Woodlands Ring Secondary School Secondary 4E Mathematics Prelim P1 2023 – Worked Solutions

Qns. No.	Working
1(a)	$\sqrt[4]{\frac{7.23}{1.305}} + 8.9^3 = 706.503$
	=707 (3 s.f.)
1(b)	7.07×10^2
2(a)	$4a^2 \times 7a^6 = 28a^8$
2(b)	8-5(1-2b) = 8-5+10b $= 3+10b$
3(a)	$x^2 - 4x - 12 = (x+2)(x-6)$ $\therefore a = 2, b = 6$
3(b)	Line of symmetry is $x = 2$
4 (a)	Range = 31 – 13 = 18
4 (b)	Median = $\frac{19+22}{2}$ = 20.5
5	The line graph for Star-One looks steeper than that for Galaxy as the scales for the vertical axes are different.
6(a)	Diagram 2
6(b)	Height of cylindrical part of the container
7(a)	Sequence: -2, 5, 12, 19, Multiples of 7: 7, 14, 21, 28,, 7n
	$\therefore n^{\text{th}} \text{ term} = 7n - 9$
7(b)(i)	1, 7, 17
7 (b)(ii)	For any integer n , $2n^2$ is always a positive even number.
	Since 1 is an odd number, when it is subtracted from $2n^2$, $2n^2 - 1$ will be odd.

Qns. No.	Working
8(a)	$4-x < \frac{2x-5}{3} \le 6$
	$3 \\ 12 - 3x < 2x - 5 \le 18$
	$12-3x < 2x-5$ and $2x-5 \le 18$ $-5x < -17$ $2x \le 23$
	$-5x < -17$ $2x \le 23$ $x > 3\frac{2}{5}$ $x \le 11\frac{1}{2}$ [or $x > 3.4$ and $x \le 11.5$]
	$\therefore 3\frac{2}{5} < x \le 11\frac{1}{2} \text{[or } 3.4 < x \le 11.5 \text{or } \frac{17}{5} < x \le \frac{23}{2} \text{]}$
8 (b)	Smallest integer = 4
9(a)	$P(\cosh) = 1 - \frac{1}{4} - \frac{1}{5}$ $= \frac{11}{20}$
9(b)	P(at least one of them uses mobile wallet (M)
	= 1 - P(no M) = $1 - \frac{3}{4} \times \frac{3}{4}$ = $\frac{7}{16}$
9(c)	P(only the third customer uses cash) $= P(\text{no cash, no cash, cash})$ $= \frac{9}{20} \times \frac{9}{20} \times \frac{11}{20}$ $= \frac{891}{8000}$
10(a)	Map scale = 5 cm : 2.5 km = 1 cm : 0.5 km = 1 : 50 000
10(b)	On the map, $PQ = 8 \text{ cm}$ (accept $7.9 - 8.1 \text{ cm}$) Actual length of $PQ = 8 \times 0.5$ = 4 km (accept $3.95 - 4.05 km$)
	Other accepted working: Map scale = 1 cm : 0.5 km = 8 cm : 4 km

Qns. No.	Working
10(c)	Area scale = $1^2 \text{ cm}^2 : 0.5^2 \text{ km}^2$
	$= 1 \text{ cm}^2 : 0.25 \text{ km}^2$
	. 3.5
	Area on the map $=\frac{3.5}{0.25}$
	$= 14 \text{ cm}^2$
11(a)	Gradient of line $l = \frac{15-5}{10-2}$ $= \frac{5}{4}$
	$\frac{10-2}{5}$
	$=\frac{3}{4}$
11(b)	Sub (2, 5) into $y = \frac{5}{4}x + c$:
	$5 = \frac{5}{4}(2) + c$
	Sub (2, 5) into $y = \frac{5}{4}x + c$: $5 = \frac{5}{4}(2) + c$ $c = 5 - \frac{5}{2}$ $= \frac{5}{2}$
	5
	$=\frac{3}{2}$
	Equation of line <i>l</i> . is $y = \frac{5}{4}x + \frac{5}{2}$ OR $4y = 5x + 10$ (1)
11(c)	Length of $AB = \sqrt{(10-2)^2 + (15-5)^2}$
	·
	$=\sqrt{164}$
	=12.8 units (3 s.f.)
11(d)	Since the vertical line passes through the point (18, 2) and point <i>N</i> , the <i>x</i> -coordinate of <i>N</i> is 18.
	Sub $x = 18$ into (1): $y = \frac{5}{4}(18) + \frac{5}{2}$
	= 25 ∴ N is (18, 25)
	14 18 (10, 23)
12	_ k
	$R = \frac{k}{x^2}$
	New $x = 0.4x$
	New $R = \frac{k}{(0.4x)^2}$
	$=\frac{k}{0.16x^2}$
	$= \left(\frac{1}{0.16}\right) \left(\frac{k}{x^2}\right)$
	=6.25R

