Paper 1:

| Q | A | Q  | Α | Q  | A | Q  | А | Q  | А | Q  | А | Q  | А | Q  | А |
|---|---|----|---|----|---|----|---|----|---|----|---|----|---|----|---|
| 1 | Α | 6  | С | 11 | D | 16 | С | 21 | В | 26 | С | 31 | В | 36 | А |
| 2 | С | 7  | D | 12 | В | 17 | D | 22 | Α | 27 | D | 32 | В | 37 | В |
| 3 | В | 8  | С | 13 | В | 18 | С | 23 | D | 28 | В | 33 | Α | 38 | С |
| 4 | В | 9  | В | 14 | Α | 19 | D | 24 | С | 29 | В | 34 | D | 39 | D |
| 5 | Α | 10 | D | 15 | С | 20 | В | 25 | Α | 30 | D | 35 | В | 40 | С |

| Q | Suggested Answer-Concept-Explanation (ACE approach)                                                                      | Marks |  |  |  |
|---|--------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| 1 | Answer (A): A                                                                                                            | [1]   |  |  |  |
|   | Concept (C): Range and precision of instrument                                                                           |       |  |  |  |
|   | Explanation (E): Internal diameter of test-tube -digital calipers                                                        |       |  |  |  |
|   | Thickness of wire – digital micrometer screw gauge                                                                       |       |  |  |  |
| 2 | <b>A</b> : C                                                                                                             | [1]   |  |  |  |
|   | C: Common examples of scalar and vector quantities                                                                       |       |  |  |  |
|   | E: Four vector quantities:                                                                                               |       |  |  |  |
|   | i. force,                                                                                                                |       |  |  |  |
|   | ii. displacement,                                                                                                        |       |  |  |  |
|   | iii. acceleration,                                                                                                       |       |  |  |  |
|   | iv. change of velocity                                                                                                   |       |  |  |  |
| 3 | <b>A</b> : B                                                                                                             | [1]   |  |  |  |
|   | Distance travelled = area under speed-time graph [C]                                                                     |       |  |  |  |
|   | $= [\frac{1}{2} (25 + 20) (10)] + \frac{1}{2} (10) (10) $ [E]                                                            |       |  |  |  |
|   | = 275  m  A                                                                                                              |       |  |  |  |
|   | m/s                                                                                                                      |       |  |  |  |
|   | 20<br>10<br>0<br>0<br>Time / s                                                                                           |       |  |  |  |
|   | 5 10 15 20 25 30                                                                                                         |       |  |  |  |
|   | Average speed = total distance travelled / total time taken [C]<br>= 275 / 25 [E]<br>= 11 m/s [A]                        |       |  |  |  |
| 4 | A: B speed (m/s)<br>C: Area under speed-time graph =3.0 $\frac{5.0}{12}$ (5) (t) = 3.0 [E]<br>$\therefore$ t = 1.2 s [A] | [1]   |  |  |  |



| 10 | A: D<br>Adding weights lower the CG [E] such that the CG is below the pivot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |  |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
|    | for stability. [C]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |  |
| 11 | A: D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |  |  |  |
|    | For hydraulic press system, pressure is transmitted from piston X to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |  |  |  |
|    | piston Y. $P_x = P_Y; \frac{F_x}{A_x} = \frac{F_Y}{A_Y}; F_Y = F_x \frac{A_y}{A_x}$ [C]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |  |  |  |
|    | E: reducing diameter of X and increasing the diameter of Y will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |  |  |  |
|    | increase the force to life the load at Y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |  |  |  |
| 12 | А: В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [1] |  |  |  |
|    | As the box moves up the rough slope, there would be some energy is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |  |
|    | transferred in the form of heat to the surrounding. [E]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |  |  |  |
| 13 | <b>C:</b> Principle of conservation of energy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [1] |  |  |  |
| 10 | During boiling, the temperature of the liquid remains constant. [C]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ['] |  |  |  |
|    | Thus the average speed of the particles remain constant and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |  |  |  |
|    | internal kinetic energy of the particles will also remain constant. [E].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |  |  |  |
|    | The energy taken in will be used to overcome the intermolecular forces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |  |  |  |
|    | of attraction between the particles. [A] Internal potential energy will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |  |  |  |
| 11 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |  |  |  |
| 14 | A: A<br>Heat conduction [C] rate: [E]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |  |  |  |
|    | aluminium $  1   12$ s to rise by 2°C $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |  |
|    | $\begin{array}{c c} conditionent \\ \hline conditionent \\ co$ |     |  |  |  |
|    | Fibreglass L 77 s to rise by $2^{\circ}$ C $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |  |  |  |
|    | Polystyrene L 30 s to rise by 2°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |  |
| 15 | A: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |  |  |  |
|    | $E = mc\Delta T$ [C]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |  |  |  |
|    | $c = \frac{E}{E}$ [E]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |  |  |  |
| 16 | <b>A</b> : C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |  |  |  |
|    | <b>C:</b> Electrical energy supplied = Heat gain during boiling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |  |  |  |
|    | <b>E:</b> $Pt = mL_v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |  |  |  |
|    | 1500 x (700 -100) = 0.550 x L <sub>v</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |  |  |  |
| 47 | ∴ L <sub>v</sub> = 1600 kJ/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |  |  |  |
| 17 | A: D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |  |  |  |
|    | • Frequency of the waves remain the same as it is dependent of the dipper (source) [C]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |  |  |  |
|    | <ul> <li>Speed of waves, y = fλ. [C]</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |  |  |  |
|    | • Speed of waves, $v = 1 \land [C]$<br>= 2.5 x (3.0 cm) [E]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |  |  |  |
|    | = 7.5 cm/s [A]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |  |  |  |
|    | <ul> <li>This wave is ta transverse wave [C]</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |  |  |  |
|    | Wavefronts [C] are farther apart in the deep region and closer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |  |  |  |
|    | together in the shallow region as observed from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |  |  |
|    | wavelengths.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |  |  |  |

