Paya Lebar Methodist Girls' School (Secondary) Department of Mathematics 2017 Preliminary Examination Mathematics Paper 2 (4048/2) Worked Solutions

Qns No.	Working
1(ai)	$16x^2y^2 - 40xy + 25 = (4xy - 5)^2$
1(aii)	$LHS = (4xy - 5)^2 = k$
	$(4xy - 5) = \pm \sqrt{k}$
	$y = \frac{\pm\sqrt{k}+5}{4x}$
1(b)	$\frac{2x+15}{3} = 4 - \frac{2x-3}{6}$
	$\frac{2x+15}{3} + \frac{2x-3}{6} = 4$
	$\frac{2(2x+15)+2x-3}{6} = 4$
	6x + 27 = 24
	6x = -3
	$x = -\frac{1}{2}$ or 0.5
1(c)	$x = -\frac{1}{2} \text{ or } 0.5$ $\frac{8 - 2x^2}{12 + 4x - x^2}$
	$=\frac{2(4-x^2)}{-(x^2-4x-12)} \qquad \text{or} \qquad =\frac{2(4-x^2)}{-x^2+4x+12)}$
	$=\frac{2(2-x)(2+x)}{-(x-6)(x+2)} \qquad \text{or} \qquad =\frac{2(2-x)(2+x)}{(-x+6)(x+2)}$
	$=\frac{2(x-2)}{x-6}$ or $\frac{2(2-x)}{6-x}$

Qns No.	Working
1(d)	$\frac{1}{2} - \frac{1}{2} = 3$
	x y
	$y - x = 3xy \dots (1)$
	Sub (1) into
	2x + 3xy - 2y
	$\overline{x-2xy-y}$
	$=\frac{-2(y-x)+3xy}{-(y-x)-2xy}$
	$-\frac{1}{-(y-x)-2xy}$
	$=\frac{-2(3xy)+3xy}{-(3xy)-2xy}$
	$-\frac{1}{-(3xy)-2xy}$
	$=\frac{-3xy}{-5xy}$
	-5xy
	$=\frac{3}{2}$
	5
2(ai)	Ext $\angle = x = \frac{360}{3}$ (1)
	n
	Ext $\angle = x - 16^{\circ} = \frac{360}{3n} - \dots - (2)$
	3 <i>n</i>
	$\operatorname{Sub}(1)$ into (2).
	Sub (1) into (2):
	$\frac{360}{n} - 16^{\circ} = \frac{360}{2n}$
	n 3n 360 360
	$\frac{360}{n} - \frac{360}{3n} = 16^{\circ}$
	1080 - 360 = 48n
	720
	$n = \frac{728}{48}$
	n = 15
2(aii)	
	$x = \frac{360}{3(15)} = 8^{\circ}$
	Int $\angle = 180^{\circ} - 8^{\circ} = 172^{\circ}$ (adj \angle s on a str line)
2(b)	In triangle QRS and triangle PST,
	QR = PS (opp sides of rhombus)
	$\angle SRQ = \angle TEP$ (corresponding $\angle s, RQ // SP$)
	RS = ST (S is the midpt of RT)
2(c)	Hence, triangle QRS is congruent to triangle PST. (SAS) QP = ST and $QP // ST$
2(0)	(RS & QP are opp sides of rhombus and RST is a str. line)
	QS = PT and $QS // PT$
	(Corresponding sides of congruent triangles, proven in (i))
	Hence, <i>PQST</i> is a parallelogram. (2 pairs of equal and // sides)

Qns No.	Working
2(e)	In triangle POQ is similar to triangle RQT ,
	$\angle QOP = \angle TQR$ (alt $\angle s, RQ // SP$)
	$\angle OQP = \angle QTR$ (alt $\angle s, RT // QP$)
	$\angle OPQ = \angle QRT$ (oppangles of rhombus are equal)
	Hence, triangle <i>POQ</i> and triangle <i>RQT</i> are similar.
