}&M

Images © sources unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use.

0/1 Knapsack Problem, Formalized

"Each item is represented by a pair, <value, weight>

*"The knapsack can accommodate items with a total
weight of no more than w

"A vector, L, of length n, represents the set of
available items. Each element of the vector is an
Item

"A vector, V, of length n, is used to indicate whether
or not items are taken. If V/[i] =1, item []i] is taken.
It V[i] =0, item [[i] is not taken

0/1 Knapsack Problem, Formalized

Find a V that maximizes

n-1

2 V0il* Ililvalue

subject to the constraint that

n-1

EV[i] 1] weight = w
i=0

Brute Force Algorithm

*1. Enumerate all possible combinations of items. That
IS to say, generate all subsets of the set of items. This is
called the power set.

=2. Remove all of the combinations whose total units
exceeds the allowed weight.

*3. From the remaining combinations choose any one
whose value is the largest.

Often Not Practical

"How big is power set?

="Recall

> A vector, V, of length n, is used to indicate whether or not
items are taken. If V[i] =1, item [[i] is taken. If V[i] =0, item [[i]
is not taken

"How many possible different values can V have?

> As many different binary numbers as can be represented
in n bits

*For example, if there are 100 items to choose from, the
power set is of size?

> 1,267,650,600,228,229,401,496,703,205,376

Are We Just Being Stupid?

sAlas, no
*0/1 knapsack problem is inherently exponential

*But don’t despair

Greedy Algorithm a Practical Alternative

*while knapsack not full
put “best” available 1tem i1n knapsack

*But what does best mean?
> Most valuable
> Least expensive
> Highest value/units

An Example

*You are about to sit down to
a meal

*You know how much you
value different foods, e.g.,
you like donuts more than
apples

*But you have a calorie
budget, e.g., you don’t want
to consume more than 750
calories

"Choosing what to eat is a
knapsack problem

A Menu

MMMMMMM

Value 89

calories 123 154 258 354 365 150 95 195

"Let’s look at a program that we can use to decide what
to order

Class Food

class Food(object):
def _init__(self, n, v, w):
self.name = n
self.value = v
self.calories = w

def getValue(self):
return self.value

def getCost(self):
return self.calories

def density(self):
return self.getValue()/self.getCost()

def _str_ _(self):
return self.name + '": <' + str(self.value)\

+ ', + str(self.calories) + '>'

Build Menu of Foods

def buildMenu(names, values, calories):
"""names, values, calories lists of same length.
name a li1st of strings
values and calories lists of numbers
returns list of Foods"""
menu = |[]
for 1 1n range(len(values)):
menu.append(Food(names[1], values[1],
calories[1]))
return menu

Implementation of Flexible Greedy

def greedy(items, maxCost, keyFunction):
"""Assumes items a list, maxCost >= 0,
keyFunction maps elements of items to numbers
itemsCopy = sorted(items, key = keyFunction, <
reverse = [Jrue)

e ane

result = []
totalValue, totalCost = 0.0, 0.0

for 1 1n range(len(itemsCopy)): <
1f (totalCost+itemsCopy[i1].getCost()) <= maxCost:

result.append(itemsCopy[i])
totalCost += itemsCopy[1].getCost()
totalValue += itemsCopy[i].getValue()

return (result, totalValue)

Using greedy

def testCreedy(items, constraint, keyFunction):
taken, val = greedy(items, constraint, keyFunction)

1

print('Total value of i1tems taken ="', val)
for item 1n taken:

1

print(' , 1tem)

Using greedy

def testCreedys(maxUnits):
print('Use greedy by value to allocate', maxUnits,
'calories')
testGreedy(foods, maxUnits, Food.getValue)

print('\nUse greedy by cost to allocate', maxUnits,
'calories')

testGreedy(foods, maxUnits,
lTambda x: 1/Food.getCost(x)) +——
print('\nUse greedy by density to allocate', maxUnits,
'calories')
testGreedy(foods, maxUnits, Food.density)

lambda

*lambda used to create anonymous functions
- lambda <id,, id,, ... id,>: <expression>
> Returns a function of n arguments

*Can be very handy, as here
"Possible to write amazing complicated lambda expressions

*Don’t—use def instead

Using greedy

def testCGreedys(foods, maxUnits):

print('Use greedy by value to allocate', maxUnits,
'calories')

testGreedy(foods, maxUnits, Food.getValue)

print('\nUse greedy by cost to allocate', maxUnits,
'calories')

testGreedy(foods, maxUnits,

Tambda x: 1/Food.getCost(x))

print('\nUse greedy by density to allocate', maxUnits,
'calories')

testGreedy(foods, maxUnits, Food.density)

names = ['wine', 'beer', 'pizza', 'burger', 'fries',
'cola', 'apple', 'donut', 'cake']

values = [89,90,95,100,90,79,50,10]

calories = [123,154,258,354,365,150,95,195]

foods = buildMenu(names, values, calories)

testGreedys (foods, 750)

Run code

Why Different Answers?