| 10                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [4]               |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|
| 10                   | A. C<br>Wayalangth – 2.0 m (from displacement-distance graph) [E]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [']               |  |  |  |
|                      | $\Delta m plitudo = 0.50 m (from both graphs) [C]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |  |  |  |
|                      | Frequency = 1/T[C] = 1/4.0 = 0.25  Hz (from displacement time graph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |  |  |  |
|                      | Prequency = 1/1 [C] = 1/4.0 = 0.25  Hz (1000  displacement-time graph)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |  |  |  |
| 4.0                  | Speed = $1$ , [C] = (0.25 x 2.0) = 0.50 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |  |  |  |
| 19                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [1]               |  |  |  |
|                      | High frequency electromagnetic waves such as X-rays and $\gamma$ -rays can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |  |  |  |
|                      | cause ionising effects on living cells. [E] (not heating effects). Infra-red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |  |  |  |
|                      | and especially ultraviolet rays result in heating effect; skin cancer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |  |  |  |
|                      | Over-exposure to radio waves does not cause skin cancer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |  |  |  |
| 20                   | A: B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [1]               |  |  |  |
|                      | Only student X can see the images of the other two students as shown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |  |  |  |
|                      | Student Y can only see image of student X but not student Z.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |  |  |  |
|                      | Student Z can only see image of student X but not student Y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |  |  |  |
|                      | ↑ /↑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |  |  |  |
|                      | 10 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |  |  |  |
|                      | mirror                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |  |  |  |
|                      | 10 m 10 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |  |  |  |
|                      | atudant V atudant 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |  |  |  |
|                      | Student X Student Y Student Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |  |  |  |
|                      | Object distance is same as image distance for plane mirror. [C]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |  |  |  |
| 21                   | А: В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [1]               |  |  |  |
|                      | Image is real, inverted and magnified. Magnification is 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |  |  |  |
| 1                    | When object is placed less than focal length, image is upright and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |  |  |  |
|                      | When object is placed less than focal length, image is upright and magnified. [C]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |  |  |  |
|                      | When object is placed less than focal length, image is upright and magnified. [C]<br>When object is placed at twice focal length, image is same size. [C]                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |  |  |  |
| 22                   | When object is placed less than focal length, image is upright and magnified. [C]<br>When object is placed at twice focal length, image is same size. [C]<br><b>A:</b> A                                                                                                                                                                                                                                                                                                                                                                                                                                                | [1]               |  |  |  |
| 22                   | When object is placed less than focal length, image is upright and magnified. [C]<br>When object is placed at twice focal length, image is same size. [C]<br><b>A:</b> A<br>Electrical field pattern between a positive and a negative point                                                                                                                                                                                                                                                                                                                                                                            | [1]               |  |  |  |
| 22                   | <ul> <li>When object is placed less than focal length, image is upright and magnified. [C]</li> <li>When object is placed at twice focal length, image is same size. [C]</li> <li>A: A</li> <li>Electrical field pattern between a positive and a negative point charges. [C]</li> </ul>                                                                                                                                                                                                                                                                                                                                | [1]               |  |  |  |
| 22                   | <ul> <li>When object is placed less than focal length, image is upright and magnified. [C]</li> <li>When object is placed at twice focal length, image is same size. [C]</li> <li>A: A</li> <li>Electrical field pattern between a positive and a negative point charges. [C]</li> <li>A: D</li> </ul>                                                                                                                                                                                                                                                                                                                  | [1]               |  |  |  |
| 22                   | <ul> <li>When object is placed less than focal length, image is upright and magnified. [C]</li> <li>When object is placed at twice focal length, image is same size. [C]</li> <li>A: A</li> <li>Electrical field pattern between a positive and a negative point charges. [C]</li> <li>A: D</li> <li>A, B and C are examples of potential hazard in electrostatic charging.</li> </ul>                                                                                                                                                                                                                                  | [1]               |  |  |  |
