

2018 Preliminary Exams Pre-University 3

H2 CHEMISTRY

Paper 2 Structured Questions

12th Sept 2018 2 hours

9729/02

Candidates answer on the Question paper. Additional materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Do not turn over this question paper until you are told to do so

Write your name, class and admission number on all the work you hand in.

Write in dark blue or black pen.

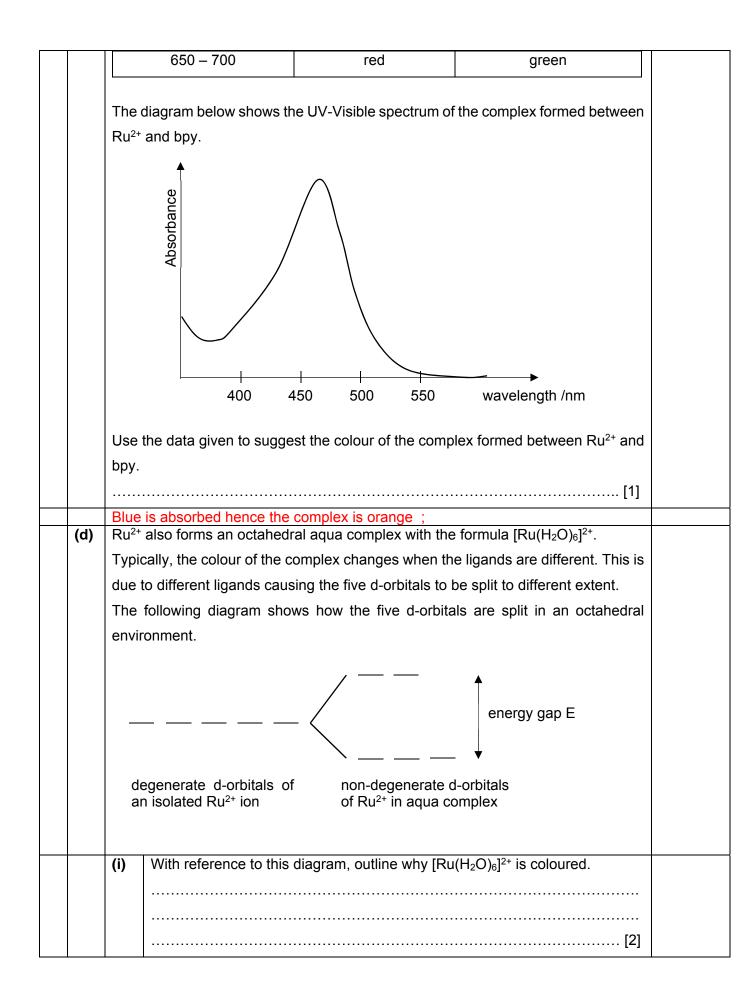
You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

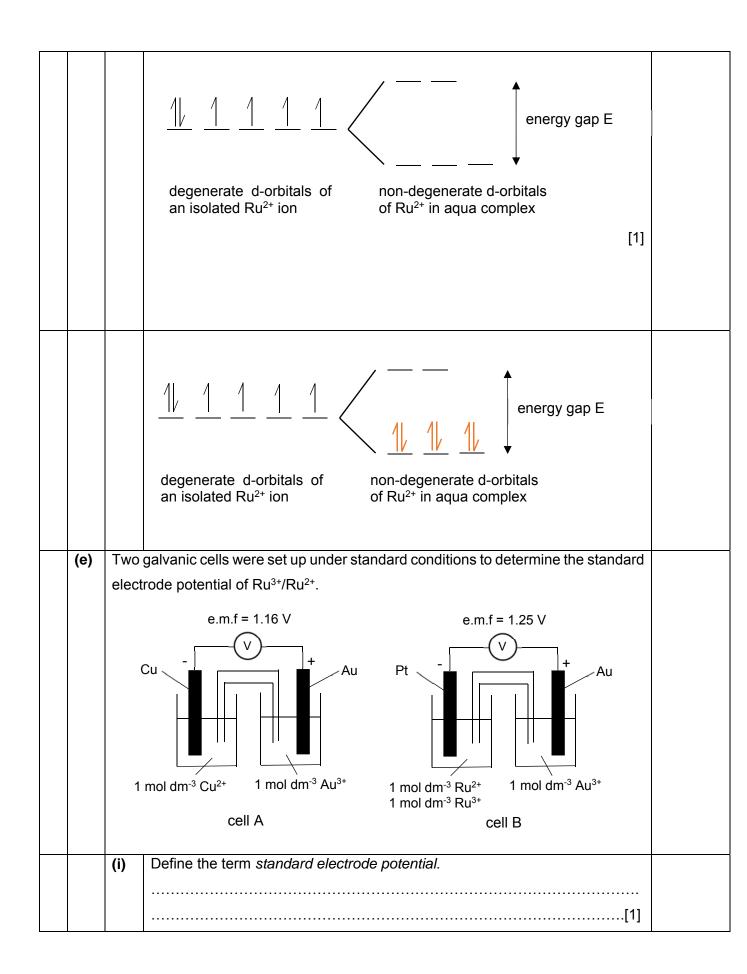
Answer all questions.