	(2 pairs of corresponding angles are equal)
3 (a)	a = 90
	b = 36
3(b)	c = 55 Numbers in the <i>R</i> column is made up of the sum of consecutive odd-number factors, i.e.
3(0)	$1 + 3 + 5 + 7 + \dots$
	And $1 + 3 + 5 + 7 + + 17 = 100$, hence 99 cannot appear in column <i>R</i> .
3(c)	P = T - R + 1
3 (d)	T = n(2n+3)
	$\therefore T_n = 2n^2 + 3n$
3(ei)	$T_{p+1} = 2(p+1)^2 + 3(p+1) = 2p^2 + 7p + 3$
	$r_{p+1} = 2(p+1) + 3(p+1) = 2p + rp + 3$
	$T_p = 2(p)^2 + 3(p) = 2p^2 + 3p$
	$\therefore T_{p+1} - T_p = (2p^2 + 7p + 3) - (2p^2 + 3p)$
	= 4p + 3
3(eii)	$\therefore T_{p+1} - T_p = 4p + 3$, a common factor 4 cannot be derived from $4p + 3$.
3(f)	P = 275 - 121 + 1 = 155
4(ai)	$\angle AOC$
	$=\frac{2\pi}{2}\times 2$
	$=$ $-\frac{1}{6} \times 2$
	2
	$=\frac{2}{3}\pi$ rad
4(aii)	Area of circle = πr^2
	Area of $\triangle AOB$
	$1_{2} (\pi)$
	$=\frac{1}{2}r^2\sin\left(\frac{\pi}{3}\right)$
	$1 - \sqrt{3}$
	$=\frac{1}{2}r^2\frac{\sqrt{3}}{2}$ Or $0.433r^2$
	$=\frac{\sqrt{3}r^2}{4}$
	\therefore Area of hexagon <i>ABCDE</i>
	$\sqrt{3}r^2$
	$= 6 \times \frac{\sqrt{3}r^2}{4}$
	$2\sqrt{2}r^{2}$
	$=\frac{3\sqrt{3r}}{2}$
	2 or 2.598 r^2

Qns No.	Working
	Total shaded area
	$= \pi r^{2} - \frac{3\sqrt{3}r^{2}}{2}$ = $r^{2}(\pi - \frac{3\sqrt{3}}{2})$ units sq. 0.544 r^{2}
	2
	$-r^{2}(\pi - \frac{3\sqrt{3}}{3})$ units so
	$\frac{2}{2}$ or $0.544 r^2$
4(b)	Connect point C to point F , then
	$\angle ABC + \angle CFA = 180^{\circ} (\angle s \text{ in opp seg are suppl})$
	$\angle CDE + \angle EFC = 180^{\circ}$ ($\angle s$ in opp seg are suppl)
	Adding up:
	$\angle ABC + \angle CDE + \angle CFA + \angle EFC = 360^{\circ}$
	$\angle ABC + \angle CDE + \angle EFA = 360^{\circ}$ (Shown)
5(a)	$\tan 32^\circ = \frac{TB}{DB}$
	DB
	$TB = DB \tan 32^{\circ}$
	TB
	$\tan 24^\circ = \frac{TB}{6+DB}$
	$=\frac{DB\tan 32^{\circ}}{6+DB}$
	$DB\tan 32^\circ = 6\tan 24^\circ + DB\tan 24^\circ$
	$DB = \frac{6\tan 24^{\circ}}{\tan 32^{\circ} - \tan 24^{\circ}} \approx 14.87064 \text{ m}$
	$\tan 52 - \tan 24$
	Height of the flagpole = $14.87064 \tan 32^{\circ}$ or
	20.87064tan 24°
	= 9.292209
5(b)	= 9.29 m (3 s.f) $AB = 6 + 14.87064 = 20.87064$
2(0)	$\approx 20.9 \text{ m}$
	By Cosine Rule,
	$BC^{2} = 50^{2} + 20.87064^{2} - 2(50)(20.87064)\cos 38^{\circ}$
	BC = 35.92986
5(c)	= 35.9 m (3 s.f)
5(0)	$\cos 38^\circ = \frac{AE}{20.87064}$
	20.87064
	$AE = 20.87064 \cos 38^{\circ}$
	$AE = 20.87004 \cos 38$ AE = 16.4463
	$AE = 16.4 \mathrm{m}$ (3 s.f)