| 22                   | <ul> <li>When object is placed less than focal length, image is upright and magnified. [C]</li> <li>When object is placed at twice focal length, image is same size. [C]</li> <li>A: A</li> <li>Electrical field pattern between a positive and a negative point charges. [C]</li> <li>A: D</li> <li>A, B and C are examples of potential hazard in electrostatic charging. D is a useful application of electrostatic. [E]</li> </ul>                                                                                                                                                                                  | [1]               |  |  |  |
| 22<br>23<br>24       | <ul> <li>When object is placed less than focal length, image is upright and magnified. [C]</li> <li>When object is placed at twice focal length, image is same size. [C]</li> <li>A: A</li> <li>Electrical field pattern between a positive and a negative point charges. [C]</li> <li>A: D</li> <li>A, B and C are examples of potential hazard in electrostatic charging. D is a useful application of electrostatic. [E]</li> <li>A: C</li> </ul>                                                                                                                                                                    | [1]               |  |  |  |
| 22<br>23<br>24       | <ul> <li>When object is placed less than focal length, image is upright and magnified. [C]</li> <li>When object is placed at twice focal length, image is same size. [C]</li> <li>A: A</li> <li>Electrical field pattern between a positive and a negative point charges. [C]</li> <li>A: D</li> <li>A, B and C are examples of potential hazard in electrostatic charging. D is a useful application of electrostatic. [E]</li> <li>A: C</li> <li>Q = It [C]</li> </ul>                                                                                                                                                | [1]               |  |  |  |
| 22<br>23<br>24       | When object is placed less than focal length, image is upright and<br>magnified. [C]<br>When object is placed at twice focal length, image is same size. [C]<br><b>A</b> : A<br>Electrical field pattern between a positive and a negative point<br>charges. [C]<br><b>A</b> : D<br>A, B and C are examples of potential hazard in electrostatic charging.<br>D is a useful application of electrostatic. [E]<br><b>A</b> : C<br>Q = It [C]<br>$35 = I \times 1.0 \times 10^{-3}$ [F]                                                                                                                                   | [1]               |  |  |  |
| 22<br>23<br>24       | When object is placed less than focal length, image is upright and<br>magnified. [C]<br>When object is placed at twice focal length, image is same size. [C]<br><b>A</b> : A<br>Electrical field pattern between a positive and a negative point<br>charges. [C]<br><b>A</b> : D<br>A, B and C are examples of potential hazard in electrostatic charging.<br>D is a useful application of electrostatic. [E]<br><b>A</b> : C<br>Q = It [C]<br>35 = I × 1.0 × 10 <sup>-3</sup> [E]<br>$\therefore$ I = 35 000 A or 35 kA [A]                                                                                            | [1]               |  |  |  |
| 22<br>23<br>24       | When object is placed less than focal length, image is upright and<br>magnified. [C]<br>When object is placed at twice focal length, image is same size. [C]<br><b>A</b> : A<br>Electrical field pattern between a positive and a negative point<br>charges. [C]<br><b>A</b> : D<br>A, B and C are examples of potential hazard in electrostatic charging.<br>D is a useful application of electrostatic. [E]<br><b>A</b> : C<br>Q = It [C]<br>$35 = I \times 1.0 \times 10^{-3}$ [E]<br>$\therefore I = 35\ 000 \text{ A or } 35 \text{ kA}$ [A]<br><b>A</b> : B: Concept R = al /A                                    | [1]               |  |  |  |
| 22<br>23<br>24<br>25 | When object is placed less than focal length, image is upright and<br>magnified. [C]<br>When object is placed at twice focal length, image is same size. [C]<br><b>A</b> : A<br>Electrical field pattern between a positive and a negative point<br>charges. [C]<br><b>A</b> : D<br>A, B and C are examples of potential hazard in electrostatic charging.<br>D is a useful application of electrostatic. [E]<br><b>A</b> : C<br>Q = It [C]<br>$35 = I \times 1.0 \times 10^{-3}$ [E]<br>$\therefore I = 35\ 000\ A \text{ or } 35\ kA$ [A]<br><b>A</b> : B; Concept R = $\rho L/A$                                     | [1]               |  |  |  |
| 22<br>23<br>24<br>25 | When object is placed less than focal length, image is upright and<br>magnified. [C]<br>When object is placed at twice focal length, image is same size. [C]<br><b>A</b> : A<br>Electrical field pattern between a positive and a negative point<br>charges. [C]<br><b>A</b> : D<br>A, B and C are examples of potential hazard in electrostatic charging.<br>D is a useful application of electrostatic. [E]<br><b>A</b> : C<br>Q = It [C]<br>35 = I x 1.0 x 10 <sup>-3</sup> [E]<br>$\therefore$ I = 35 000 A or 35 kA [A]<br><b>A</b> : B; Concept R = $\rho$ L/A<br>R<br>L<br>D                                     | [1]               |  |  |  |
| 22<br>23<br>24<br>25 | When object is placed less than focal length, image is upright and<br>magnified. [C]<br>When object is placed at twice focal length, image is same size. [C]<br><b>A</b> : A<br>Electrical field pattern between a positive and a negative point<br>charges. [C]<br><b>A</b> : D<br>A, B and C are examples of potential hazard in electrostatic charging.<br>D is a useful application of electrostatic. [E]<br><b>A</b> : C<br>Q = It [C]<br>$35 = I \times 1.0 \times 10^{-3}$ [E]<br>$\therefore I = 35\ 000\ A \ or 35\ kA$ [A]<br><b>A</b> : B; Concept R = $\rho L/A$<br>R<br>L<br>D<br><u>4R</u><br>L<br>D<br>D | [1]<br>[1]<br>[1] |  |  |  |
| 22<br>23<br>24<br>25 | When object is placed less than focal length, image is upright and<br>magnified. [C]<br>When object is placed at twice focal length, image is same size. [C]<br><b>A</b> : A<br>Electrical field pattern between a positive and a negative point<br>charges. [C]<br><b>A</b> : D<br>A, B and C are examples of potential hazard in electrostatic charging.<br>D is a useful application of electrostatic. [E]<br><b>A</b> : C<br>Q = It [C]<br>$35 = I \times 1.0 \times 10^{-3}$ [E]<br>$\therefore I = 35\ 000\ A \text{ or } 35\ kA$ [A]<br><b>A</b> : B; Concept R = $\rho L/A$<br>R<br>L<br>2R<br>L/2<br>D/2       | [1]               |  |  |  |

