Check your Understanding (Inequalities)

Section 1: Type of roots of Quadratic Equation

1. RVHS JC2 Prelim 8865/2019/Q1

Find the exact range of values of the constant k for which the equation $kx^2 + x + k + 2 = 0$ has 2 distinct real roots.

RVHS JC2 Prelim 8865/2019/Q1 (Solutions)

Since the equation has 2 real distinct roots,

Discriminant > 0

$$(1)^{2} - 4(k)(k+2) > 0$$
$$1 - 4k^{2} - 8k > 0$$

$$4k^{2} + 8k - 1 < 0$$

$$\left[k - \left(-1 + \frac{\sqrt{5}}{2}\right)\right] \left[k - \left(-1 - \frac{\sqrt{5}}{2}\right)\right] < 0$$

Side working:

Let
$$4k^2 + 8k - 1 = 0$$
.

$$k = \frac{-8 \pm \sqrt{64 - 4(4)(-1)}}{8}$$
$$= \frac{-8 \pm \sqrt{80}}{8}$$
$$= -1 \pm \frac{\sqrt{5}}{2}$$

2. CJC JC2 Prelim 8865/2019/Q2

Find the set of values of k for which the equation $kx^2 + (3-k)x + k - 3 = 0$ has real roots.

Without carrying out further calculations, state the set of values of k for which $kx^2 + (3-k)x + k - 3 > 0$ for all real values of x. [4]

CJC JC2 Prelim 8865/2019/Q2 (Solutions)

2 Since the equation has real roots,

Discriminant ≥ 0

$$\left(3-k\right)^2-4k\left(k-3\right)\geq 0$$

$$3k^2 - 6k - 9 \le 0$$

$$3(k+1)(k-3) \le 0$$

$$\therefore -1 \le k \le 3$$

The set of values is $\{k \in \mathbb{R} : -1 \le k \le 3\}$.

If $kx^2 + (3-k)x + k - 3 > 0$ for all real values of x,

k > 0 and Discriminant < 0

$$\Rightarrow k > 0 \cdots (1)$$
 and $k < -1$ or $k > 3 \cdots (2)$

Combining (1) and (2), k > 3

The set of values is $\{k \in \mathbb{R} : k > 3\}$.

Section 2: Conditions for Quadratic Equation to be always positive or negative

ASRJC JC2 Prelim 8865/2019/Q1

Find algebraically the exact set of values of k for which

$$kx^2 + (3k+1)x + (4+4k) > 0$$

for all real values of x.

[5]

ASRJC JC2 Prelim 8865/2019/Q1 (Solutions)

For $kx^2 + (3k+1)x + (4+4k) > 0$ for all real values of x, 2 conditions need to be satisfied:

- (i) the coefficient of x^2 must be positive $\Rightarrow k > 0$ --- (1) and
- (ii) Discriminant < 0

$$(3k+1)^2 - 4k(4+4k) < 0$$

$$9k^2 + 6k + 1 - 16k - 16k^2 < 0$$

$$-7k^2 - 10k + 1 < 0$$

$$7k^2 + 10k - 1 > 0$$

$$v = 15k^2 + 10k - 1$$

$$k < \frac{-5 - 4\sqrt{2}}{7}$$
 or $k > \frac{-5 + 4\sqrt{2}}{7}$ ---(2)

Combining (1) and (2),
$$k > \frac{-5 + 4\sqrt{2}}{7}$$

The set of values of k is $\left\{k \in \mathbb{R} : k > \frac{-5 + 4\sqrt{2}}{7}\right\}$.

Side working:

Consider
$$7k^2 + 10k - 1 = 0$$

$$k = \frac{-10 \pm \sqrt{10^2 - 4(7)(-1)}}{2(7)}$$
$$= \frac{-10 \pm \sqrt{128}}{14} = \frac{-5 \pm 4\sqrt{2}}{7}$$

The set of values of
$$k$$
 is $\left\{k \in \mathbb{R} : k > \frac{-5 + 4\sqrt{2}}{7}\right\}$.