6(ai)Since $EF : EO = 4: 7$, hence $FC : OB = 4: 7$. Therefore $\overline{FC} = 4\mathbf{b}$ 6(aii) $\overline{CB} = \overline{CF} + \overline{FO} + \overline{OB}$ $= -4\mathbf{b} - 4\mathbf{a} + 7\mathbf{b}$ $= 3\mathbf{b} - 4\mathbf{a}$ 6(aiii) $\overline{EC} = \overline{EF} + \overline{FC}$ or $\frac{4}{3}\overline{CB}$ $= -\frac{16}{3}\mathbf{a} + 4\mathbf{b}$ $= \frac{4}{3}(-4\mathbf{a} + 3\mathbf{b})$ 6(aiii) $\overline{EC} = \overline{EF} + \overline{FC}$ or $\frac{4}{3}\overline{CB}$ $= -\frac{16}{3}\mathbf{a} + 4\mathbf{b}$ $= \frac{4}{3}(-4\mathbf{a} + 3\mathbf{b})$ 6(aiv)Since $ED //AB$ and $ED : AB = 4: 3$, Therefore $\overline{ED} = \frac{8}{3}\mathbf{b}$ 6(b) E, C and B are collinear. $\overline{EC} = \frac{4}{3}\overline{CB}$ 6(ci)Since triangle EFC is similar to area of triangle EOB , Therefore $\overline{A_{CBCB}} = \left(\frac{4}{7}\right)^2 = \frac{16}{49}$ 6(ci)Since triangle EFC is similar to area of triangle $EOB = 16: 49$ 6(cii)Since triangle EDC is similar to area of triangle ABC , Therefore $\frac{A_{AEBC}}{A_{AEBCB}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ Area of triangle EDC is similar to area of triangle ABC , Therefore $\frac{A_{AEBC}}{A_{AEBC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ 6(ciii) $\frac{A_{AEBC}}{A_{AEBC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{3}$ 6(ciii) $\frac{A_{AEBC}}{A_{AEBC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$	
6(aii) $\overrightarrow{CB} = \overrightarrow{CF} + \overrightarrow{FO} + \overrightarrow{OB}$ $= -4\mathbf{b} - 4\mathbf{a} + 7\mathbf{b}$ $= 3\mathbf{b} - 4\mathbf{a}$ 6(aiii) $\overrightarrow{EC} = \overrightarrow{EF} + \overrightarrow{FC} \text{or} \frac{4}{3} \overrightarrow{CB}$ $= -\frac{16}{3}\mathbf{a} + 4\mathbf{b} \qquad = \frac{4}{3} (-4\mathbf{a} + 3\mathbf{b})$ $= \frac{4}{3} (-4\mathbf{a} + 3\mathbf{b})$ 6(aiv) Since <i>ED</i> // <i>AB</i> and <i>ED</i> : <i>AB</i> = 4: 3, Therefore $\overrightarrow{ED} = \frac{8}{3}\mathbf{b}$ 6(b) <i>E</i> , <i>C</i> and <i>B</i> are collinear. $\overrightarrow{EC} = \frac{4}{3}\overrightarrow{CB}$ 6(ci) Since triangle <i>EFC</i> is similar to area of triangle <i>EOB</i> , Therefore $\frac{A_{AEFC}}{A_{AEOB}} = \left(\frac{4}{7}\right)^2 = \frac{16}{49}$ Area of triangle <i>EFC</i> is similar to area of triangle <i>ABC</i> , Therefore $\frac{A_{AEDC}}{A_{ABBC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ Area of triangle <i>EDC</i> is similar to area of triangle <i>ABC</i> , Therefore $\frac{A_{AEDC}}{A_{ABBC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$	
6(aii) $\overrightarrow{CB} = \overrightarrow{CF} + \overrightarrow{FO} + \overrightarrow{OB}$ $= -4\mathbf{b} - 4\mathbf{a} + 7\mathbf{b}$ $= 3\mathbf{b} - 4\mathbf{a}$ 6(aiii) $\overrightarrow{EC} = \overrightarrow{EF} + \overrightarrow{FC} \text{or} \frac{4}{3} \overrightarrow{CB}$ $= -\frac{16}{3}\mathbf{a} + 4\mathbf{b} \qquad = \frac{4}{3} (-4\mathbf{a} + 3\mathbf{b})$ $= \frac{4}{3} (-4\mathbf{a} + 3\mathbf{b})$ 6(aiv) Since <i>ED</i> // <i>AB</i> and <i>ED</i> : <i>AB</i> = 4: 3, Therefore $\overrightarrow{ED} = \frac{8}{3}\mathbf{b}$ 