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Mathematical Formulae

1. ALGEBRA
Quadratic Equation
For the quadratic equation ax? + bx + ¢ =0,

‘e —b+~b* —4ac

2a

Binomial Expansion

(a+b) =a" +(T]a”‘lb+(’ga”‘zb2 +...+(nJa”‘rb’ +..4+b"

r

n! _n(mn=1)..(n—r+1)
(n—r)!r!_ r!

where 7 is a positive integer and ( J =
r

2. TRIGONOMETRY
Identities
sin?A4 + cos?A4 = 1
sec’4 =1 + tan’ 4
cosec’A4 =1 + cot*4
sin (4 £+ B)=sin A4 cos B+ cos 4 sin B
cos (4 = B)=cos A cos B Fsin 4 sin B

tan Attan B

tan(A+B)= ———
1Ftan Atan B

sin 24 =2 sin A cos A

cos24=cos* A—sin*A=2cos’A—1=1-2sin* 4

l1-tan" A4
Formulae for A ABC
a b c

sind sinB sinC
a’> = b>+ ¢?> — 2bccos A

1 .
= 7 bcsin4



3

1 A cuboid has a square base of side (2\/5—1) cm and a volume of (53 - 29\/5) cm?’.

Without using a calculator, find the height of the cuboid, in cm, in the form

(a + b\/z) , where a and b are integers. 5]

Let / be the height of the cuboid
(2v2-1) xh=53-292 [M1]
. 53-292
(2v2-1)
53-2942
(2v2) ~2(2v2)(1) + (1)’

_ 53-29\2
8—442 +1

_ 53-29v2 X(9+4\/5) [M1- for 9—4\/5]
9-4V2  x(9+442)

(53-292)(9+442)
(9)° -(4J§)2

477421242 -26142 -116(2)

= 49 [M1- for either numerator or denominator]

[MI1- for rationalising denominator, allow ecf]

245 - 492

= (5-+2) em [A1]

[Turn over



2

A curve is such that % = age' ~* — 3x*> + 10, where a is a constant. The point P (1, 5)

lies on the curve. The gradient of the curve at P is 12.

(a) Show thata =>5.

Y =ae' -3+ 10
dx

dy
Whenx=1and — =12,

dx
ae’ —3(1+10=12
a-3+10=12 }[AI]
a =5 (shown)

(b) Find the equation of the curve.

d_y =5e! " *-3x>+ 10
dx

y= ISel_x—?)xz +10 dx

5 3y’ .
. —7+10x+c } [M1- for —5¢'™ ]

| [M1- for—x> + 10x |
=5 —x+10x+c

Whenx=1and y =5,

—5¢° —(1)’ +10(1)+c=5  [MI-allow ecf]
5-1+10+c=5

c=1

ay=-5e' - +10x+1  [Al]

[1]

[4]



E A F

A, B, C and D are points on a circle. EF is a tangent to the circle and angle DAF = x°.
BD is parallel to EF. AC and BD intersects at P.

Prove that
(a) AB=AD, [3]
ZADB = ZDAF = x° (alt. s, // lines) [M1- with correct reason]
ZABD = ZDAF = x° (alt. segment thm) [M1- with correct reason]
Since L ADB = ZABD, by (base /s of isos triangles), 4B = AD.
[A1- accept “isosceles triangle™]
Deduct 1 m from overall question for incorrectly phrased reasons.
(b) AC bisects angle BCD. [2]

ZACD = £ DAF = x° (alt. segment thm / /s in same segment) [M1- one correct reason]
ZACB = ZADB = x° (/s in same segment)

Since LACD = ZACB, .. AC bisects £ BCD.

[A1- both reasons correct + conclusion]

[Turn over



(@)

(b)

6

Express 4 cos’x — 6 sin’v in the form a cos2x + b.

4 cos’x — 6 sin’x

=4(°082x+1)—6(1_cgsz’“j [MI- for either]

2
=2(cos2x + 1) —3(1 — cos2x)
=2cos2x +2 -3 +3 cos2x
=5cos2x—1 [A1]

Alt mtd

4 cos*x — 6 sin’x

=4 cos*x — 6(1 — cos’x) [M1]
=4 cos*x — 6 — 6 cos>x

=10 cos’x — 6

_ 10(cos2x+1)_6
2

=5(cos2x +1)—6
=5cos2x+5-6
=5 cos2x—1 [A1]

The equation of a curve is y = 2x*> — kx + 4. Find the set of values of & for which

the line y = k — 4x meets the curve.

y=2x*—kx+4---(1)

y=k—4x ---(2)
(1)=(2),
22 —kx+4=k—4x [M1]

2 —kx+4x+4-k=0
2%+ @ -kx+(@-k=0
Line meets the curve: D >0

(4—k) —4(2)(4-k)>0 [M1]
16—8k+k*—32+8k>0

k*—16>0

(k+4)(k—4)=0 [M1- for factorising]

‘Im\ /|||||

k<-4 or k=4 [A1]

K*21b x

[2]

[4]
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1 1
A curve has the equation y=¢? +5¢ 2 .

