Qn	Solution	Remarks	
1	69.5 g		
2	The inconsistent scale on the vertical axis <u>exaggerates the</u> <u>differences</u> in crude birth rate between the years.	Do not accept 'size' of baby	
	It is <u>not clear whether the height or the area</u> of the baby picture <u>should be used</u> to compare the crude birth rate. OR The <u>area of each baby picture is not directly proportional</u> to its height.	Do not accept the crude birth rate is proportional to the 	
3	$\begin{array}{l} 0.000 \ 905 \ 74 \div 10 \div 100 \times 2 \\ = \ 0.000 \ 00 \ 181 \ 148 \\ = \ 1.81148 \times 10^{-6} \ \mathrm{m} \end{array}$	Radius \times 2 s.o.i Do <u>not</u> accept 1.81 \times 10 ⁻⁶ m (3sf)	
4	Distance travelled by wiper = $\frac{120}{360} \times 2 \times \pi \times 48 = 32\pi/100.5309649$	Find arc length	
	Speed = $\frac{32\pi}{0.8}$ = 126 cm/s (3sf)	Do not accept answers in terms of π	
5	$L = kA^{2}$ $15 = k(3)^{2}$ $k = \frac{15}{9} = \frac{5}{3} \implies \text{Hence } L = \frac{5}{3}A^{2}$		
	Τ		
6	(P, q) (P, q) 0 x	Correct shape Correct position of turning point (p, q) where p<0 and q>0	
7	Oliver's 78 marks is within top 25% of the class for the history test but below the top 25% of the class for the science test. Hence, Oliver did better for the history test. OR	Comparing 78 with upper quartile of <u>both</u> tests	
	Oliver's 78 marks is above the 75 th percentile for the history test but below the 75 th percentile of the class for the science test.	No mark will be given for stating 'history test' if reason is wrong	
	Hence, Oliver did better for the history test .	Do not accept upper interquartile range	

2022 4E5N E Math Prelim Paper 1 (Marking Scheme)

8	Total amount paid	Total petrol
	18732	consumption:
	$=\frac{100}{100} \times 1.79$	$\frac{18732}{1} \times 1.79$ s.o.i
	= 335.1417 gallons	100
		Correct conversion
	$335.1417 \ge 3.785 = 1268.5113345$ litres	between litres and
	1268.5113345 x 1.21 = USD 1535 (nearest dollar)	gallons s.o.i
9(a)	$\frac{1115-1081}{100\%} \times 100\% = 3.145\%$ (3dp)	
· (u)	1081	
9(h)	Number of large $\frac{9}{10} \times 50 = 10$ have	
(U)	Number of boys = $\frac{1}{9+16} \times 50 = 18$ boys	
	After some girls join, 6 units represent 18 boys	
	1 unit represent $\frac{18}{6} = 3$ boys	
	19 units represent $3 \times 19 = 57$ students	
	New total = 57 students	
10(a)	Length $-\frac{100}{2} \times 29.2 - 101$ cm	
10(a)	Length $-\frac{1}{20} \times 36.2 - 191 \text{cm}$	
10(b)	$1 \text{ cm} : 0.2 \text{ m} \rightarrow 1 \text{ cm}^2 : 0.04 \text{ m}^2$	
	Actual area = $0.04 \times 80 = 3.2 \text{ m}^2$	area scale s.o.i
11()	F 000 03 06	
11(a)	$5832 = 2^3 \times 3^3$	
11(b)	The nervous of the prime feators of 5922 2 and 6 are	Do not accort 5922
11(0)	multiples of 3 Hones 5832 is a perfect cuba	bes integer as a sub-
	OP	root (because does
	$5832 - 2^3 \times 3^6 - (2 \times 3^2)^3$ Hence 5832 is a perfect	not use part (a)
	$3032 - 2 \times 3 = (2 \times 3)$. Hence, 3032 is a perfect cube	not use part (a))
11(c)	k = 2	
12(a)	9, 15, 21, 27	
12(b)	6n + 3 = 3(2n + 1)	Do not accept "the
	OR	terms can be divided
	Both 6n and 3 are multiples of 3.	by 3" / Do not accept
	(Must mention specifically that 6n and 3)	6 is a multiple of 3.
	7 24	
13(a)	$3-x < \frac{7-3x}{2} \le 5$	
	2^{-7} 7 - 3r 7 - 3r	
	$\Rightarrow 3-x < \frac{7-3x}{2}$ and $\frac{7-3x}{2} \le 5$	
	2 - 2x < 7 - 3x - 3x < 10	for $6 - 2v < 7 - 2v$
	$x < 1 \qquad -3x < 3$	$\frac{101}{0} 0 = 2x < 7 = 3x$
	x > -1	OR 7 - 3r < 1000
	$\therefore -1 \le x < 1$	$\mathbf{O}\mathbf{R}$ / $\mathbf{J}_{\mathcal{A}} \ge 10 \ 0.6$
13(b)	-1,0	Allow ecf from (a)