6(b) <i>E</i> , <i>C</i> and <i>B</i> are collinear. $\overrightarrow{EC} = \frac{4}{3}\overrightarrow{CB}$ 6(ci) Since triangle <i>EFC</i> is similar to area of triangle <i>EOB</i> , Therefore $\frac{A_{AEFC}}{A_{AEOB}} = \left(\frac{4}{7}\right)^2 = \frac{16}{49}$ Area of triangle <i>EFC</i> is similar to area of triangle <i>ABC</i> , Therefore $\frac{A_{AEDC}}{A_{ABBC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ Area of triangle <i>EDC</i> is similar to area of triangle <i>ABC</i> , Therefore $\frac{A_{AEDC}}{A_{ABBC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$	
$= 3\mathbf{b} - 4\mathbf{a}$ 6(aiii) $\overline{EC} = \overline{EF} + \overline{FC} \text{or} \frac{4}{3} \overline{CB}$ $= -\frac{16}{3}\mathbf{a} + 4\mathbf{b} \qquad = \frac{4}{3} (-4\mathbf{a} + 3\mathbf{b})$ $= \frac{4}{3} (-4\mathbf{a} + 3\mathbf{b})$ 6(aiv) Since <i>ED</i> // <i>AB</i> and <i>ED</i> : <i>AB</i> = 4: 3, Therefore $\overline{ED} = \frac{8}{3}\mathbf{b}$ 6(b) <i>E</i> , <i>C</i> and <i>B</i> are collinear. $\overline{EC} = \frac{4}{3}\overline{CB}$ 6(ci) Since triangle <i>EFC</i> is similar to area of triangle <i>EOB</i> , Therefore $\frac{A_{AEFC}}{A_{AEOB}} = \left(\frac{4}{7}\right)^2 = \frac{16}{49}$ Area of triangle <i>EFC</i> : area of triangle <i>EOB</i> = 16 : 49 6(ci) Since triangle <i>EDC</i> is similar to area of triangle <i>ABC</i> , Therefore $\frac{A_{AEDC}}{A_{AABC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ Area of triangle <i>EDC</i> is similar to area of triangle <i>ABC</i> , Therefore $\frac{A_{AEDC}}{A_{AABC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$	
$= -\frac{16}{3}\mathbf{a} + 4\mathbf{b} = \frac{4}{3}(-4\mathbf{a} + 3\mathbf{b})$ $= \frac{4}{3}(-4\mathbf{a} + 3\mathbf{b})$ 6(aiv) Since <i>ED</i> // <i>AB</i> and <i>ED</i> : <i>AB</i> = 4: 3, Therefore $\overrightarrow{ED} = \frac{8}{3}\mathbf{b}$ 6(b) <i>E</i> , <i>C</i> and <i>B</i> are collinear. $\overrightarrow{EC} = \frac{4}{3}\overrightarrow{CB}$ 6(ci) Since triangle <i>EFC</i> is similar to area of triangle <i>EOB</i> , Therefore $\frac{A_{AEFC}}{A_{AEOB}} = \left(\frac{4}{7}\right)^2 = \frac{16}{49}$ Area of triangle <i>EFC</i> : area of triangle <i>EOB</i> = 16 : 49 6(ci) Since triangle <i>EFC</i> is similar to area of triangle <i>ABC</i> , Therefore $\frac{A_{AEDC}}{A_{AABC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ Area of triangle <i>EDC</i> is similar to area of triangle <i>ABC</i> = 16 : 9	