| 26 | A: C<br>C: Effective re                                                                                                          | esistance in se                                                                                                           | eries, parallel a                                                                                             | and combination                                                                                              | ons                                                                                          | [1] |
|----|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----|
|    | <u>E:</u>                                                                                                                        |                                                                                                                           |                                                                                                               |                                                                                                              |                                                                                              |     |
|    | Effective                                                                                                                        | P                                                                                                                         | Q                                                                                                             | R                                                                                                            | S                                                                                            |     |
|    | resistance                                                                                                                       | 150 Ω                                                                                                                     | 300 Ω                                                                                                         | 33 Ω                                                                                                         | 67 Ω                                                                                         |     |
|    | ∴ RSPQ fro                                                                                                                       | m smallest to                                                                                                             | highest [A]                                                                                                   |                                                                                                              |                                                                                              |     |
| 27 | A: D<br>C: action of a<br>E: A short cire<br>kΩ is 5.00 V                                                                        | variable poter<br>cuit occurs at                                                                                          | ntial divider (po<br>500 Ω resisto                                                                            | otentiometer)<br>r. Therefore p                                                                              | .d. across 5.0                                                                               | [1] |
| 28 | A: B<br>C: the effect of<br>conductor and<br>E: As temper<br>metallic atoms<br>collisions betw<br>turn opposes<br>resistance inc | of temperature<br>d filament lamp<br>rature increas<br>s in their fixed<br>veen the free<br>or slows dow<br>reases and cu | e increase on<br>o<br>ses, there is i<br>d positions. Th<br>electrons and<br>wn the flow o<br>urrent flow dec | the resistance<br>ncrease in vi<br>his increases to<br>the metallic at<br>of free electro<br>creases over ti | e of a metallic<br>bration of the<br>the number of<br>toms, which in<br>ns. Therefore<br>me. | [1] |
| 29 | A: B<br>E:<br>✓ The annual<br>✓ Total energ<br>✓ When operating c                                                                | unit cost of el<br>y consumption<br>ating for 4.0 m<br>urrent I = P/V<br>= 280<br>= 12.                                   | ectricity = \$54<br>n per year = 1<br>= 5<br>nin, energy cor<br>[C]<br>0 / 230<br>2 A                         | 2/1650 = \$0.3<br>650 000 x 60 s<br>.94 GJ<br>nsumed E = V<br>= 28<br>= 67                                   | 828<br>s x 60 min<br>It [C]<br>800 x 4.0 x 60s<br>72 kJ                                      | [1] |
| 30 | A: D<br>C: meaning<br>(green/yellow)                                                                                             | of the terms<br>)[E]                                                                                                      | live (brown)                                                                                                  | , neutral (blu                                                                                               | e) and earth                                                                                 | [1] |
| 31 | A: B<br>C: P = IV [0<br>40 = I (9.0)<br>I = 4.44                                                                                 | C]<br>) [E]<br>A<br>9.0 V                                                                                                 |                                                                                                               | 8.88 A                                                                                                       | 44 A                                                                                         | [1] |
| 32 | A: B<br>C: Soft iron is<br>used for elect                                                                                        | used for the romagnet. [E]                                                                                                | core of electro                                                                                               | omagnet and                                                                                                  | copper wire is                                                                               | [1] |

