H2 CHEMISTRY · NOTES · TOPIC 11

Checklist:

	Alkanes	Check (✓)
1.	I can recall the reactions an alkane can undergo, as well as their reagents and conditions	
2.	I can draw and describe the mechanism of free radical substitution, with particular reference to the initiation, propagation and termination reactions	
3.	I can explain the general un-reactivity of alkanes towards polar reagents	
4.	I am able to predict the possible products formed during free radical substitution, as well as their statistical probability ratio.	
5.	I can explain, using the concept of stability of radicals, why isomers of alkyl halides are formed in different proportions during free radical substitution	
6.	I able to recognise the environmental consequences of:	
	a. carbon monoxide, oxides of nitrogen and unburnt hydrocarbons arising from the internal combustion engine and of their catalytic removal	
	b. gases that contribute to the enhanced greenhouse effect	
7.	I am able to recognise that petroleum, a chemical feedstock, is a finite resource and the importance of recycling	

FAQ 1 : Why are alkanes generally unreactive towards polar reagents?

- Due to the **similarities in electronegativities** of the C and H atoms, C-C and C-H bonds are **non-polar**.
- C-C and C-H bonds are strong as well (B.E (C-C) = 350 kJ mol⁻¹; B.E (C-H) = 410 kJ mol⁻¹
- Hence, alkane molecules do not contain any significant amount of **positive or negative charge** and are unreactive towards polar reagents.

FAQ 2 : Describing the Mechanism of Free Radical Substitution

• Consider the mechanism when propane is reacted with chlorine in the presence of UV light to form 1-chloropropane.

©MACRO Academy Chemistry 8613 5830

FAQ 4 : Using Stability of Radicals to Explain the Discrepancy between Statistical and Actual Ratio However, when we take into account the stability of the radical intermediates, the observed ratio • between the 2 products formed from the reaction between propane and chlorine will be different than the statistical ratio. **Concept: Stability of Radicals** • **Tertiary (3°) Radical** Secondary (2°) Radical Primary (1°) Radical R_1 н Stability Radical intermediates are unstable (high in energy). **Explanation** The more electron-donating alkyl groups attached to the carbon radical, the more stable the radical and the easier it is to be formed. Considering the radical intermediates leading to each product, **Products** Intermediate **Statistical Probability Observed Probability** 75% 30% 25% 70% **Explanation / Answering Technique** CI is formed from a primary radical while is formed from a secondary 1. radical. 2. With more electron-donating alkyl groups attached to the carbon radical, the secondary

FAQ 5: Environmental Consequences of the use of Hydrocarbon (and Others)

Pollutant	Explanation	Effect
Unburnt Hydrocarbon	Due to incomplete combustion of	Reacts with oxygen, ozone and oxides of nitrogen in the presence of sunlight to form photochemical smog
Carbon monoxide	hydrocarbon arises	Binds irreversibly with haemoglobin in blood, causing drowsiness , headaches , and even fatality .
Oxides of Nitrogen	At high temperature of combustion (within motor vehicles), N ₂ and O ₂ reacts in the following manner: N ₂ (g) + O ₂ (g) \rightarrow 2NO (g) 2NO (g) + O ₂ (g) \rightarrow 2NO ₂ (g)	Oxides of nitrogen irritate lungs, causes bronchitis and pneumonia Result in the formation of photochemical smog, which has a harmful effect on plants. NO ₂ also catalyses the formation of SO3 from SO ₂ , which will dissolve in water to form acid rain. NO ₂ (g) + SO ₂ (g) \rightarrow SO ₃ (g) + NO (g)

Catalytic Converter

Pollutant	How It's Removed
Unburnt Hydrocarbon	$C_xH_y(g) + (x + y/4) O_2(g) \Rightarrow xCO_2(g) + H_2O(g)$
Carbon monoxide	2CO(g) + O ₂ (g) → 2CO ₂ (g)
Oxides of Nitrogen	2NO(g) + 2CO(g) → N ₂ (g) + 2CO ₂ (g)