EJC JC2 Prelim 8865/2019/Q1

Find algebraically the set of values of k for which

$$kx^2 + (k-2)x + k > 0$$

for all real values of x.

[4]

EJC JC2 Prelim 8865/2019/Q1 (Solutions)

For
$$kx^2 + (k-2)x + k > 0$$
,

Discriminant < 0 and coefficients of $x^2 > 0$

$$(k-2)^2 - 4(k)(k) < 0$$
 and $k > 0 \cdots (2)$

$$k^2 - 4k + 4 - 4k^2 < 0$$

$$3k^2 + 4k - 4 > 0$$

$$(3k-2)(k+2) > 0$$

$$-2$$
 $\xrightarrow{\frac{2}{3}}$ k

$$k < -2 \text{ or } k > \frac{2}{3} \cdots (1)$$

Combining (1) and (2), the set of values is $\{k \in \mathbb{R} : k > \frac{2}{3}\}$

NYJC JC2 Prelim 8865/2019/Q1

Find the exact range of values of k for which $(1-2k)x^2 - x - k$ is non positive for all values of

NYJC JC2 Prelim 8865/2019/Q1 (Solutions)

For
$$(1-2k)x^2 - x - k \le 0$$
,

coefficients of $x^2 < 0$ and Discriminant ≤ 0

$$1 - 2k < 0$$

&
$$(-1)^2 - 4(1-2k)(-k) \le 0$$

$$k > \frac{1}{2}$$

$$\& 1 + 4k - 8k^2 \le 0$$

$$k > \frac{1}{2}$$

&
$$k^2 - \frac{1}{2}k - \frac{1}{8} \ge 0$$

$$k > \frac{1}{2}$$

&
$$1+4k-8k^{2} \le 0$$

& $k^{2}-\frac{1}{2}k-\frac{1}{8} \ge 0$
& $\left(k-\frac{1}{4}\right)^{2}-\frac{3}{16} \ge 0$

$$k > \frac{1}{2} \cdots (1)$$

&
$$k \le \frac{1}{4} - \frac{\sqrt{3}}{4}$$
 or $k \ge \frac{1}{4} + \frac{\sqrt{3}}{4} \cdots (2)$

or
$$k \ge$$

$$k \ge \frac{1}{4} + \frac{\sqrt{3}}{4} \cdots (2)$$

Combining (1) and (2), $k \ge \frac{1}{4} + \frac{\sqrt{3}}{4}$

TMJC JC2 Prelim 8865/2019/Q1 6.

The equation of a curve is $y = (k-2)x^2 + (2k-4)x + (2k-1)$ where k is a real constant. Find the range of values of lies completely above for which the curve the *x*-axis. [4]

TMJC JC2 Prelim 8865/2019/Q1 (Solutions)

For
$$(k-2)x^2 + (2k-4)x + (2k-1) > 0$$

Discriminant < 0

and coefficient of
$$x^2 > 0 \Rightarrow k - 2 > 0 \Rightarrow k > 2 \cdots (2)$$
.

$$(2k-4)^2-4(k-2)(2k-1)<0$$

$$4k^{2} - 16k + 16 - 4(2k^{2} - 5k + 2) < 0$$
$$-4k^{2} + 4k + 8 < 0$$
$$\therefore 4k^{2} - 4k - 8 > 0$$

$$-4k^2 + 4k + 8 < 0$$

$$\therefore 4k^2 - 4k - 8 > 0$$

$$\Rightarrow (k-2)(k+1) > 0$$

$$\Rightarrow k < -1 \text{ or } k > 2 \cdots (1)$$

Combining (1) and (2), k > 2

Section 3: Show Questions

ACJC JC2 Prelim 8865/2019/Q1

Show that there are no real values of k for which $2(x^2-x)+k(x-1)-1$ is always positive.

ACJC JC2 Prelim 8865/2019/Q1 (Solutions)

Let
$$y = 2(x^2 - x) + k(x - 1) - 1 = 2x^2 + (k - 2)x - k - 1$$

Assume y > 0 for all real values of x. Since y > 0 for all real values of x, Discriminant < 0.