| 33 | A: A<br>C: The plotting compass cane be used to determine the diretion of the magnetic field as shown. [E]                                                                                                                                                                                      | [1] |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 34 | A: D<br>C: Properties of magnets<br>E: Based on the results recorded, the two possible conclusions can be made.<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V                                                                                                                                         | [1] |
| 35 | A: B<br>When the switch is closed, the<br>metal rod move to the left using<br>Flemimng's left hand rule. [C]<br>To make the rod move to the right,<br>we can reverse the direction of the<br>battery terminals as shown in red.<br>The result will be the rod rolling<br>towards the right. [A] |     |
| 36 | A: A<br>C: Magnetic field lines round straight current-carrying conductors.                                                                                                                                                                                                                     | [1] |

|    | E: If the directions of the current are in the same direction, there will<br>be attractive force. If they are in opposite direction, there will be<br>repusion as shown below.                                                                                 |     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 37 | A: B<br>Only when there is a changing magnetic field in the primary sail will                                                                                                                                                                                  | [1] |
|    | induce an e.m.f. [C] and hence a current in the secondary coil. [E]                                                                                                                                                                                            |     |
| 38 | A: C<br>C: $\frac{V_s}{V_p} = \frac{N_s}{N_P}$<br>E: $\frac{5.0}{230} = \frac{100}{N_P}$<br>∴ N <sub>p</sub> = 4600                                                                                                                                            | [1] |
| 39 | A: D<br>Reason why high voltage – low current; less energy wasted in cables<br>[C]<br>Reason why using an alternating current – voltage can be stepped up<br>or down. [E]                                                                                      | [1] |
| 40 | A: C<br>The diagram illustrates a chain of nuclear fission [C] reactions. Particle<br>X which is a neutron is used to bombard the uranium atom resulting in<br>the decay into two daughter nuclei and more neutrons to further split<br>the uranium atoms. [E] | [1] |

## PAPER 2: Section A

| Q   | Suggested Answer (ACE approach)                                    | Remarks |
|-----|--------------------------------------------------------------------|---------|
| 1a  | Gravitational field refers to a region in which a mass experiences | [1]     |
|     | a force due to gravitational attraction. [C]                       |         |
| Com | ments: Well answered by many students!! 😅                          |         |
| 1b  | Scale: 1 cm = 10 N                                                 | [1]     |
|     | 850N<br>440N 15°C<br>                                              | [1]     |

| resultant force = 440 N vertical                                                           |                |  |  |  |  |
|--------------------------------------------------------------------------------------------|----------------|--|--|--|--|
| accept : 420 N to 460 N [A]                                                                | [1]            |  |  |  |  |
| Comments: While scale is given, some students chose very odd so                            | ale e.g. 1 cm: |  |  |  |  |
| 170N which is strongly discouraged.                                                        |                |  |  |  |  |
| Some students gave the 'seemingly' correct answer with the correct                         | magnitude but  |  |  |  |  |
| wrong orientation. E.g.                                                                    |                |  |  |  |  |
|                                                                                            |                |  |  |  |  |
|                                                                                            |                |  |  |  |  |
|                                                                                            |                |  |  |  |  |
|                                                                                            |                |  |  |  |  |
|                                                                                            |                |  |  |  |  |
|                                                                                            |                |  |  |  |  |
| This is incorrect because:                                                                 |                |  |  |  |  |
| 1c Since the CHRian is stationary, the resultant force is ze                               | o. [1]         |  |  |  |  |
| Applying Newton's 1 <sup>st</sup> law, the body at rest will remain at rest w              | ith            |  |  |  |  |
| resultant force = 0 N. Thus the (weight) downward force is 440                             | N. Accept      |  |  |  |  |
|                                                                                            | e.c.f. [1]     |  |  |  |  |
| Comments: The better students are able to quote the correct Newton                         | s Law. Some    |  |  |  |  |
| students are awarded marks for quoting Newton's 2 <sup>nd</sup> Law for sound reasoning. 😊 |                |  |  |  |  |

|       | Currented Anower                                                      | Domorko  |
|-------|-----------------------------------------------------------------------|----------|
| Q     | Suggested Answer                                                      | Remarks  |
| 2a    | Kinetic store = $\frac{1}{2}$ mv <sup>2</sup> [C]                     | [1]      |
|       | = ½ x (65 000) x (12) <sup>2</sup> [E]                                |          |
|       | = <b>4680 kJ</b> [A] 3 s.f.                                           | [1]      |
| Com   | ments: Well answered by almost all students except for a small hand   | dful who |
| forge | t to square the value of 12 even though they quoted the formula cor   | rectly.  |
| 2b    | Efficiency = $\frac{output  energy}{x100\%}$ [C]                      | Accept   |
|       | input energy                                                          | e.c.f.   |
|       | 72% cleatrical aparau / 4680,000 k l [E]                              |          |
|       | 72% = electrical energy / 4680 000 kJ [E]                             |          |
|       | Electrical energy = 3 369 600 J in 1s or <b>3 370 kW</b> [A] 3 s.f.   | [1]      |
| 2c    | Energy in the kinetic store [C] of wind is transferred mechanically   | [1]      |
|       | [E] to the kinetic store [C] of the rotor blades of the wind turbine. |          |
|       | Energy is transferred electrically (by charges moving through         |          |
|       | a potential difference in the presence of the magnets)                | [1]      |
| 2d    | P=IV [C]                                                              | [1]      |
|       | $3370\ 000 = I \times (3.5 \times 10^6)$ [E]                          | Allow    |
|       | I = 0.96 A [A]                                                        | e.c.f.   |
|       |                                                                       | [1]      |
| Anu   | mber of students used $F=QV$ (V=J/C) and Q= It formula which arrive   | at the   |