The use of an approved scientific calculator is expected, where appropriate.

A Data Booklet is provided.


At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.


Question	1	2	3	4	5	Total
Marks	20	15	12	12	16	75

1	Ruth	enium, Ru, is a Period 5 d-block element. Its ions have the ability to form complexes				
	with	both organic and inorganic ligands.				
	One	such organic ligand is 2,2'-bipyridine which can be represented by bpy.				
	(a)	Define the term <i>ligand</i> and suggest why bpy can act as a bidentate ligand.				
		[2]				
		Ligand is a <u>neutral molecule or anion</u> which contain at least one atom bearing a				
		<u>lone pair of electrons</u> which can form a <u>dative bond</u> to a central atom/ion, resulting in the formation of a complex.				
		Bpy has 2 nitrogen atoms with a lone pair of electrons each, so it can form two				
		dative bonds with the central atom/ion.				
	(b)	In an experiment, varying volumes of solutions of 0.1 mol dm ⁻³ Ru ²⁺ and				
		0.1 mol dm ⁻³ bpy are mixed to produce a coloured complex.				
		$x Ru^{2+} + ybpy \rightarrow [Ru_x(bpy)_y]^{2+}$				
		The concentration of the coloured complex formed is proportional to the				
		absorbance of the solution which is measured using a colorimeter. The following				
		graph is plotted using the results of the experiment.				
		<u>м</u>				
		\bullet				
		0 10 20 30 40 Vol of Ru ²⁺ /cm ³ 50 40 30 20 10 Vol of bpy /cm ³				

	By drawing two best-fit lines on the graph, deduce the formula of the complex ion				
	formed between Ru2+ and br	by and hence draw the st	ructure of the complex ion.		
	Formula of complex: Structure of complex ion:				
			[3]		
	Draw two straight lines that i	intersect one another.	[0]		
	Point of intersection shows Ratio of Ru^{2+} to bpy = 1:3 ;	V_{Ru}^{2+} = 12.5 cm ³ and V _{bpy}	= 37.5 cm ³		
	formula = [Ru(bpy) ₃] ²⁺				
(c)	The table below shows the c	colour of the radiation of t	he electromagnetic spectrum		
	and the corresponding wave	length range.			
	Wavelength range (nm)	Colour	Complementary colour		
	400 – 450	violet	yellow		
	450 – 490	blue	orange		
	490 – 550	green	red		
	550 – 580	yellow	violet		
	580 – 650	orange	blue		