*Sequence of locally “optimal” choices don’t always
vield a globally optimal solution

*|s greedy by density always a winner?
> Try testGreedys(foods, 1000)

The Pros and Cons of Greedy

"Easy to implement

*Computationally efficient

*But does not always yield the best solution
> Don’t even know how good the approximation is

Optimization Problem 2

Implementation of Flexible Greedy

def greedy(items, maxCost, keyFunction):
"""Assumes items a list, maxCost >= 0,
keyFunction maps elements of items to numbers
itemsCopy = sorted(items, key = keyFunction, <
reverse = [Jrue)

e ane

result = []
totalValue, totalCost = 0.0, 0.0

for 1 1n range(len(itemsCopy)): <
1f (totalCost+itemsCopy[i1].getCost()) <= maxCost:

result.append(itemsCopy[i])
totalCost += itemsCopy[1].getCost()
totalValue += itemsCopy[i].getValue()

return (result, totalValue)

Brute Force Algorithm

=]1. Enumerate all possible combinations of items.

=2. Remove all of the combinations whose total units
exceeds the allowed weight.

=3, From the remaining combinations choose any one
whose value is the largest.

probability tree diagram.

05
o Head L Head Head, Head
' T 5E—= Tail Head, Tail

O

k& Tail -_____E]_.E}--"" Head Tail, Head
H-_E[E‘“* Tail = Tail, Tail

Search Tree Implementation

"The tree is built top down starting with the root

"The first element is selected from the still to be
considered items

° |f there is room for that item in the knapsack, a node is
constructed that reflects the consequence of choosing to

take that item. By convention, we draw that as the left
child

> We also explore the consequences of not taking that
item. This is the right child

"The process is then applied recursively to non-leaf
children

"Finally, chose a node with the highest value that meets
constraints

Value 89

calories 123 354 365 150 95 195

"Let’s look at a program that we can use to decide what
to order

A Search Tree Enumerates Possibilities
Py
Left-first, depth-first

/u
.[ﬂ § é enumeration
,/{-—::_3:\\ /\ ,,/ - \
7 N\ Take Don’tTake /2
/

‘ &
o
e =2
‘l- 'i | ——

Val = 170 Val = 120 Val=140 Val= Val=80 val=30 Val=50 Val =

Computational Complexity

"Time based on number of nodes generated
"*Number of levels is number of items to choose from
sNumber of nodes at level i is 2!

5So, if there are n items the number of nodes is

°l.e., O(2Tn+1)

"An obvious optimization: don’t explore parts of tree
that violate constraint (e.g., too many calories)

> Doesn’t change complexity

="Does this mean that brute force is never useful?
° Let’s give it a try

Header for Decision Tree Implementation

def maxVal(toConsider, avail):
"""Assumes toConsider a list of items,
avail a weight
Returns a tuple of the total value of a

solution to 0/1 knapsack problem and
the items of that solution™"”

toConsider. Those items that nodes higher up in the tree

(corresponding to earlier calls in the recursive call stack)
have not yet considered

avall. The amount of space still available

Body of maxVal

1t toConsider == [] or avail ==
result = (0, ())
=11t toConsider[0].getCost () > avail:
#fExplore right branch only
result = maxVal (toConsider[1l:], avail)
else:
nextItem = toConsider[0]
#Explore left branch
withVal, withToTake = maxVal (toConsider[1l:],
avall - nextItem.getCost())
withVal += nextItem.getValue ()
ftExplore right branch
withoutvVal, withoutToTake = maxVal (toConsider[1l:], availil)
#Choose better branch
1t withval > withoutval:
result = (withVal, withToTake + (nextItem,))
else:
result
return result

(withoutval, withoutToTake)

Revisit ... Live Demo

"\With calorie budget of 750 calories, chose an optimal
set of foods from the menu

mmmmmmm

Value

calories 123 154 258 354 365 150 95 195

def testMaxVal (foods, maxUnits, printlItems = True):

print ('Use search tree to allocate', maxUnits,
'calories')
val, taken = maxVal (foods, maxUnits)
print ('Total value of items taken =', wval)
1T printItems:
for 1tem 1n taken:
print (' ', 1ltem)

names = ['wline', 'beer', 'pizza', 'burger', 'fries',

'cola', '"Tapple', 'donut']
values = [89,90,95,100,90,79,50,10]
calories = [123,154,258,354,365,150,95,195]
foods = buildMenu (names, values, calories)

testGreedys (foods, 750)
print ('")
testMaxVal (foods, 750)