$= -\frac{16}{3}\mathbf{a} + 4\mathbf{b} = \frac{4}{3}(-4\mathbf{a} + 3\mathbf{b})$ $= \frac{4}{3}(-4\mathbf{a} + 3\mathbf{b})$ 6(aiv) Since <i>ED</i> // <i>AB</i> and <i>ED</i> : <i>AB</i> = 4: 3, Therefore $\overrightarrow{ED} = \frac{8}{3}\mathbf{b}$ 6(b) <i>E</i> , <i>C</i> and <i>B</i> are collinear. $\overrightarrow{EC} = \frac{4}{3}\overrightarrow{CB}$ 6(ci) Since triangle <i>EFC</i> is similar to area of triangle <i>EOB</i> , Therefore $\frac{A_{\Delta EFC}}{A_{\Delta EOB}} = \left(\frac{4}{7}\right)^2 = \frac{16}{49}$ Area of triangle <i>EFC</i> : area of triangle <i>EOB</i> = 16 : 49 6(ci) Since triangle <i>EFC</i> is similar to area of triangle <i>ABC</i> , Therefore $\frac{A_{\Delta EDC}}{A_{\Delta ABC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ Area of triangle <i>EDC</i> is similar to area of triangle <i>ABC</i> , Therefore $\frac{A_{\Delta EDC}}{A_{\Delta ABC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$	
$= \frac{4}{3} (-4\mathbf{a} + 3\mathbf{b})$ 6(aiv) Since <i>ED</i> // <i>AB</i> and <i>ED</i> : <i>AB</i> = 4: 3, Therefore $\overrightarrow{ED} = \frac{8}{3}\mathbf{b}$ 6(b) <i>E</i> , <i>C</i> and <i>B</i> are collinear. $\overrightarrow{EC} = \frac{4}{3}\overrightarrow{CB}$ 6(ci) Since triangle <i>EFC</i> is similar to area of triangle <i>EOB</i> , Therefore $\frac{A_{AEFC}}{A_{AEOB}} = \left(\frac{4}{7}\right)^2 = \frac{16}{49}$ Area of triangle <i>EFC</i> : area of triangle <i>EOB</i> = 16 : 49 6(ci) Since triangle <i>EDC</i> is similar to area of triangle <i>ABC</i> , Therefore $\frac{A_{AEDC}}{A_{ABC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ Area of triangle <i>EDC</i> is similar to area of triangle <i>ABC</i> , Therefore $\frac{A_{AEDC}}{A_{AABC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$	
6(aiv)Since $ED // AB$ and $ED : AB = 4: 3$, Therefore $\overline{ED} = \frac{8}{3} \mathbf{b}$ 6(b) E, C and B are collinear. $\overline{EC} = \frac{4}{3} \overline{CB}$ 6(ci)Since triangle EFC is similar to area of triangle EOB , Therefore $\frac{A_{\Delta EFC}}{A_{\Delta EOB}} = \left(\frac{4}{7}\right)^2 = \frac{16}{49}$ 6(ci)Since triangle EFC : area of triangle $EOB = 16: 49$ 6(cii)Since triangle EDC is similar to area of triangle ABC , Therefore $\frac{A_{\Delta EDC}}{A_{\Delta ABC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ Area of triangle EDC : area of triangle $ABC = 16: 9$	
Therefore $\overrightarrow{ED} = \frac{8}{3}$ b6(b)E, C and B are collinear. $\overrightarrow{EC} = \frac{4}{3} \overrightarrow{CB}$ 6(ci)Since triangle EFC is similar to area of triangle EOB,Therefore $\frac{A_{\Delta EFC}}{A_{\Delta EOB}} = \left(\frac{4}{7}\right)^2 = \frac{16}{49}$ Area of triangle EFC : area of triangle EOB = 16 : 496(ci)Since triangle EDC is similar to area of triangle ABC,Therefore $\frac{A_{\Delta EDC}}{A_{\Delta ABC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ Area of triangle EDC : area of triangle ABC = 16 : 9	