1			
		The electrons in the lower energy d-orbital absorbs radiation from the visible region of the electromagnetic spectrum and get promoted to the higher energy d-orbital.	
		The complementary colour of the light absorbed is shown as the colour of $[Ru(H_2O)_6]^{2+}$.	
	The	electrons of transition metal ions in complexes can fill the non-degenerate	
	d-ort	pitals in two different ways, namely the 'high spin' state and the 'low spin' state.	
	This	is dependent on the magnitude of the energy gap, E, and the pairing energy,	
	Р. E	lectrons usually prefer to occupy orbitals singly, rather than in pairs. Pairing	
	ener	gy, P, is the energy needed for an electron to fill an orbital that is already	
	occu	pied by another electron.	
	In th	e 'high spin' state, the electrons occupy all the d-orbitals singly, before starting	
	to pa	air up in the lower energy d-orbitals. This occurs because the magnitude of the	
	ener	gy gap, E, is smaller than the pairing energy, P.	
	In th	e 'low spin' state, the lower energy d-orbitals are filled first, by pairing up if	
	nece	essary, before the higher energy d-orbitals are used. This occurs because the	
	pairi	ng energy, P, is smaller than the magnitude of the energy gap, E.	
	For I	Period 4 d-block elements, the electronic configuration of the 3d electrons can	
		Period 4 d-block elements, the electronic configuration of the 3d electrons can ither 'high spin' or 'low spin'. However, for Period 5 d-block elements, the 4d	
	be e	ither 'high spin' or 'low spin'. However, for Period 5 d-block elements, the 4d	
	be e elect	ither 'high spin' or 'low spin'. However, for Period 5 d-block elements, the 4d trons are always in the 'low spin' state.	
	be e	ither 'high spin' or 'low spin'. However, for Period 5 d-block elements, the 4d trons are always in the 'low spin' state. Suggest why electrons usually prefer to occupy orbitals singly, rather than in	
	be e elect	ither 'high spin' or 'low spin'. However, for Period 5 d-block elements, the 4d trons are always in the 'low spin' state. Suggest why electrons usually prefer to occupy orbitals singly, rather than in pairs.	
	be e elect	ither 'high spin' or 'low spin'. However, for Period 5 d-block elements, the 4d trons are always in the 'low spin' state. Suggest why electrons usually prefer to occupy orbitals singly, rather than in pairs.	
	be e elect	ither 'high spin' or 'low spin'. However, for Period 5 d-block elements, the 4d trons are always in the 'low spin' state. Suggest why electrons usually prefer to occupy orbitals singly, rather than in pairs. [1]	
	be e elect (ii)	ither 'high spin' or 'low spin'. However, for Period 5 d-block elements, the 4d trons are always in the 'low spin' state. Suggest why electrons usually prefer to occupy orbitals singly, rather than in pairs	
	be e elect	ither 'high spin' or 'low spin'. However, for Period 5 d-block elements, the 4d trons are always in the 'low spin' state. Suggest why electrons usually prefer to occupy orbitals singly, rather than in pairs.	
	be e elect (ii)	ither 'high spin' or 'low spin'. However, for Period 5 d-block elements, the 4d trons are always in the 'low spin' state. Suggest why electrons usually prefer to occupy orbitals singly, rather than in pairs	
	be e elect (ii)	ither 'high spin' or 'low spin'. However, for Period 5 d-block elements, the 4d trons are always in the 'low spin' state. Suggest why electrons usually prefer to occupy orbitals singly, rather than in pairs.	
	be e elect (ii)	ither 'high spin' or 'low spin'. However, for Period 5 d-block elements, the 4d trons are always in the 'low spin' state. Suggest why electrons usually prefer to occupy orbitals singly, rather than in pairs.	
	be e elect (ii)	ither 'high spin' or 'low spin'. However, for Period 5 d-block elements, the 4d trons are always in the 'low spin' state. Suggest why electrons usually prefer to occupy orbitals singly, rather than in pairs.	
	be e elect (ii)	ither 'high spin' or 'low spin'. However, for Period 5 d-block elements, the 4d trons are always in the 'low spin' state. Suggest why electrons usually prefer to occupy orbitals singly, rather than in pairs. [1] Electrons are negatively charged and will exert repulsive force against each other. With reference to the relative sizes of 3d and 4d orbitals, suggest a reason why 4d electrons prefer to pair up in the lower energy d-orbital before filling the higher energy d-orbitals.	
	be e elect (ii)	ither 'high spin' or 'low spin'. However, for Period 5 d-block elements, the 4d trons are always in the 'low spin' state. Suggest why electrons usually prefer to occupy orbitals singly, rather than in pairs.	

		Standard electrode potential is the relative potential of the electrode under standard conditions compared with the standard hydrogen electrode whose electrode potential is assigned as zero.	
((ii)	Using the data given and relevant data from the Data Booklet, determine the	
		standard electrode potentials of Au ³⁺ /Au and that of Ru ³⁺ /Ru ²⁺ respectively.	
		E ^Θ (Au ³⁺ /Au) =	
		$E^{\Theta}(Ru^{3+}/Ru^{2+}) = \dots$ [3]	
		1.16 = $E^{\Theta}(Au^{3+}/Au) - (+0.34)$ $E^{\Theta}(Au^{3+}/Au) = +1.50 V$;	
		$1.25 = +1.50 - E^{\Theta}(Ru^{3+}/Ru^{2+})$ $E^{\Theta}(Ru^{3+}/Ru^{2+}) = +0.25 V ;$	
	(iii)	working ; Hence using your answer in (e)(ii) and relevant data from the Data Booklet,	
	,	state and explain whether Ru^{3+} is able to act as a homogenous catalyst for the reaction between $S_2O_8^{2-}$ and I^- .	
		$S_2O_8{}^{2\text{-}}(aq) \ + \ 2I^{\text{-}}(aq) \ \rightarrow \ 2SO_4{}^{2\text{-}}(aq) \ + \ I_2(aq)$	
		[3]	
		$\begin{array}{rcl} Ru^{3+} + e^{-} \rightleftharpoons Ru^{2+} & +0.25 \text{ V} \\ I_2 + 2e^{-} \rightleftharpoons 2I^{-} & +0.54 \text{ V} \end{array}; \end{array}$	
		$2Ru^{3+} + 2I^- \rightarrow 2Ru^{2+} + I_2$	
		$E_{cell}^{\Theta} = +0.25 - 0.54 = -0.29 V;$	
(6)		$E^{\Theta}_{cell} < 0$ hence reaction is not feasible and Ru ³⁺ cannot be a catalyst;	
(f) F	-yrid	line and phenylamine are two nitrogen-containing compounds.	