Method 1:

Discriminant =
$$(k-2)^2 - 4(2)(-k-1)$$

$$= k^2 - 4k + 4 + 8k + 8$$

$$=k^2+4k+12$$

$$=(k+2)^2+8>0$$
 for all real values of k

since $(k+2)^2 \ge 0 \Rightarrow (k+2)^2 + 8 \ge 0 + 8 > 0$ for all real values of k.

- \Rightarrow Discriminant can never be negative for all real values of k
- $\Rightarrow 2(x^2-x)+k(x-1)-1=0$ will always have 2 real and distinct roots, i.e.
- \Rightarrow There are no real values of k for which $2(x^2-x)+k(x-1)-1$ is always positive.

Method 2:

Solving Discriminant < 0.

$$(k-2)^2-4(2)(-k-1)<0$$

$$k^2 - 4k + 4 + 8k + 8 < 0$$

$$k^2 + 4k + 12 < 0$$

$$(k+2)^2+8<0$$

But $(k+2)^2 \ge 0$ for all real values of k so $(k+2)^2 + 8 > 0$.

 \Rightarrow There are no real values of k for which $2(x^2-x)+k(x-1)-1$ is always positive.

MI PU2 Prelim 8865/2019/Q2 8.

Show that there are no real values of k for which $2x^2 + (2k+1)x - k - 1$ is always positive. [4]

MI PU2 Prelim 8865/2019/Q2 (Solutions)

Assume that that there are real values of k such that $2x^2 + (2k+1)x - k - 1$ is always positive.

Since $2x^2 + (2k+1)x - k - 1$ is always positive, Discriminant < 0

Discriminant

$$=(2k+1)^2-4(2)(-k-1)$$

$$= 4k^2 + 4k + 1 + 8k + 8$$

$$=4k^2+12k+9$$

$$=(2k+3)^2 \ge 0$$
 for all real values of k

This contradicts with the original assumption. Hence there are no real values of k such that $2x^2 + (2k+1)x - k - 1$ is always positive.

[4]

Section 4: Intersection of a curve and a line

SAJC JC2 Prelim 8865/2019/Q2

The curve C has equation $y = 2x^2 - kx + 5$ and the line L has equation y = 3x + k.

Find the exact range of values of k such that C intersects L.

SAJC JC2 Prelim 8865/2019/Q2 (Solutions)

When C intersects L,

$$2x^2 - kx + 5 = 3x + k$$

$$2x^2 - (k+3)x + (5-k) = 0$$

Since C intersects L, Discriminant ≥ 0

$$[-(k+3)]^2 - 4(2)(5-k) \ge 0$$

$$k^2 + 14k - 31 \ge 0$$

$$(k+7)^2-80 \ge 0$$

$$(k+7)^{2}-80 \ge 0$$
$$(k+7)^{2}-(\sqrt{80})^{2} \ge 0$$

$$\left(k+7+\sqrt{80}\right)\left(k+7-\sqrt{80}\right) \ge 0$$

10. NJC JC2 Prelim 8865/2019/Q1

Find the range of values of m such that the line y = 2x + m and the curve $y = 2mx^2 - (m+2)x - 4$ intersect at two distinct points. [4]

NJC JC2 Prelim 8865/2019/Q1 (Solutions)

When the line intersects the line,

$$2mx^2 - (m+2)x - 4 = 2x + m$$

$$2mx^2 - (m+4)x - m - 4 = 0$$

Since the line and the curve intersect at 2 distinct points, \therefore discriminant > 0

$$(-(m+4))^2-4(2m)(-m-4)>0$$

$$(m+4)^2 + 8m(m+4) > 0$$

$$(m+4)(m+4+8m) > 0$$

$$(m+4)(9m+4) > 0$$

$$m < -4$$
 or $m > -\frac{4}{9}$

When m = 0, the curve becomes a line y = -2x - 4 and the other line will have equation y = 2x. These 2 lines intersect at a single point.