(@)
18 2\/§ .

Show that the exact value of the y-coordinate of the stationary point of the curve

[4]
y—ezx+5e 2
1 1
b _ o (1j+5e 2 (—lj [M1]
dx 2 2
1 1
Ll a0
2 2
When — dy =0 le2x—§e 2 =0 [MI- allow ecf]
dx 2 2
1 1
lezxzée 2
2 2
1
e? = ?
e?
1 1
e? xe? =5
e =5 [M1]
x=1n5 A 1 ‘ 1
L ~Lns y:(e")2+5(e") 2 (1)
y=e? +5e
_( lnS)l +5( ms) ! sub into (1), y =(5 )2 +5(5) 2
~ e ]
1 1 _ Tz
=52 +5(5) 2
Lo ~ 54 f
=52452 - [Al]
- [Al]
5+4/5 = 5+\/§
= 25 (shown) = 24/5 (shown)
(b) Determine the nature of this stationary point. [2]
dz_y = le%x 1 _ée_%x 1 [M1] Alt mtd: First Derivative Test
dx* 2 2) 2 2 dp 1h 5 -L
1 I i
1 =x 5 -=« dx 2 2
= _ez +=e 2
4 ¥ 1.5 In5 1.7
2 1 1 dy
When e* =5, d); = %(5)2 +%(5) 2 ar —ve 0 + ve 1]
1 \ - /
=1.11803 or Ex/g < it is a minimum point. [Al]

2
Since dx_f > (), it is a minimum point.

2 2

[Al- with jx—f ~1.18 or ‘;x—f > 0]

[Turn over
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The binomial expansion of (1 + ax)” , where n > 0, in ascending powers of x is
1 —6x+36a>*+bx* + ... .

Find the value of n, a and b.
(1 + ax)"
~ (1)’ +(T](1)H (ax) +@(1)"-2 (ax) +(’3“J(1)"‘3 (ax) +... [MI]

n(n—l) 2.2 n(n—l)(n—Z) 3.3

= 1+ nax+ ax + a’x’ +...
21 3!
= 1+nax+n(n_l) a2x2+n(n—lé(n—2) ax’+...

By comparing with 1 — 6x + 36a’x* + bx> + ...,

n(n—l) 2.2 _ 2.2 : n
Ta x" =36a"x [M1- with 5 expanded correctly]

-1

(1) 36
2

nn—1)=72

n-n-72=0

n-—9n+8)=0

n=9 or n=-8(rej) [Al]

9ax = —6x
—6
a = —_—
9
2
-z Al
3 [Al]
9(8)(7 }
bx’ :M(—%j x*  [Ml- allow ecf]
6 3
o228 Al

[6]
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7 (a) The equation of a curveis y = x>+ 10x — 17.

(i) Express —x*> + 10x — 17 in the form a — (x + b)?, where a and b are constants. [2]

P+ 10x— 17 ditdid
o, a—(x+b)
=—(x"—10x+17) —a— (2 +2bx + B?)
., 107 (10Y =a—x*—2bx—b*
_—(x —10X+(? - ? +17 :_x2_2bx+(a_b2)
By comparing,
=~((x-5y°-8) 2b=10
=—(x—57°+8 b=-5
=8—(x—5) [AT] a—(-5)=-17
‘ r a-25=-17
[Ml] a=28 )
~8—(x—15) [Al]
A
[M1]
(ii) The straight line L meets the curve at one point only. Given that L is not a
tangent to the curve, what can be deduced about L? [1]
L is a vertical line. [B1]

*No marks if students wrote specific vertical line equation, e.g. x = 1.

b) Express 3x” —14x—20 in partial fractions 4
®) (x=3)" (2x+1) ' 4]
2 — —_—
t 3x"-14x-20 A4 B C [M1]

¢ > = + >+
(x—3) (2x+1) x-=3 (x—3) 2x+1
3x2 — 14x =20 =A(x — 3)(2x + 1) + B2x + 1) + C(x — 3)?