6(b)E, C and B are collinear. $\overrightarrow{EC} = \frac{4}{3}\overrightarrow{CB}$ 6(ci)Since triangle EFC is similar to area of triangle EOB, Therefore $\frac{A_{\Delta EFC}}{A_{\Delta EOB}} = \left(\frac{4}{7}\right)^2 = \frac{16}{49}$ Area of triangle EFC : area of triangle EOB = 16 : 496(cii)Since triangle EDC is similar to area of triangle ABC, Therefore $\frac{A_{\Delta EDC}}{A_{\Delta ABC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ Area of triangle EDC : area of triangle ABC = 16 : 9	
$\overrightarrow{EC} = \frac{4}{3}\overrightarrow{CB}$ 6(ci) Since triangle <i>EFC</i> is similar to area of triangle <i>EOB</i> , Therefore $\frac{A_{\Delta EFC}}{A_{\Delta EOB}} = \left(\frac{4}{7}\right)^2 = \frac{16}{49}$ Area of triangle <i>EFC</i> : area of triangle <i>EOB</i> = 16 : 49 6(cii) Since triangle <i>EDC</i> is similar to area of triangle <i>ABC</i> , Therefore $\frac{A_{\Delta EDC}}{A_{\Delta ABC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ Area of triangle <i>EDC</i> : area of triangle <i>ABC</i> = 16 : 9	
6(ci)Since triangle EFC is similar to area of triangle EOB, Therefore $\frac{A_{\Delta EFC}}{A_{\Delta EOB}} = \left(\frac{4}{7}\right)^2 = \frac{16}{49}$ Area of triangle EFC : area of triangle EOB = 16 : 496(cii)Since triangle EDC is similar to area of triangle ABC, Therefore $\frac{A_{\Delta EDC}}{A_{\Delta ABC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ Area of triangle EDC : area of triangle ABC = 16 : 9	
Therefore $\frac{A_{\Delta EFC}}{A_{\Delta EOB}} = \left(\frac{4}{7}\right)^2 = \frac{16}{49}$ Area of triangle <i>EFC</i> : area of triangle <i>EOB</i> = 16 : 49 6(cii) Since triangle <i>EDC</i> is similar to area of triangle <i>ABC</i> , Therefore $\frac{A_{\Delta EDC}}{A_{\Delta ABC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ Area of triangle <i>EDC</i> : area of triangle <i>ABC</i> = 16 : 9	
Area of triangle <i>EFC</i> : area of triangle <i>EOB</i> = 16 : 49 6(cii) Since triangle <i>EDC</i> is similar to area of triangle <i>ABC</i> , Therefore $\frac{A_{\Delta EDC}}{A_{\Delta ABC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ Area of triangle <i>EDC</i> : area of triangle <i>ABC</i> = 16 : 9	
Area of triangle <i>EFC</i> : area of triangle <i>EOB</i> = 16 : 49 6(cii) Since triangle <i>EDC</i> is similar to area of triangle <i>ABC</i> , Therefore $\frac{A_{\Delta EDC}}{A_{\Delta ABC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ Area of triangle <i>EDC</i> : area of triangle <i>ABC</i> = 16 : 9	
6(cii) Since triangle <i>EDC</i> is similar to area of triangle <i>ABC</i> , Therefore $\frac{A_{\Delta EDC}}{A_{\Delta ABC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ Area of triangle <i>EDC</i> : area of triangle <i>ABC</i> = 16 : 9	
6(cii) Since triangle <i>EDC</i> is similar to area of triangle <i>ABC</i> , Therefore $\frac{A_{\Delta EDC}}{A_{\Delta ABC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ Area of triangle <i>EDC</i> : area of triangle <i>ABC</i> = 16 : 9	
