

COMPLEX NUMBERS [part FM]

1 HCI/2014/I/3

One of the roots of the equation $z^3 - 2z^2 + az + 1 + 3i = 0$ is z = i. Find the complex number *a* and the other roots. [5]

2 MI/2014/I/10

(i) By using de Moivre's theorem, or otherwise, show that

$$(1-i)^n = 2^{\frac{n}{2}} \left(\cos \frac{n\pi}{4} - i \sin \frac{n\pi}{4} \right).$$
 [2]

- (ii) Using the result in (i) or otherwise, find the least positive integer *n* for which $(1-i)^n$ is real and negative. Solution by trial and error will not be accepted. [3]
- (iii) For the equation $z^4 + az^3 + bz^2 + cz + d = 0$ where *a*, *b*, *c* and *d* are real, give a brief explanation and determine the possible number of complex roots the equation can have. [2]
- (iv) Solve the equation $z^4 + 4 = 0$, expressing the solutions in the form x + iy where x and y are real. [4]

3 ACJC/2014/II/2

The complex number z satisfies the relations $\arg(z+3-3i) = -\frac{1}{4}\pi$ and $|z-3+3i| \le b$, where b is a constant and 1 < b < 3.

- (i) Illustrate each of the above relations on a single Argand diagram. [2]
- (ii) Find the exact least possible value of |z + 5i|. [1]
- (iii) Given that the least possible value of |z| is $\sqrt{18} 2$,
 - (a) find the value of b, [1]
 - (b) hence find an exact expression for z, in the form x + iy. [2]
 - (c) State the cartesian equation of the locus of the point representing complex variable w such that $|w| = |w z_1|$, where z_1 is the complex number found in part (b). [1]

4 HCI/2014/II/3

(a)	(i)	Find the fifth roots of -32 , expressing the roots in the form $re^{i\ell}$	⁹ , where
		$r > 0$ and $-\pi < \theta \le \pi$.	[2]

(ii) The roots representing z_1 and z_2 are such that $0 < \arg(z_1) < \arg(z_2) < \pi$.

State the complex number w in the form $re^{i\theta}$ where $z_2 = wz_1$. [1]

- (b) The complex number z satisfies $|z-3-3i| \ge |z-1-i|$ and $\frac{1}{6}\pi < \arg(z) \le \frac{1}{3}\pi$.
 - (i) On an Argand diagram, sketch the region in which the point representing z can lie. [3]
 - (ii) Find the area of the region in part (b)(i). [3]
 - (iii) Find the range of values of $\arg(z-5+i)$. [2]

5 RI/2014/II/4

Do not use a calculator in answering this question.

The complex number z satisfies both the relations $|z+2\sqrt{3}-i| \le 4$ and $\frac{5}{6}\pi \le \arg(z+i) \le \pi$.

- (i) On an Argand diagram, shade the region in which the point representing z can lie.
 [4]
- (ii) Find the least possible value of |z|. [2]
- (iii) State the cartesian form of the complex number z when |z + i| is greatest. [1]

(iv) Find the range of values of
$$\arg(z + 4\sqrt{3} + i)$$
. [2]

6 RVHS/2014/II/2

- (i) Solve the equation $z^6 + 64 = 0$, giving the roots in the form $re^{i\alpha}$, where r > 0and $-\pi < \alpha \le \pi$. [3]
- (ii) Show the roots on an Argand diagram. [2]

The roots denoted by z_1 and z_2 are such that $0 < \arg(z_1) < \arg(z_2) \le \frac{1}{2}\pi$. The complex numbers z_1 and z_2 are represented by the points Z_1 and Z_2 in the Argand diagram respectively.

(iii) Explain why the locus of all points z such that $|z| = |z - z_1|$ passes through the point Z_2 . [1]

(iv) The complex number w satisfies the relation $\arg(w-z_1) = \arg(z_2-z_1)$. Sketch the locus of the points which represent w in the same Argand diagram. [2]

(v) Find the range of values of $\arg(w)$. [3]

7 CJC/2017/FM/Promo/7

It is given that the complex number $z = 1 + \cos\theta + i\sin\theta$, where $-\pi < \theta \le \pi$.