When x = 3, -
33— 14(3)-20=0+B(2(3)+ 1)+ 0
7B =-35
B=-5

1
Whenx = ——,

2

2 2
3(—lj —14[—lj—20 = 0+0+C(—l—3j
2 2 2 | [M1- any two correct]
49 . 49 [M2- all correct]
4 4
C=-1 *If partial fraction form is incorrect,
When x =0, award 1m for ability to do
—20=A(-3)(1)-5—(-3)? substitution method correctly.
—20=-34-14
34=6
A=2 )
3x—14x-20 2 5 1

., = - - Al
(x—3)2(2x+1) x=3 (x—3)2 2x+1 [AL]

. . 2 -5 -1
*Penalise under “presentation” if students wrote + =+
x=3 ( X — 3) 2x+1

[Turn over
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10

The velocity, v m/s, of a particle travelling in a straight line, # seconds after passing

through a fixed point O is given by v = <.
(1+2)

()

7
(t+2)3

Whent>0,(t+2)3>0Kv.Lot

L>O

(t+2)3

wiced.

Since v > 0, - the particle does not come to instantaneous rest
and it does not change its direction of motion.

't (‘q‘('

(b) Find the deceleration of the particle when ¢ = 3.
v=7(t+2)7
_dv
Cdr
a="7(=3)t+2)*
21
(1+ 2)4

a

[Ml]

a=—

21
(3+2)°
21

625

whent=3, a=—-

- the deceleration is % m/s?. [Al- or 0.0336 m/s’]

Explain why the particle does not change its direction of motion.

[1]

- [Bl1]

[2]



(©)
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Find the distance travelled by the particle in the third second.
v=T(@+2)7

Mid 1

s=[7(t+2) ar
) _

s=@+c [Ml-for@

7
§=———-+c

2(t+2)

whent=0ands =0, -———

7 7

2(t+2)" 8
third second: from =2 to¢t=3

Whent=2,s= —;2+Z
2(2+2) 8

Whent=3,s= —%‘FZ
2(3+2)" 8
_ 147
200
Dist travelled in the third second

[M1]

=" m [Al-or 0.07875 m]

Mtd 2:
third second: fromt=2to ¢t=3

[4]

[M1 - allow ECF if incorrect integration]

Dist travelled in the third second =| _ 7 = -] -
2 (3 + 2)

- L“7(z+2)‘3 dx

B _7(z+2)2I

[M1]

[M1- for ]

-2 63

. _ _i_(_i
7(e+2)" 50 \ 32

[Al- or 0.07875 m]

[Turn over
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12

The equation of a curve is y =

3x+1

the line 4y = x — 8. The x-coordinate of P is negative.

(a) Find the coordinates of P.
3x+1
dy _ (3x+1)(2x)=x(3)
dx (3x+1)2
_ 6x° +2x —3x’
(3x+1)2

_ 3x?+2x
(3x+1)2
4y=x-28
1

=—x-2
77y

Gradient of tangent at P =

B —

3x’+2x 1
(3x+1)2 4
4(3x% +2x) = (3x + 1)?
12x* + 8x =9x* + 6x + 1
3xX*+2x—1=0
BGx—-1D(x+1)=0
3x-1=0 or x+1=0

X =

1
3

# P (1,-0.5) [A1]

. The tangent to the curve at point P is parallel to

— [M1- allow ecf]

(rej) x=-1 [M1- for x = -1 with mtd to solve quad eqn]

[3]



(b)

13

The normal to the curve at P meets the y-axis at Q.

Find the area of the triangle POQ, where O is the origin.

(grad normal at P) 4
(eqn normal at P) y =—4x + ¢

[M1]

Whenx=-1and y=-0.5,-0.5=-4(-1)+ ¢

9
=—4x—-—
4 2

(area APOQ) %x 45%x1 = % units?

Mid 2

1Mo -1 0 0

200 -1.5 —045 0
=%[(0+4.5+0)—(0+0+0)]
=2units2

4

cC= ——

[M1- for —% ; allow ECF]

[Al-or 2.25]

[Al-or 2.25]

9
2

P
(-1, -0.5)

[3]

[Turn over
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10 Water activities are held at a sports centre near Changi Beach. The depth of water,
d metres, at time ¢ hours after 0700 is modelled by d = a sinbt + ¢, where a, b and c are
positive constants.

The time between a high tide to a low tide is 6 hours. The depth of the water at high

tide is 3.1 metres and the depth of the water at low tide is 0.3 metres.