Search Tree Worked Great

"GGave us a better answer
"Finished quickly

"But 2% is not a large number

> We should look at what happens when we have a more
extensive menu to choose from

Code to Try Larger Examples

import random <

def buildLargeMenu(numItems, maxVal, maxCost):
items = []
for 1 1n range(numItems):
items.append(Food(str(i),
random.randint(l, maxVal),
random. randint(1l, maxCost)))

return 1tems

for numItems in (5,10,15,20,25,30,35,40,45,50,55,60):
items = buildLargeMenu(numItems, 90, 250)
testMaxVal (items, 750, False)

s It Hopeless?

"In theory, yes
"|n practice, no!

"Dynamic programming to the rescue

Example : Fibonacci Number

= Fibonacci numbers
o Leonardo of Pisa (aka Fibonacci) modeled the following
challenge
> Newborn pair of rabbits (one female, one male) are put in a pen
> Rabbits mate at age of one month
> Rabbits have a one month gestation period

o Assume rabbits never die, that female always produces one new
pair (one male, one female) every month from its second month
on.

> How many female rabbits are there at the end of one year?

ar i

At

Y

g

at &

Tk

ar 1o

g

/ﬁ%ﬁ

at &

Yy

at &

Y

AT T

Al o

4R

pin

at i

A T

Consolidating the idea

After one month (call it 0) — 1 female

After second month —still 1 female (now
pregnant)

After third month — two females, one pregnant,
one not

In general, females(n) = females(n-1) +
females(n-2)

> Every female alive at month n-2 will produce one
female in month n;

o These can be added those alive in month n-1 to
get total alive in month n

ldea of code

= Base cases:
> Females(0) = 1
> Females(1) =1

" Recursive case
> Females(n) = Females(n-1) + Females(n-2)

Recursive Implementation of Fibonnaci

def fib(n):
1T n == 0 or n ==
return 1
else:

return fib(n - 1) + fib(n - 2)

fib(120) =8,670,007,398,507,948,658,051,921

Call Tree for Recursive Fibonnaci(6) = 13

.
ot [ﬁb Hﬁ'bmi ot w [ﬁbwl

| [ﬁl?(Z)ll [ﬁb(l)] [ﬁb 1)] [ﬁb(o)] [ﬁb(l}] [ﬁb] [ﬁbu)] [ﬁb(o)]

[ﬁbm] [ﬁb(o)]

Clearly a Bad Idea to Repeat Work

"Trade a time for space

5Create a table to record what we’ve done

- Before computing fib(x), check if value of fib(x)
already stored in the table

o |f so, look it up
o |f not, compute it and then add it to table
o Called memoization

Using a Memo to Compute Fibonnaci

def fastFib(n, memo = {}):
"""Assumes n is an int >= 0, memo used only by
recursive calls
Returns Fibonacci of n
1T n==0o0or n == 1:
return 1
try:
return memo|[n]
except KeyError:
result = fastFib(nh-1, memo) +\
fastFib(n-2, memo)
memo[n] = result
return result

Imirnn

When Does It Work?

"0Optimal substructure: a globally optimal solution can
be found by combining optimal solutions to local
subproblems

o For x> 1, fib(x) = fib(x - 1) + fib(x — 2)

=0verlapping subproblems: finding an optimal solution
involves solving the same problem multiple times

> Compute fib(x) or many times

What About 0/1 Knapsack Problem?

"Do these conditions hold?

Search Tree Optimal substructure?

/ - ~\
i/
V{/4

\
3
N

7 \ @y . Overlapping subproblems?
\.7 . jl

AN /\ Y s |
7N\ Take =

Don’tTake

/ 7= \\f:r\:\ V. 2)\ \
/ \ \ \
{ 1] \ /] 1 “'f " “\ ,l‘l." 1
] — i1) (1L . f / P i I
14 (S J 1 - | h .
-,” Q . il‘ il | ﬂ " l& " | : | J‘ :L é‘ il\. l ’-J‘ %
é > |\ \ - | —NI— S 7
! | :

Val=170 Val=120 Val=140 Val=90 val=80 val=30 Val=50 Val=0
Cal =766 Cal =766 Cal=508 Cal=145 Cal =612 Cal =258 Cal =354 Cal=0