Qns. No.	Working
	Percentage increase $= \frac{6.25R - R}{R} \times 100\%$ $= \frac{5.25R}{R} \times 100\%$ $= 525\%$
13	$126 = 2 \times 3^{2} \times 7$ $90 = 2 \times 3^{2} \times 5$ $54 = 2 \times 3^{3}$ HCF of 126, 90 and $54 = 2 \times 3^{2}$ $= 18$ ∴ number of cubes required $= \frac{126}{18} \times \frac{90}{18} \times \frac{54}{18}$ $= 105$
14(a) 14(b)	$14gh-35g = 7g(2h-5)$ $(r-3s)^{2}-8s^{2} = r^{2}-6rs+9s^{2}-8s^{2}$ $= r^{2}-6rs+s^{2}$
15	4c + 3a = 220 (1) $3c + 5a = 275 (2)$ $(1) × 3: 12c + 9a = 660 (3)$ $(2) × 4: 12c + 20a = 1100 (4)$ $(4) - (3): 11a = 440$ $a = 40$ Sub $a = 40$ into (1): $4c + 3(40) = 220$ $4c = 100$ $c = 25$ ∴ cost of a ticket for a child = \$25 cost of a ticket for an adult = \$40
16	1 interior angle of the polygon B at point O $= 360 - 90 - 115$ $= 155^{\circ} \qquad (\angle s \text{ at a point})$ 1 exterior angle of the polygon B at point O $= 180 - 155$ $= 25^{\circ} \qquad (\text{adj. } \angle s \text{ on a str. line})$

Qns. No.	Working
QIISTITO	If polygon B is a regular polygon,
	number of sides $=\frac{360}{25}$
	25 = 14.4
	- 14.4
	Since \underline{n} is not an integer, polygon B cannot be a regular polygon.
17	$3\sin x - 2 = 0$
	$\sin x = \frac{2}{3}$
	$x = 41.8^{\circ}, 138.2^{\circ}$ (1 d.p.)
	(5.7)
18(a)	$1, 4, 6, 8, 9, 10$ or $A' = \{1, 4, 6, 8, 9, 10\}$
18(b)	$A \cup C = \{2, 3, 4, 5, 6, 7, 8, 10, 11\}$
	$(A \cup C)' = \{1, 9\}$
	$n(A \cup C)' = 2$
18(c)	
()	ξ
	$A \longrightarrow B$
	$ \begin{pmatrix} 3 \\ 5 \\ 11 \end{pmatrix} $
	$\begin{pmatrix} 2 \\ 4 \end{pmatrix}$
	6 9 10
	8 10
19	$16^{2w} = 64^{1-w}$
17	
	$(4^2)^{2w} = (4^3)^{1-w}$
	$4^{4w} = 4^{3-3w}$
	Comparing the indices:
	4w = 3 - 3w
	7w = 3
	$w = \frac{3}{7}$

Qns. No.	Working
20	1. BQ = CB (given)
	2. $\angle ABQ = 180^{\circ} - \angle ABC$ (adj. \angle on a str. line)
	$=180^{\circ} - \angle ACB$ (base \angle s of isos $\triangle ABC$)
	$= \angle PCB$ (adj. \angle s on a str. line)
	3. AB = AC (given)
	=PC
	$\therefore \Delta AQB \equiv \Delta PBC \text{ (SAS)}$
21	$2n^2$
	$q=15-\frac{2p^2}{3}$
	$3q = 45 - 2p^2$
	$2p^2 = 45 - 3q$
	$p^2 = \frac{45 - 3q}{2}$
	$p = \pm \sqrt{\frac{45 - 3q}{2}}$
	$p = \pm \sqrt{\frac{18}{2}}$
	, -
22	y 3 y 3
	$\frac{y}{(2y-5)^2} + \frac{3}{5-2y} = \frac{y}{(2y-5)^2} - \frac{3}{2y-5}$
	$=\frac{y-3(2y-5)}{(2y-5)^2}$
	y - 6y + 15
	$=\frac{y-6y+15}{(2y-5)^2}$
	$=\frac{15-5y}{(2y-5)^2}$
	$-(2y-5)^2$
	$=\frac{5(3-y)}{(2y-5)^2}$
	$(2y-5)^2$
23(a)	In ΔTVU ,
	$\cos \angle TVU = \frac{100^2 + 125^2 - 167^2}{2(100)(125)}$
	$=-\frac{283}{3125}$ or $-\frac{2264}{25000}$
	3125 25000
	$\therefore \angle TVU = 95.1958^{\circ}$
	$= 95.2^{\circ}$ (1 d.p.) (shown)