(a) Show that b= g. 2]

Half a period of the sine graph =6

—=12 Ml
5 [MI]
2n=12b
_2n
12
[Al]
p=1 (shown)
6
(b) Find the value of a and c. [2]
3.1-0.3
a =
2
=14 [B1]
3.1+0.3
c:
2

=1.7 [B1]



10 (o)

(d)

15

Sketch the graph of d over the period 0700 to 1900 hours. [3]

d:1.4sin(%tj+l.7

1.7 1

0.3 -

d:1.4sin(%1j+l.7

v
~

[BI- correct sine curve shape + 1 cycle]
[BI- max at d = 3.1, min at d = 0.3 and axis of curve at d = 1.7]
[BI- all the critical ¢ values correct]

Water activities are only permitted when the depth of water is at least a certain
height. As a result, the sports centre closes x hours after 1 pm. Write an
expression, in terms of x, for the number of hours that it will be closed for. [1]

Closed after 1 pm 2 > 6
By symmetry, 6 —x—x=(6 —2x) h [B1]

[Turn over
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11

»
»

D (k, 14)

E
(-1, 12.5)

A(5,8)

B(5,2)

> X

)

The diagram shows an isosceles triangle 45C in which the point 4 is (5, 8), B is (5, 2)
and AC = BC. CA4 is produced to E such that ED is parallel to BC.
The point D is (k, 14) and E is (-1, 12.5). The area of triangle ABC is 12 units?.

(a) Show that the coordinates of C is (9, 5). [2]
Let M be the midpoint of 4B 4
8+2 _ 5 (5. 8) \
2 h
M5, 5) bu mL~~~>¢
let & be the height of AABC G5i%) //
L oxn=12 [MI]
2 B(5,2)
h=12 +l +6
2
=4
Al
~ C(9,5) (shown) } [Al]
(b) Find the value of £. [3]
5-2 3 Alt Mid
(grad BC) 9-5 4 [M1] (grad BC) ;:;’ =% [M1]
(grad DE) % =% [M1- allow ecf for grad BC| (eanDE) ¥ =%r+f
Whenx=-1 andy=12.5, 12.5 =é(—1)+c
L5 3 5ﬂ4
k+1 4 %
3(k+ 1) =4(1.5) ripdd ]
3k+3=6 [A]] Whenx=/kandy=14,
3k=6 14=354+3 7
k=1 (shown) s
3_3, [Al]
4 4

k=1 (shown)



11 (o)

(d)

17

Prove that the angle CDFE is not a right angle.

(grad DE) %
14-5 9
rad DC) —— = ——
(grad DC) —— 2
3 9
grad DE x grad DC = = x—=
4 8
27
=—-— M1
T [Ml]

[2]

Since grad DE % grad DC # -1, . the angle CDE is not a right angle. [Al]

Alt Mtd

EC?= (\/(—1—9)2 +(125-5) )2

=156.25 (or %{5)

ED* + DC? = (\/(—1—1)2 +(12.5-14)’ )2 +(\/(1—9)2 +(14—5)2)

=B 145
4

=151.25 (or %)

2

- [M1]

Since EC? # ED? + DC?, by the converse of Pythagoras’ Theorem, the angle CDE

is not a right angle. [Al]

Find the area of triangle CDE.

Area ACDE
119 1 -1 9

= [M1]
215 14 125 5

= %[(126+12.5—5)—(5—14+112.5)]
=15 units? [AT]

[2]

[Turn over



12 Since 1980, the number of trees in a forest has been steadily decreasing. The table

18

shows the number of trees, N, remaining in the forest in the decades following 1980.
The decade 1980 — 1989 is taken as # =1, and so on.

It is believed that these figures can be modelled by the formula N = 4b~’, where 4 and b

Year 1980 — 1989 | 1990 — 1999 | 2000 — 2009 | 2010 — 2019
Value of ¢ 1 2 3 4
Number of trees N 1560 1300 1080 900

are constants.

(@)

On the grid below, plot IgN against ¢ and draw a straight line graph to illustrate

the information.

IgNV

A

344

33+

3.27

32+

3.1+4

3.0+

29+

2.87

2.8 1

2.7

t

|

2

3

4

lgN 3.19 3.11

3.03

2.95

0

[B1- correct plots]
[B1- line of best fit through 1gN axis]

2]

(to 2dp)
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12 (b) Use your graph to estimate
(i) the value of 4 and b,

N=Ab"
1gN = lg(4b™)
IgN =1gd4 +1g(b™")
leN =1gA — ¢ 1gb [MI1]
1gN = (-Igh)t + lg4
(Y-int) 1g4 = 3.27 (Accept: 3.26, 3.265, 3.27, 3.275, 3.28)
A =103
= 1862.08

= 1860 (3sf) [A1] (Accept: 1820, 1840, 1860, 1880, 1910)
3.11-3.0
rad) ———— =-0.057894
(grad) 1.5-34
—lgh =-0.057894 [M]1- for —Igbh = gradient,
Accept: —0.08 < gradient <—-0.05 ]

lgb = 0.057894
b = 100-0578%

=1.1425
=1.14 (3Sf) [Al— accept lograd within the range ]

(ii) the number of trees remaining in the forest in the decade 2020 — 2029.