- (i) By considering appropriate trigonometric identities, or otherwise, show that the argument of z is $\frac{\theta}{2}$ and find the modulus of z in terms of θ . [3]
- (ii) Hence, find the real and imaginary parts of $(1 + \cos\theta + i\sin\theta)^n$, where $n \in \mathbb{Z}^+$. [3]
- (iii) By considering the binomial expansion of $\left[1 + (\cos \theta + i \sin \theta)\right]^n$, show that

$$1 + \binom{n}{1} \cos \theta + \binom{n}{2} \cos (2\theta) + \dots + \binom{n}{n} \cos (n\theta) = \left[2 \cos \left(\frac{\theta}{2}\right) \right]^n \cos \left(\frac{n\theta}{2}\right),$$

where $\binom{n}{r} = \frac{n!}{r!(n-r)!}$. [3]

8 RI/2017/FM/Promo/6a

On the same Argand diagram, sketch the loci of points given by each of the following equations:

$$L_1: |z+2-i| = \sqrt{5}$$
,
 $L_2: \arg(z+3+i) = \alpha$, where $\alpha = \tan^{-1} 2$.

Find, in the form x + iy, the complex number which represents the point in the Argand diagram which is on both L_1 and L_2 , giving the exact values of x and y. [5]

9 SAJC/2017/FM/Promo/4

- (i) Solve the equation $z^3 3z^2 + 5z = -9$, giving your answers in exact form. [4]
- (ii) Show the 3 roots of the equation in (i) on an Argand diagram and find the area of the triangle formed by joining the 3 points. [3]
- (iii) Write down two roots of the equation $z^{300} 3z^{200} + 5z^{100} = -9$ in polar form. [1]

10 SAJC/2017/FM/Promo/9

- (ai) Sketch, on a single Argand diagram, the locus of z which satisfies both $|z+2-i| \le 2$ and $|z+4-6i| \le |z+2i|$. [3]
- (ii) It is given that $-\pi < \arg(z+2i) \le \pi$. Find the complex numbers v and w that give the greatest and least values of $\arg(z+2i)$ respectively. [4]

(bi) The complex number w has modulus 6 and argument $-\frac{5\pi}{6}$, and the complex number z has modulus $4\sqrt{2}$ and argument $\frac{3\pi}{4}$. Find the modulus and argument of $\frac{z}{w}$, giving each answer exactly. [3]

(ii) Given that the Cartesian forms of w and z are $-3\sqrt{3}-3i$ and -4+4i respectively, find the exact real part of $\frac{z}{w}$ and deduce that $\cos\frac{5\pi}{12} = \frac{\sqrt{3}-1}{2\sqrt{2}}$. [4]

11 TJC/2017/FM/Promo/6

(i) Show that if $z = e^{i\theta}$, then

$$z^{k} - \frac{1}{z^{k}} = 2i\sin k\theta,$$

where k is a positive integer. [1]

(ii) Show that $\sin^5 \theta$ can be expressed in the form

 $A\sin\theta + B\sin 3\theta + C\sin 5\theta$,

where the values of A, B and C are to be determined. [4]

(iii) Find the particular solution of the differential equation $\frac{dy}{dx} = (e^x \csc y)^5$, given that y = 0 when x = 0. [3]

12 ACJC/2018/FM/Prelim/I/Q6

Let

$$C = 1 + \cos 2\theta + \cos 4\theta + \cos 6\theta + \dots + \cos 20\theta,$$

$$S = \sin 2\theta + \sin 4\theta + \sin 6\theta + \dots + \sin 20\theta.$$
(i) Show that $C + iS = \frac{\sin 11\theta}{\sin \theta} e^{i10\theta}$ for all $\theta \neq n\pi, n \in \mathbb{Z}$. [3]

(ii) Hence, show that
$$\cos 2\theta + \cos 4\theta + \cos 6\theta + \ldots + \cos 20\theta = \frac{\sin 21\theta}{2\sin \theta} - \frac{1}{2}$$
. [3]

(iii) Deduce that
$$\sum_{r=1}^{10} r \sin 2r\theta = \frac{\sin 21\theta \cos \theta}{4\sin^2 \theta} - \frac{21\cos 21\theta}{4\sin \theta}.$$
 [3]

13 TJC/2018/FM/Prelim/I/7

(a) The complex numbers *z* and *w* are such that

$$|z-4i| = 2$$
 and $|w+2i| = 1$.