14	Interior angle of polygon <i>B</i> at <i>O</i> = $360^{\circ} - 115^{\circ} - 90^{\circ} = 155^{\circ}$	Find interior angle of polygon <i>B</i> at <i>O</i>
	Exterior angle of polygon $B = 180^{\circ} - 155^{\circ} = 25^{\circ}$	
	Number of sides of polygon $B = \frac{360^{\circ}}{25^{\circ}} = 14.4$	Find number of sides of polygon B (if
	$\frac{(n-2)\times 180^{\circ}}{n} = 155^{\circ}$	regular)
	180n - 360 = 155n	
	25n = 360	
	n = 14.4 Since 14.4 is not an integer , polygon <i>B</i> cannot be a regular polygon.	Explain 14.4 not an integer
15(a)(1)	$A = \{2, 3, 5, 7, 11, 13, 17, 19\} ; B = \{1, 3, 5, 15\}$ $A \cap B = \{3, 5\}$	Accept: 3, 5
15(a)(11)	(a) 8 ∉ A (b) $\{15\} \subset B$	
15(b)	$P \cup Q'$	
1((.)		
10(a)	$\overrightarrow{RS} = \overrightarrow{OS} - \overrightarrow{OR} = \begin{pmatrix} 5\\-2 \end{pmatrix} - \begin{pmatrix} 4\\1 \end{pmatrix} = \begin{pmatrix} 1\\-3 \end{pmatrix}$	
16(b)	$\left \overrightarrow{RS} \right = \sqrt{(1)^2 + (-3)^2} = 3.16$ units (3sf)	Allow ecf for answer in (a).
16(c)	$\overrightarrow{AB} = \begin{pmatrix} 0.8\\ -2.4 \end{pmatrix} = 0.8 \begin{pmatrix} 1\\ -3 \end{pmatrix} = 0.8 \overrightarrow{RS}$	
17 (a)		Correct
17(a)	Answer	perpendicular bisector & angle
17(b)	В	bisector with construction arcs
	(b) (b)	
17(c)	The playground is equidistant from the points C and D and	
	equidistant from lines <i>AB</i> and <i>AD</i> .	

18(a)	$\angle RSY$	
	$=90^{\circ} - \angle PSY$ (in square PQRS)	$90^{\circ} - \bigcirc PSY$
	$= \angle PST$ (in square STXY) (Shown)	
18(b)		All 3 correct
	$\bigcirc YRS = \bigcirc TPS = 90^{\circ}$	statements with
	(Right angles of square PORS and square STXY)	reasons AND
	(Right angles of square 1 gris and square 5111)	congruence test
	SY = SI (sides of square $SIXY$)	stated.
	DRSY congruent to DPST (AAS)	
10(a)	Reflex angle $AOC = 360^{\circ} - 153^{\circ} = 207^{\circ}$	Finding reflex angle
19(a)	207	AOC s o i
	Angle $ABC = \frac{267}{2} = 103.5^{\circ}$	
19(b)	Angle OAW = 90°	Angle OAW = 90°
	Angle $OAB = 90^{\circ} - 31^{\circ} = 59^{\circ}$ Angle $BCO = 360^{\circ} - 153^{\circ} - 59^{\circ} - 1035^{\circ} - 445^{\circ}$	S.O.1
	$\frac{1}{1000} = \frac{1}{1000} = 1$	
20(a)	93-60 2	
	Acceleration = $\frac{-1}{6}$ = 5.5m/s ²	
20(b)	Let speed at $t = 4s$ be $p m/s$	
	$\frac{p-60}{2} = 5.5 \rightarrow p = 82 \text{m/s}$	
	4	
20(c)	$\frac{1}{2} \times (93+v) \times (9-6) = 342$	Any equivalent
	2 125	distance between $t -$
	v = 135	6s to t = 9s
Qn	Solution	Remarks

23(a)(i)	7q - 2(q + 3) = 7q - 2q - 6 = 5q - 6	
23(a)(ii)	$xy^{-1} xy^{-1} x$	Correct use of indices
	$\frac{1}{(2y^2)^3} = \frac{1}{8y^6} = \frac{1}{8y^7}$	$law (ab)^m = a^m b^m$
23(b)	7 <i>y</i> 1	
	$\frac{(y-3)^2}{(y-3)^2} - \frac{(y-3)^2}{(y-3)^2} - \frac{(y-3)^2}{(y-3)^2}$	
	$-\frac{7y}{1}$	
	$-\frac{1}{(y-3)^2}+\frac{1}{y-3}$	
		$\frac{8y-3}{2}$ OR $\frac{8y-3}{2}$
	7y + (y - 3) $7y + y - 3$ $8y - 3$	$(y-3)^2$ $(3-y)^2$
	$-\frac{(y-3)^2}{(y-3)^2} - \frac{(y-3)^2}{(y-3)^2}$	
24(a)	$8y^{2} + 20y - 12 = 4(2y^{2} + 5y - 3) = 4(2y - 1)(y + 3)$	
24(b)	$x^3 + x^2 - 9x - 9$	
	$= x^2(x+1) - 9(x+1)$	
	$= (x + 1)(x^{2} - 9) = (x + 1)(x + 3)(x - 3)$	
		Γ
25(a)	$\frac{3x}{3x} = \frac{3}{3}$	
	3x + 4x - 7	
	0 1	
25(b)	$\frac{3x-1}{x}$	
	7x - 1	
25(a)	3(3r-1) 6	
25(C)	$\left(\frac{3}{7}\left(\frac{3\lambda-1}{7\lambda-1}\right)\right) = \frac{0}{25}$	
	3x - 1 2	
	$\frac{37}{7x-1} = \frac{7}{5}$	
	5(3x-1) = 2(7x-1)	
	15x - 5 = 14x - 2	
	x = 3	