Hence, for the lines to intersect at two distinct points, m < -4 or $m > -\frac{4}{9}$, $m \ne 0$.

11. TJC JC2 Prelim 8865/2019/Q1

Find algebraically the range of values of k for which the curve $y = -4x^2 + 2(k-1)x - 9$ intersects the x-axis. [4]

TJC JC2 Prelim 8865/2019/Q1 (Solutions)

When the curve intersects the the x-axis,

$$-4x^2 + 2(k-1)x - 9 = 0$$

Since the curve must intersect the x-axis (either at one or two points),

Discriminant ≥ 0

$$4(k-1)^2 - 4(-4)(-9) \ge 0$$

$$\Rightarrow k^2 - 2k - 35 \ge 0$$

$$\Rightarrow (k+5)(k-7) \ge 0$$

 $k \le -5$ or $k \ge 7$

12. RVHS JC1 Promo 8865/2019/Q7

Show that the expression $-(k^2+1)x^2+2kx-1$ is negative for all real values of x and k. [3]

(ii) Hence find the values of x for which
$$\frac{x^2 - 5x + 4}{-(k^2 + 1)x^2 + 2kx - 1} > 0.$$
 [3]

(iii) Given that k > 0, deduce the range of value of x which satisfies

$$\frac{-k^2x^2 + 5kx - 4}{-(k^2 + 1)k^2x^2 + 2k^2x - 1} < 0$$
, leaving your answer in terms of k . [4]

RVHS JC1 Promo 8865/2019/Q7 (Solutions)

(i) For
$$-(k^2+1)x^2+2kx-1<0$$
,

Coefficient of $x^2 = -(k^2 + 1)$

Since $k^2 \ge 0$, $k^2 + 1 > 0$ thus $-(k^2 + 1) < 0$

Discriminant =
$$(2k)^2 - 4(-k^2 - 1)(-1)$$

= $4k^2 + 4(-k^2 - 1)$

$$=-4<0$$

Therefore $-(k^2+1)x^2+2kx-1<0$ for all real values of x and k.

(ii)
$$\frac{x^2 - 5x + 4}{-(k^2 + 1)x^2 + 2kx - 1} > 0$$

Since $-(k^2+1)x^2+2kx-1<0$ for all real values of x and k, this implies that $x^2-5x+4<0$.

$$x^2 - 5x + 4 < 0$$

$$(x-4)(x-1)<0$$

(iii)
$$\frac{-k^2x^2 + 5kx - 4}{-(k^2 + 1)k^2x^2 + 2k^2x - 1} < 0$$
$$\frac{k^2x^2 - 5kx + 4}{-(k^2 + 1)k^2x^2 + 2k^2x - 1} > 0$$
$$\frac{(kx)^2 - 5(kx) + 4}{-(k^2 + 1)(kx)^2 + 2k(kx) - 1} > 0$$

Replace x by kx

$$\frac{1}{k} < x < \frac{4}{k}$$

13. DHS JC1 Promo 8865/2019/Q1

By using an algebraic method, find the set of values of k such that $x^2 + 3kx + 4k$ is positive for all real values of x.

Hence solve
$$\frac{x^2 + 3x + 4}{2e^x + 3xe^x} \le 0$$
. [4]

DHS JC1 Promo 8865/2019/Q1 (Solutions)

For $x^2 + 3kx + 4k > 0$,

Discriminant < 0

$$(3k)^2 - 4(1)(4k) < 0$$

$$9k^2 - 16k < 0$$

$$k(9k-16)<0$$

$$\left\{ k \in \mathbb{R} : 0 < k < \frac{16}{9} \right\}$$

$$\frac{x^2 + 3x + 4}{2x^2 + 3x^2} \le 0$$

$$x^2 + 3x + 4 > 0$$
 since $k = 1$

$$\therefore 2e^x + 3xe^x < 0$$

$$e^x (2+3x) < 0$$

Since $e^x > 0$ for all real values of x,

$$2 + 3x < 0$$

$$x < -\frac{2}{3}$$