RAFFLES INSTITUTION H2 Mathematics (9758) 2016 Year 5

Chapter 3B: Vectors II - Equations of Straight Lines

SYLLABUS INCLUDE

- Vector and cartesian equations of lines
- Finding the distance from a point to a line
- Finding the angle between two lines
- Relationships between two lines (coplanar or skew)

CONTENT

- 1 Equations of Straight Lines
 - 1.1 Vector Equation of a Straight Line
 - 1.2 Parametric Form of Equation of a Straight Line
 - 1.3 Cartesian Equation of a Straight Line
- 2 Calculations Involving a Point and a Line
 - 2.1 Determining whether a Point lies on a Line or a Line passes through a Point
 - 2.2 Finding the Foot of Perpendicular from a Point to a Line and the Corresponding Perpendicular Distance
- 3 Calculations Involving a Pair of Lines
 - 3.1 Parallel Lines, Intersecting Lines and Skew Lines
 - 3.2 Acute Angle between Two Lines

INTRODUCTION

In this Chapter, we shall see how the equation of a straight line can be expressed in three forms, namely vector, parametric and cartesian. We will then use the equation to solve problems involving distances, intersections and angles.

1 EQUATIONS OF STRAIGHT LINES

1.1 Vector Equation of a Straight Line

Recall that to find the equation of a straight line in the x-y plane, we need a point which lies on the line and the gradient of the line.

Similarly, to obtain a vector equation of a line, we need

(i) the position vector of a point on the line, and

(ii) avector parallel to the line (known as the direction vector).

Since AR 11 AR For ARE 2016 AR 2 ARE 2016 1 AR 2 Amos

assignment |

A straight line l which passes through a fixed point A with position vector \mathbf{a} and is parallel to a vector \mathbf{b} has vector equation given by

 $t = a + \lambda b$, $\lambda \in \mathbb{R}$,

where \mathbf{r} represents the position vector of any point on the line l.

Each real value of λ gives the position vector of a point on the line l.