When ¢ =5,

IgN =2.87 [M1] (Accept: 2.86, 2.865, 2.87, 2.875, 2.88)
N=10>"

=741.31
= 741 (nearest integer) [Al - accept 10 ccepted Tvalue ]

(c) Explain what 4 represents.

N=4b""
Whent=0,N=4
~ A represents the number of trees in the forest in 1970 — 1979. [B1]

[4]

(2]

[1]

[Turn over
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13 The equation of a curve is y = 6x> + ax? + bx + 3, where a and b are constants.

(a) Ifyis always increasing, what conditions must apply to the constants a and b? [4]
y=6x+ax*+bx+3
% =6(3x%) +2ax+b [M1]
=18x*+2ax+b

Mid 1
When % >0, 18x* +2ax+b>0 [M1]

%

No real roots: D <0

(2a)* —4(18)(h) <0 [M1]

4a*> - 726 <0

4a* < 72b

a*<18b [A1- accept equivalent ans]
Mid 2

% =182 +2ax+b
= 18(x2+gx+£j
9 18
2 2
=18 x2+£x+[ij —(ﬁ) 2
9 18 18 18
2 2
_ 13 (_j )
18 324 18

2 2
—18) x+ 2| - L 4p [M1]
18 18
When —y>0,
aY o
18 x+— | ——+b>0 [M1]
18 18
a 2
Since | x+— | >0,
18
a2
13 +b>0 [A1- accept equivalent ans]



13 (b)

21

In the case where a = 13 and b =-16, find the x-coordinate of the points at which
the curve intersects the line y + 2x = 0.

Mtd 1: suby
y=6x+13x> - 16x+3 --(1)
y+2x=0
y=-"2x ---(2)
(H=2),
6x> + 13x* — 16x + 3 = 2x
6x> +13x* - 14x+3=0
Let f(x) = 6x° + 13x* — 14x + 3
f(-3) = 6(-3)* + 13(-3)> — 14(-3) + 3
=0
~ (x + 3) is a factor of f(x)
6x> —5x+1

x+3) 6x° +13x% —14x+3
—(6x3 +18x2)

—5x* —14x
—(-5x* ~15x)
x+3
—(x+3

N—"

(=]

o) = (x + 3)(6x> = 5x + 1)

when f(x) =0,
(x+3)(6x*=5x+1)=0
x+3=0 or 6X*-5x+1=0

1
2

x=-3 BGx-1D2x-1)=0
3x—1=0 or 2x—-1=0
1
x= - x=
3
~x=-3 or l or l
3 2

[M1- with correct mtd shown]

[A1, Al- must show mtd
to solve quadratic eqn]

[5]

[Turn over
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Mtd 2: sub x
y=6x+13x*—16x+3 --(1)
y+2x=0

2x=—-y

sub (2) into (1),

y:6(—%yJ3+13(—%yJZ—16[—%y)+3 [MI]

1 1
=6/ ——y" |+13] =y* |+8y+3
y=6(—30* o13( 507 oy

3., 13,
===y +—y +8y+3
y 4y 4y y

3 5 13,
Zy —Ty -7y-3=0
3y —13y? —28y—12=0
Let f(y) =3y° — 13y - 28y — 12
£(6) = 3(6)* — 13(6)* — 28(6) — 12
=0 } [MI]
~ (y—6) is a factor of f(y)
32 +5y+2
y=6) 3y’ -13y’-28y-12
-(3y"-18y?)
5y* 28y
—(5y2—30y)
2y-12
—(2y-12)
0
f) = —6)(3y* + 5y +2) [M1- with correct mtd shown]
when f(y) =0,
(-6)3*+5y+2)=0
y-6=0 or 3)*+59+2=0
y=6 Gy+2)(y+1H=0
3y+2=0 or y+1=0

2
[ :_1
Y 3 y

sub into (2),

[A1, Al- must show mtd

wx=-3 or l or l )
3 2 to solve quadratic eqn]|

*If fractional factors are used and whole gqn correct, deduct Im from the qn itself.

END OF PAPER