Qns. No.	Working
23(b)	9
	$\frac{N_U}{\uparrow}$
	N
	167 m
	T N $\angle b$
	58° (7 125 m
	58° ∠a
	S
	$\angle a = 58^{\circ} (\text{alt } \angle s, // \text{lines})$
	$\angle b = 95.1958 - 58$ = 37.1958°
	the beging of V from $U_{\perp} = 190 \pm 27.1059$
	:. the bearing of V from $U = 180 + 37.1958$ = 217.2° (1 d.p.)
23(c)	
23(0)	D_{\sim}
	24.7° (angle of depression)
	24.7°
	100 m
	$\tan 24.7^{\circ} = \frac{DT}{100}$
	$DT = 100 \tan 24.7^{\circ}$
	$DT = 100 \tan 24.7$ = 45.99486 m
	= 46.0 m (3 s.f.)
24()	
24(a)	$\begin{bmatrix} 2 & 0 \\ 4 & 5 \end{bmatrix}$
	$\mathbf{Q} = \begin{pmatrix} 2 & 0 \\ 4 & 5 \\ 3 & 4 \end{pmatrix}$
24(b)	(52, 66, 73) $(2, 0)$
	$\mathbf{R} = \mathbf{PQ} = \begin{pmatrix} 5.2 & 6.6 & 7.3 \\ 5.5 & 6.4 & 7.4 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 4 & 5 \\ 3 & 4 \end{pmatrix}$
	$= \begin{pmatrix} 5.2 \times 2 + 6.6 \times 4 + 7.3 \times 3 & 5.2 \times 0 + 6.6 \times 5 + 7.3 \times 4 \\ 5.5 \times 2 + 6.4 \times 4 + 7.4 \times 3 & 5.5 \times 0 + 6.4 \times 5 + 7.4 \times 4 \end{pmatrix}$
	$= \begin{pmatrix} 58.7 & 62.2 \\ 58.8 & 61.6 \end{pmatrix}$

Qns. No.	Working
24(c)	The elements in R represent the total amount that Derrick and Elaine need to pay if they
	purchase the drinks at Café X and Café Y respectively.
24(1)(2)	
24(d)(i)	$\mathbf{S} = \begin{pmatrix} 1.1 & 0 & 0 \\ 0 & 1.15 & 0 \\ 0 & 0 & 0.95 \end{pmatrix}$
	(0 0 0.95)
24(d)(ii)	$ \begin{pmatrix} 5.2 & 6.6 & 7.3 \\ 5.5 & 6.4 & 7.4 \end{pmatrix} \begin{pmatrix} 1.1 & 0 & 0 \\ 0 & 1.15 & 0 \\ 0 & 0 & 0.95 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 4 & 5 \\ 3 & 4 \end{pmatrix} $
	$\begin{bmatrix} 3.2 & 0.0 & 7.3 \\ 5.5 & 6.4 & 7.4 \end{bmatrix} \begin{bmatrix} 0 & 1.15 & 0 & 4 & 5 \end{bmatrix}$
	$\begin{pmatrix} 3.3 & 0.4 & 7.4 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0.95 \end{pmatrix} \begin{pmatrix} 3 & 4 \end{pmatrix}$
	(2 0)
	$ = \begin{pmatrix} 5.72 & 7.59 & 6.935 \\ 4 & 5 \end{pmatrix} $
	$(6.05 \ 7.36 \ 7.03) \begin{pmatrix} 3 \ 4 \end{pmatrix}$
	$= \begin{pmatrix} 5.72 & 7.59 & 6.935 \\ 6.05 & 7.36 & 7.03 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 4 & 5 \\ 3 & 4 \end{pmatrix}$ $= \begin{pmatrix} 62.605 & 65.69 \\ 62.63 & 64.92 \end{pmatrix}$
	$=\begin{bmatrix} 02.005 & 03.07 \\ 62.62 & 64.02 \end{bmatrix}$
	(02.03 04.92)
	Derrick spent \$62.61 at Café X .
	Elaine spent \$64.92 at Café Y.
25(a)	Arc PQ = 8.4(1.5)
	= 12.6 cm
	\therefore perimeter of the shaded region = $11.5 + 12.6$
	= 24.1 cm (3 s.f.)
25(b)	Area of the shaded region
25(6)	= Area of sector OPQ – Area of $\triangle OPQ$
	$= \frac{1}{2}(8.4)^2(1.5) - \frac{1}{2}(8.4)(8.4)\sin 1.5$
	$ \begin{array}{c} = -(8.4) (1.5)(8.4)(8.4) \sin 1.5 \\ 2 & 2 \end{array} $
	= 52.92 – 35.1916
	=17.728
	$=17.7 \text{ cm}^2$ (3 s.f.)
25(c)	In $\triangle OPR$:
	$\cos 1.5 = \frac{OR}{2}$
	8.4
	$OR = 8.4\cos 1.5$
	$= 0.59419 \mathrm{cm} \ (5 \mathrm{s.f.})$
	DO 04 050410
	RQ = 8.4 - 0.59419 = 7.80581 (6 s.f.)
	= 7.80381 (0 s.i.) = 7.81 cm (3 s.f.)

Qns. No.	Working
26(a)	Since speed is constant from the 20th second to the 45th second, acceleration of the object at the 30th second $= 0 \text{ m/s}^2$
26(b)	Speed (m/s) 35 A B Let v m/s be the speed at the 7th second. $\frac{v}{7} = \frac{35}{20}$ $v = 12.25$ The required speed is 12.25 m/s.
26(c)	Total distance = 1.925 km $ \frac{1}{2} [(45-20)+k](35) = 1925 $ $ 35(k+25) = 3850 $ $ k+25 = 110 $ $ k = 85$
27	B (a)