A number of students used E=QV (V=J/C) and Q= It formula which arrive at the same answer of using P=IV directly.

| Q  | Suggested Answer                                              | Remarks |
|----|---------------------------------------------------------------|---------|
| 3a | When more air molecules are pumped in, there will be more air | [1]     |
|    | molecules per volume. [E] This will increase the number of    |         |

|    | collisions per unit time (frequency of collisions increases with the walls of the container) [E] within the same unit area. Thus pressure increases.                                                                                                                                                | [1]        |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 3b | Pressure will increase. [A] When temperature increases, the internal kinetic energy of the air increases. The average kinetic energy (or average speed) of the air molecules increases, leading to greater frequency of collisions between the air molecules and the inner walls of the rocket. [E] | [1]<br>[1] |

| Q  | Suggested Answer                                                                       | Remarks |
|----|----------------------------------------------------------------------------------------|---------|
| 4a | 5.0 m <sup>2</sup><br>0.40 m<br>tank                                                   | [1]     |
| 4b | $\rho = \frac{mass}{vol} \qquad [C]$ $900 = \frac{mass}{(5.0 \times 0.40)} \qquad [E]$ | [1]     |
|    | $\therefore$ mass = 1800 kg [A]                                                        | [1]     |
| 4c | Pressure = $h\rho g$ [C]                                                               | [1]     |
|    | = (0.40) (900) (10) [E]<br>= 3600 Pa                                                   | [1]     |
|    | $= 103\ 600\ Pa \qquad [A]$                                                            | [1]     |

| Q  | Suggested Answer                                              | Remarks |
|----|---------------------------------------------------------------|---------|
| 5a | Energy required to raise the temperature of 1500 kg of water  |         |
|    | from 25°C to 100 °C = mc $\theta$                             | [1]     |
|    | = (1500) (4200) (100 -25)                                     |         |
|    | = 472 500 000 J                                               |         |
|    | Energy required to convert 50% steam = $mL_v$                 |         |
|    | $= (1500/2) \times 2260000$                                   |         |
|    | = 1695 000 000 J                                              | [1]     |
|    | Total energy = 472 500 000 + 1695 000 000                     |         |
|    | $= 2.17 \times 10^9 \text{ J}$                                | [1]     |
| 5b | Black surfaces are a good absorber of thermal energy through  | [1]     |
|    | radiation from the ground. Also, metal is a good conductor of | [1]     |
|    | heat. So energy can transferred by heating via conduction.    |         |
| 5c | Speed = distance / time [C]                                   |         |
|    | $= (250 \times 2) / (1.5)$ [E]                                | [1]     |
|    | = 333 m/s [A]                                                 | [1]     |

| Q    | Suggested Answer                                                                                                                                                                                             | Remar<br>ks |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 6a   | Longitudinal sound waves produced by the bat cause vibrations [A] of the air molecules, coming together as high pressure regions (compressions) and pulling apart as low-pressure regions                    | [1]         |
|      | (rarefactions), parallel to the direction of wave travel. [C] The sound waves hit the moth and gets reflected back reaching the bat. [E]                                                                     | [1]         |
| 6b   | Distance travelled by bat = speed x time [C]<br>= $6.0 \times 0.50$ [E]<br>= $3.0 \text{ m}$ [A]<br>Distance travelled by sound waves = speed x time [C]<br>= $330 \times 0.50$ [E]<br>= $165 \text{ m}$ [A] | [1]         |
|      | Total distance = 165 + 3<br>= 168                                                                                                                                                                            |             |
|      | ∴ d = 168 /2 [E]<br>= 84 m [A]                                                                                                                                                                               | [1]         |
| 6ci  | <ul> <li>Any two differences</li> <li>Radio waves is a transverse wave whereas sound waves is a longitudinal wave. [C]</li> </ul>                                                                            | [1]         |
|      | <ul> <li>Sound waves needs a medium to be transmitted whereas<br/>radio waves can travel through vacuum at a speed of 3.0 x<br/>10<sup>8</sup> m/s [C]</li> </ul>                                            | [1]         |
| 6cii | $v = f\lambda$ [C]                                                                                                                                                                                           | [1]         |
|      | $3.0 \times 10^8 = 1.5 \times 10^9 \times \lambda$ [E]<br>∴λ = 0.20 m [A]                                                                                                                                    | [1]         |