Therefore $\frac{A_{\Delta EDC}}{A_{\Delta ABC}} = \left(\frac{4}{3}\right)^2 = \frac{16}{9}$ Area of triangle <i>EDC</i> : area of triangle <i>ABC</i> = 16 : 9	
Area of triangle <i>EDC</i> : area of triangle <i>ABC</i> = $16:9$	
Area of triangle <i>EDC</i> : area of triangle <i>ABC</i> = $16:9$	
Area of triangle <i>EDC</i> : area of triangle <i>ABC</i> = 16 : 9 $\frac{A_{\Delta EDC}}{A_{\Delta EFC}} = \frac{0.5(ED)(h)}{0.5(FC)(h)} = \frac{8/3}{4} = \frac{2}{3}$	
6(ciii) $\frac{A_{\Delta EDC}}{A_{\Delta EFC}} = \frac{0.5(ED)(h)}{0.5(FC)(h)} = \frac{8/3}{4} = \frac{2}{3}$	
$\frac{1}{A_{\Delta EFC}} = \frac{1}{0.5(FC)(h)} = \frac{1}{4} = \frac{1}{3}$	
August 2 32	
$\frac{A_{\Delta EDC}}{A_{\Delta EFC}} = \frac{2}{3} = \frac{32}{48}$	
$A_{\text{A}\text{EPC}} = 16 - 48$	
$\frac{A_{\Delta EFC}}{A_{\Delta EOB}} = \frac{16}{49} = \frac{48}{147}$	
Therefore, $\frac{A_{EDCF}}{A_{FCBO}} = \frac{48 + 32}{147 - 48} = \frac{80}{99}$	
area triangle $EDCF$: area of triangle $OBCF = 80 : 99$	
7(a) $38 = \frac{35}{2} + \frac{y}{2}$	
$\begin{array}{ccc} 2 & 2 \\ y = 41 \end{array}$	
7(bi) Time taken = $\frac{37}{h}$ h	
Time taken = $\frac{1}{x}$ h	

Qns No.	Working
7(bii)	Time taken = $\frac{37}{h}$ h
, í	Time taken = $\frac{1}{x+4}$ h
7(biii)	$\frac{37}{x} - \frac{37}{x+4} = \frac{15}{60}$
	$\frac{1}{x} - \frac{1}{x+4} = \frac{1}{60}$
	$\frac{37(x+4) - 37x}{x(x+4)} = \frac{1}{4}$
	$4(148) = x^2 + 4x$
	$x^2 + 4x - 592 = 0$ (Shown)
7(biv)	Using quadratic formula or completing the square
	$x^2 + 4x - 592 = 0$
	$-4 \pm \sqrt{(4)^2 - 4(1)(-592)}$
	$x = \frac{-4 \pm \sqrt{(4)^2 - 4(1)(-592)}}{2(1)}$
	$x = \frac{-4 \pm \sqrt{2384}}{2}$
	2
	x = 22.4 or $x = -26.4$ (3 s.f) Time takes 37 37 1 (5 1 here 20 minutes (Connect to more the insta)
7(bv)	Time taken = $\frac{37}{37} = \frac{37}{37} = 1.65 = 1$ hour 39 minutes (Correct to nearest minute)
	Time taken = $\frac{37}{x} = \frac{37}{22.4} = 1.65 = 1$ hour 39 minutes (Correct to nearest minute)
8 (a)	p = 5.71
0(1)	
8(b)	$\frac{3}{\text{Min value} = -0.2}$
8(ci)	When $y = 4$,
8(cii)	x = 0.5 or x = 3
8(d)	$\frac{x-0.5 \text{ of } x-5}{\text{Draw tangent at } @ (2, 1)}$
0(u)	
	m = $\frac{3.5 - 1}{3 - 2}$ = 2.5 (Accept 0.473 to 2.52)
8 (e)	Drawing line $y = -2x + 5$
- (-)	a = 5 and $b = 2$
9(aia)	20 + 16 + x + 10 + x = 50
	2x = 4
	<i>x</i> = 2
9(aib)	Percentage $= \frac{30}{2} \times 100 = 60\%$
	$Percentage = \frac{30}{50} \times 100 = 60\%$
9(aiia)	$Mean = \frac{5420}{2}$
	$Mean = \frac{5120}{50}$
	= 108.4 cm
9(aiib)	603400 + 100 + 2
	Standard deviation = $\sqrt{\frac{603400}{50} - 108.4^2}$
	= 17.8 cm
9(aiii)	Second group of students have a higher mean than first group of students. Hence, 2 nd
	group of students jumped further/longer distance.