A Different Menu

Need Not Have Copies of Items

item _____|Value ___|Calories

a 6 3
b 7 3
C 8 2
d 9 5

Search Tree

"Each node = <taken, left, value, remaining calories>

— 0:), [ab.cd], 0,5 l
1: {a}, [b,c.d), 6, 2 17 6:). [b.c.d], 0.5 _l
N

2: {a}, [c,d], 6, 2 7:{b}, [c.d], 7,2 1:{},[cd]. 0,5

3:{a,c}, [d], 14, 0| | 4: {a}, [d], 6, 2 | | 8: {b,c}, [d], 15, 0| 9: {b}, [d], 7, 2 | |12: {c}, [d], 8, 3| | 14:{},[d], 0, 5

N \ \
5:{a},[],6, 2 10: {b}, [], 7, 2‘ 13:{c}, []. 8,3
tem |Volve _|Calories /

6 3 15:4d},[],9,0|| 16:{1.[1.0,5

d

b 7 3
C 8 2
d 9 5

What Problem is Solved at Each Node?

"Given remaining weight, maximize value by choosing
among remaining items

=Set of previously chosen items, or even value of that
set, doesn’t matter!

Overlapping Subproblems

1:{a}, [b,c,d], 6, 2

0:{}, [a,b,c.d], 0,5

— 6:{}, [b,c.d], 0,5 j

7:{b}, [cd], 7,2

11:{},[c.d],0,5

3: {a,c), [d], 14,0

4: {a}, [d], 6, 2

8: {b,c}, [d], 15,0

9:{b}, [d], 7, 2

12: {c}, [d], 8,3| | 14:{},[d], 0,5

5:{a},[], 6,2

10:{b}, [, 7, 2

A
&

13:(ch (1.8,3| /

15:{d}, [}, 9,0

16:{},[].0,5

Modify maxVal to Use a Memo

sAdd memo as a third argument
- def fastMaxVal(toConsider, avail, memo = {}):

=Key of memo is a tuple

o (items left to be considered, available weight)
° ltems left to be considered represented by
len(toConsider)

"First thing body of function does is check whether the
optimal choice of items given the the available weight

is already in the memo

"l ast thing body of function does is update the memo

det fastMaxVal (toConsider, avail, memo = {}):

"""Assumes toConsider a list of subjects, avail a weight

memo supplied by recursive calls

Returns a tuple of the total wvalue of a solution to the
0/1 knapsack problem and the subjects of that solution"""

1if (len(toConsider), avail) 1n memo:

result = memo|[(len (toConsider), avail)]
=11f toConsider == [] or avalil == 0:

result = (0, ())

=1l1f toConsider[0].getCost () > avail:
tExplore right branch only

result = fastMaxVal (toConsider[l:], avail, memo)
else:
nextItem = toConsider[0]
#Explore left branch
withVal, withToTake =\
fastMaxVal (toConsider[1l:],
avall - nextItem.getCost (), memo)
withVal += nextlItem.getValue ()
tExplore right branch
withoutVal, withoutToTake = fastMaxVal (toConsider[l:],
avail, memo)
#Choose better branch
1f withval > withoutVal:
result = (withvVal, withToTake + (nextItem,))
else:
result = (withoutVal, withoutToTake)
memo [(len (toConsider), avail)] = result

return result

Performance

len(items) | 2**len(items) __| Number of calls
2 4 7

4 16 25

8 256 427

16 65,536 5,191

32 4,294,967,296 22,701

64 18,446,744,073,709 42,569
,551,616

128 Big 83,319

256 Really Big 176,614

512 Ridiculously big 351,230

1024 Absolutely huge 703,802

How Can This Be?

"Problem is exponential

"Have we overturned the laws of the universe?
5|s dynamic programming a miracle?

*No, but computational complexity can be subtle

"Running time of fastMaxVal is governed by number of
distinct pairs, <toConsider, avail>

> Number of possible values of toConsider bounded
by Ten(items)

> Possible values of avail a bit harder to characterize
> Bounded by number of distinct sums of weights
> Covered in more detail in assigned reading

summary . ..

"Many problems of practical importance can be
formulated as optimization problems

"Greedy algorithms often provide adequate (though not
necessarily optimal) solutions

"Finding an opdrraitsollsbieaxsskswadlysexiponentially
hard

"But dynamic programming often yields good
performance for a subclass of optimization problems—
those with optimal substructure and overlapping
subproblems

> Solution always correct
° Fast under the right circumstances

Quiz 02 — take home quiz

* available on IVY — from 16/2
e due 28/2 5pm