| 7a | 7d<br>red<br>light<br>142° r<br>li<br>blue<br>light                                                                                                                                              | [1]        |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 7b | Critical angle of 42° is the angle of incident in the optically<br>denser medium for which the angle of refraction in the less<br>dense medium is 90°.<br>Mark on diagram to support the answer. | [1]<br>[1] |
| 7c | $n = \frac{1}{\sin c} \qquad [C]$ $n = \frac{1}{\sin 42^{\circ}} \qquad [E]$ $n = 1.40 \qquad [A]$                                                                                               | [1]        |

|    |                                                   | [1] |
|----|---------------------------------------------------|-----|
| 7d | Refer to diagram.                                 |     |
|    | Bend towards normal as red light enters glass and | [1] |
|    | Refract away from as red light leaves glass       | [1] |

| Q  | Suggested Answer                                                                                                                       | Remarks |
|----|----------------------------------------------------------------------------------------------------------------------------------------|---------|
| 8a | Effective resistance = $\left(\frac{1}{R_1} + \frac{1}{R_2}\right)^{-1}$ [C]                                                           | [1]     |
|    | $= \left(\frac{1}{(120+120)_{\Box}} + \frac{1}{(200+200_{\Box}}\right)^{-1}  [E]$                                                      |         |
|    | = 150 Ω [A]                                                                                                                            | [1]     |
| 8b | Using the concept of potential divider, for $V_{out}$ across the LDR $\geq$ 6.0 V, [C]                                                 | [1]     |
|    | $V_{LDR} = \frac{200}{50+200} \times 9.0 V $ [E]<br>= 7.2 V                                                                            |         |
|    | $V_{LDR} = \frac{100}{50+100} \times 6.0 V $ [E]<br>= 6.0 V                                                                            |         |
|    | From the working, it shows that the fan will be switched on when the temperature reaches 35 °C, regardless of the light intensity. [A] | [1]]    |

| Q  | Suggested Answer                                                                                                                                                                                                                                                                                                                | Remarks    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 9a | Carbon brushes [A]                                                                                                                                                                                                                                                                                                              | [1]        |
|    | Split ring commutator [A]                                                                                                                                                                                                                                                                                                       | [1]        |
| 9b | Switching the positions of the North and South poles will result in the motor rotating in the opposite direction [E] and increasing the number of turns will cause the motor to rotate faster or at a higher                                                                                                                    | [1]        |
|    | frequency. [E]                                                                                                                                                                                                                                                                                                                  | [1]        |
| 9c | The toy car starts with zero initial speed, increases its speed at a decreasing rate till it reaches a maximum speed of 12 m/s in 10 s. [E] It speed suddenly decreases at a decreasing rate till it reaches 5.0 m/s in another 10 s. Its speed picks up again till it reaches 12 m/s. The cycle repeats itself every 20 s. [E] | [1]<br>[1] |

| Q   | Suggested Answer                                                                                                                                                                                                                                                                                                                       | Remarks |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 10a | $^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}\alpha + \gamma$ [A]                                                                                                                                                                                                                                                                 | [1]     |
| 10b | <ul> <li>Use the Geiger-Muller (GM) counter [C]. Check the<br/>background radiation. Take note of the count rate, M<sub>1</sub><br/>Expose it to the radioactive element. The count rate<br/>should increase. Place a carboard from the radioactive<br/>element, the count rate will drop, M<sub>2</sub>. This shows that α</li> </ul> |         |

|        | is present. [E]                                                                                                                                                                                                                   | [1] |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|        | <ul> <li>Place a few mm of aluminum, it remains at M<sub>2</sub>. This shows that β is absent. Next, place a few cm thick of lead, the reading will drop to M<sub>1</sub>. This shows that γ-radiation is present. [E]</li> </ul> | [1] |
|        | Diagram [A]                                                                                                                                                                                                                       |     |
|        | lead                                                                                                                                                                                                                              |     |
|        | container                                                                                                                                                                                                                         |     |
|        | radioactive<br>source Geiger-<br>Muller (GM)<br>counter                                                                                                                                                                           | [1] |
| 10ci   | Approximately 25 counts per minute [A]                                                                                                                                                                                            | [1] |
| 10cii  | 604- 25 = 579 (allow e.c.f.)                                                                                                                                                                                                      | [1] |
| 10Ciii | Maximum distance = 4.0 cm since the count rate significantly                                                                                                                                                                      | [1] |
|        | dropped to approximately 25 counts per minute after it goes                                                                                                                                                                       |     |
| 40.4   | beyond 5.0 cm. [E]                                                                                                                                                                                                                |     |
| 1001   | Isotopes are atoms of the same element that have the same                                                                                                                                                                         | [4] |
| 10dii  | $^{234}Th \rightarrow ^{234}Pa + ^{0}B + \gamma$                                                                                                                                                                                  |     |
| roan   | Atomic number of Pa is 91                                                                                                                                                                                                         | [1] |
| 10diii |                                                                                                                                                                                                                                   |     |
|        | % activity $100 \\ 75 \\ 50 \\ 25 \\ 0 \\ 0 \\ 8 \\ 10 \\ 16 \\ 20 \\ 30 \\ 40 \\ time / days$                                                                                                                                    | [1] |
|        | As shown, half-life of Th isotope is approximately 8 days                                                                                                                                                                         | [1] |
| 10e    | Any one of these                                                                                                                                                                                                                  | [1] |
|        | Radioactivity used in medical field                                                                                                                                                                                               |     |
|        | <ul> <li>the detection of tumours using γ-rays</li> </ul>                                                                                                                                                                         |     |
|        | <ul> <li>treatment of thyroid disorder</li> </ul>                                                                                                                                                                                 |     |
|        | <ul> <li>in gamma knife to destroy brain tumours</li> </ul>                                                                                                                                                                       |     |