By considering an Argand diagram, find

- (i) the least value of |z w|,
- (ii) the greatest value of $\arg(z-w)$. [4]
- (b) The points P_1 and P_2 represent the complex numbers z_1 and z_2 respectively in an Argand diagram with origin O. Given that

$$z_1^2 - z_1 z_2 + z_2^2 = 0 ,$$

Hence or otherwise, prove that the triangle OP_1P_2 is equilateral.

show that

 $z_1 = z_2 \left(\cos \frac{\pi}{3} \pm i \sin \frac{\pi}{3} \right).$

[7]

•

AJC/2018/FM/Prelim/I/5

- 14 The complex number z can be expressed as $e^{i\theta}$ where $-\pi < \theta \le \pi$.
 - (a) Given that z satisfies the equation |z-1| = 1, find the possible values of θ by means of a geometrical argument or otherwise. [3]
 - (b) It is given, instead, that z satisfies the equation $\arg(1+z+z^2+...+z^{n-1})=0$ for some positive integer $n \ge 2$ and $z \ne 1$. Determine the set of possible values of θ , giving your answer in terms of n. [7]

Q	Answers
1	a = -2 + 3i, -1 or 3 - i
2	(ii) least $n = 4$ (iv) $z = 1+i, 1-i, -1+i, -1-i$
3	(ii) $\frac{5\sqrt{2}}{2}$, (iii)(a) $b = 2$, (b) $(3-\sqrt{2})+(-3+\sqrt{2})i$, (c) $y = x-3+\sqrt{2}$
4	(a)(i) $z = 2e^{i\left(\frac{\pi}{5} + \frac{2k\pi}{5}\right)}, k = 0, \pm 1, \pm 2; \text{ (ii) } w = e^{i\left(\frac{2\pi}{5}\right)}.$
	(ii) $16 - 8\sqrt{3}$ or 2.14; (iii) $2.36 \le \arg(z - 5 + i) < 2.94$
5	(ii) $h = \sqrt{3}\sin(\frac{1}{6}\pi) = \frac{1}{2}\sqrt{3}$ (iii) $-4\sqrt{3} + 3i$ (iv) $0 \le \arg(z + 4\sqrt{3} + i) < \frac{2}{3}\pi$
6	(i) $z = 2e^{i\left(\frac{\pi}{6} + \frac{k\pi}{3}\right)}, k = 0, \pm 1, \pm 2, -3$ (v) $\frac{1}{6}\pi < \arg(w) < \frac{5}{6}\pi$
7	(i) $ z = 2\cos\frac{\theta}{2}$ (ii) $\left(2\cos\frac{\theta}{2}\right)^n \cos\frac{n\theta}{2}$, $\left(2\cos\frac{\theta}{2}\right)^n \sin\frac{n\theta}{2}$
8	(a) -1+3i
9	(i) -1, $2 \pm \sqrt{5}i$ (iii) $\cos\frac{\pi}{100} + i\sin\frac{\pi}{100}$ and $\cos\frac{-\pi}{100} + i\sin\frac{-\pi}{100}$
10	(a)(ii) $v = -4 + i$, $w = -\frac{4}{5} + \frac{13}{5}i$; b (i) $\frac{2}{3}\sqrt{2}$, $-\frac{5}{12}\pi$, (ii) $\frac{1}{3}(\sqrt{3}-1)$
11	(ii) $A = \frac{5}{8}, B = -\frac{5}{16}, C = \frac{1}{16}$ (iii) $-\frac{5}{8}\cos y + \frac{5}{48}\cos 3y - \frac{1}{80}\cos 5y = \frac{e^{5x}}{5} - \frac{11}{15}$
13	(a) (i) 3 (ii) $\frac{2\pi}{3}$
14	(a) $\frac{\pi}{3}$ or $-\frac{\pi}{3}$ (b) $\left\{ \theta : \theta = \frac{2k\pi}{n-1} \text{ where } k \in \mathbb{Z} \setminus \{0\}, \frac{1-n}{2} < k \le \frac{n-1}{2} \right\}$