	Also, 2 nd group of students has a lower standard deviation. This implies that the distance
	achieved by all the students is more consistent than students in the 1 st group.

Qns No.	Working
9(bi)	Bag A Bag B
	$\frac{3}{2}$ / G
	\sim
	$\frac{1}{2}$ $G = \frac{5}{8}$ S
	$\frac{7}{4} - \frac{2}{8} = \frac{1}{4}$ G
	$\langle \overline{7}, \mathbf{s}^* \rangle$
	$\frac{6}{8} = \frac{3}{4} \mathbf{S}$
	$\frac{2}{7}$ $\frac{2}{8}=\frac{1}{4}$ G
	$B^{8} \stackrel{4}{\leftarrow} \frac{5}{8} S$
	$\frac{1}{2}$ B
	8
9(biia)	P(Gold from bag B) 1(3) A(2) 2(2)
	$= \frac{1}{7} \left(\frac{3}{8} \right) + \frac{4}{7} \left(\frac{2}{8} \right) + \frac{2}{7} \left(\frac{2}{8} \right)$
	$=\frac{15}{1}$
0(1 **1)	56
9(biib)	P(Bronze from bag B) = $\frac{2}{7} \left(\frac{1}{8} \right) = \frac{1}{28}$
10(a)	U-Taxi offers the cheapest fare.
	Percentage difference between U-taxi & C-taxi
	$=\frac{9.80-6.02}{9.80}\times100$
	$= 38\frac{4}{7}\%$ or 38.6%
10(bi)	Base Fare = \$3.00 Distance Fare = \$0.45 (8 km) = \$3.60
	Time Fare = $0.20 (12 \text{ min}) = 2.40$
	Total Fare = $3.00 + 3.60 + 2.40$
	= \$9.00
10(bii)	The driver can get reach the destination in time because of the relatively clear roads during midnight.
10(c)	<u>C-Taxi</u>
	Base Fare = $$3.20$
	Metered Fare = $0.22 \left(\frac{8500}{400} \right) + 0.22 \left(\frac{5 \times 60}{45} \right)$
	= 0.22 (21 or 21.25 or 22) + 0.22(7)
	$= $4.675 + $1.54 \\= $6.215 \text{ or } $6.16 \text{ or } 6.38

Qns No.	Working
	Peak Hour Surcharge = $(\$3.20 + \$6.215)(25\%)$
	= \$2.35 or \$2.34 or \$2.95
	Total Fare = $$3.20 + $6.215 + 2.35
	= \$11.77 or \$11.70 or \$11.96
	G-Taxi 🚘
	Base Fare = \$3.00 Distance Fare = \$0.80 (9.5 km) = \$7.60
	Total Fare = $7.60 + 3 = $10.60 \approx 11
	U-Taxi 🚘
	Base Fare $=$ \$3.00
	Distance Fare = $(9.5 \text{ km}) = $
	Time Fare: \$0.20 (15 min) = \$3.00
	Total Fare = $3.00 + 4.275 + 3 = 10.28$
	Ms Seet should use G-Taxi.
	Although U-taxi is slightly cheaper than G-taxi, the 15 minutes journey time was based on no traffic jam during the morning peak hour when she commutes to work.