| Radioactivity used in industrial field                                                                              |  |
|---------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>β-particles or γ-rays are used to measure the thickness<br/>of materials e.g. uniform thickness</li> </ul> |  |
| <ul> <li>α-particles used in smoke detectors</li> </ul>                                                             |  |

| Q   | Suggested Answer                                                                                                                                                                                                             | Remarks |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 11a | When the waste gases (initially uncharged) enters the electrostatic precipitator, they rub against the negatively charged rods, they become negatively charged as they gain electrons. [E] Charging by friction [C]          | [1]     |
|     | As they continue to move pass the positively charged metal<br>plates [E], they get attracted since unlike charges attracted.<br>[C]. Unwanted particles are removed, leaving the clean gas<br>exiting from the precipitator. | [1]     |
| 11b |                                                                                                                                                                                                                              | [1]     |
|     |                                                                                                                                                                                                                              |         |
| С   | $Q = It$ [C] $= 1.5 \times 10^{-3} \times 2.0 s$ [E] $= 3.0 \times 10^{-3} C$ [A] $E = QV$ or $V = J/C$ [C] $E = 2.0 \times 10^{-3} \times 120 \times 10^{-3}$ [E]                                                           | [1]     |
|     | = 360  J  [A]                                                                                                                                                                                                                | [1]     |
|     | Alternatively, E = VIt [C]<br>= $(120 \times 10^3) \times (1.5 \times 10^{-3}) \times (2.0)$ [E]<br>= $360 \text{ J}$ [A]                                                                                                    |         |



|     | 25 a.c. supply; laminated soft-iron core [E]                                                                                                                                                  | [1] |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | $\frac{\frac{N_s}{N_p} = \frac{V_s}{V_p}, \ [C] \\ \frac{\frac{N_s}{120} = \frac{200}{25}}{120} \ [E]$                                                                                        |     |
|     | <ul> <li>N<sub>s</sub> = 960 [A]</li> <li>Assumption: no energy losses in the system which means all the energy that is applied to the primary coil</li> </ul>                                | [1] |
|     | are transferred to the secondary coil. [A]                                                                                                                                                    | [1] |
| 11b | When the magnet is dropped from the top, the magnetic field will be cut by the conducting wires in the solenoid. [E] An                                                                       | [1] |
|     | e.m.r. is induced according to Faraday's law of<br>electromagnetic induction [C] and hence a current will be<br>produced. Thus, a current deflection to the is registered to the<br>left. [A] | [1] |
| 11c | When the magnet drop from the middle of the solenoid to the position Y, a deflection of current to the right is registered. [A]                                                               | [1] |
|     | position X magnet<br>solenoid<br>position Y magnet<br>position Y magnet<br>position Y magnet                                                                                                  |     |
|     | As shown in the diagram, the lower end of the solenoid will be induced N [E] according to Lenz's law [C] and a deflection to the right will be registered.                                    | [1] |



| Q   | Suggested Answer                                                                                                                                                                  | Remarks    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 12a | wetal cover     metal part       plate at the     metal part       back of oven     plastic casing       a.c.     50 Ω       For     50 Ω       fack     50 Ω       fack     50 Ω |            |
|     | Correct identification of the wires<br>Placement of fuse and switch on the live wire                                                                                              | [1]<br>[1] |
| 13b | $\frac{1}{R_{eff}} = \frac{1}{R_1} + \frac{1}{R_2}$ $\frac{1}{R_{eff}} = \frac{1}{50} + \frac{1}{200}$ Reff = 40 Ω $V=RI$ 230 = 40 I $\therefore I = 5.8 \text{ A}$               | [1]        |
| 13c | 7A, slightly higher than the operating current of 5.8 A.                                                                                                                          | [1]        |
| 13d | Total energy consumption for 5 operating ovens for a month                                                                                                                        |            |