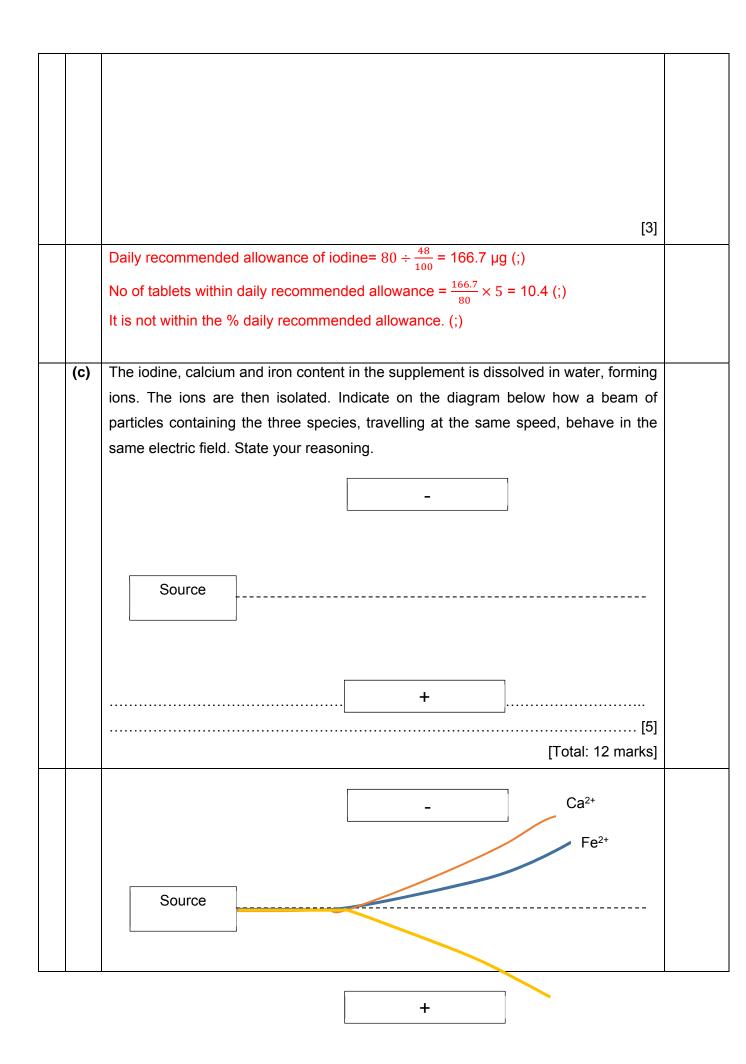
pyridinephenylamine $pK_b = 8.75$ $pK_b = 9.33$	
Pyridine has a resonance structure with six p electrons delocalised over the ring. The molecule is planar, with all atoms forming the ring being sp ² hybridised. The lone pair of electrons on nitrogen occupies one of its sp ² hybrid orbitals.	
With reference to the shape and orientation of the orbitals about the nitrogen atom in both compounds, suggest why pyridine has a lower pK_b value.	
[2]	
The lone pair on N atom of phenylamine is in the p-orbital which lies perpendicular to the benzene plane hence able to delocalise into the ring.	
The lone pair on N atom of pyridine is in the sp ² hybrid orbital which lies on the same plane as the benzene ring hence unable to delocalise into the ring.	
The lone pair on N atom of pyridine is more available for protonation hence it is a stronger base and therefore has a lower pK_b value.	

2	(a)	Upon heating at 160 °C, magnesium ethanoate decomposes to give magnesium				
		carb	onate and propanone as the products.			
			$(CH_3COO)_2Mg \rightarrow MgCO_3 + CH_3COCH_3$			
		Upoi	n further heating, MgCO ₃ undergoes further decomposition.			
		(i)	Write an equation for the decomposition of MgCO ₃ .			
		[1]				
			$MgCO_3 \rightarrow MgO + CO_2$			
		Whe	When barium propanoate, (CH ₃ CH ₂ COO) ₂ Ba was heated until constant mass, it was			
		foun	found that $BaCO_3$ and an organic compound X , $C_5H_{10}O$, were obtained. Despite			
		furth	er heating, BaCO₃ did not undergo decomposition.			
		When 2,4-dinitrophenylhydrazine was added to compound X , an orange precipitate				
		was observed. Compound ${f X}$ did not give yellow precipitate with warm aqueous				
		alkal	line iodine.			

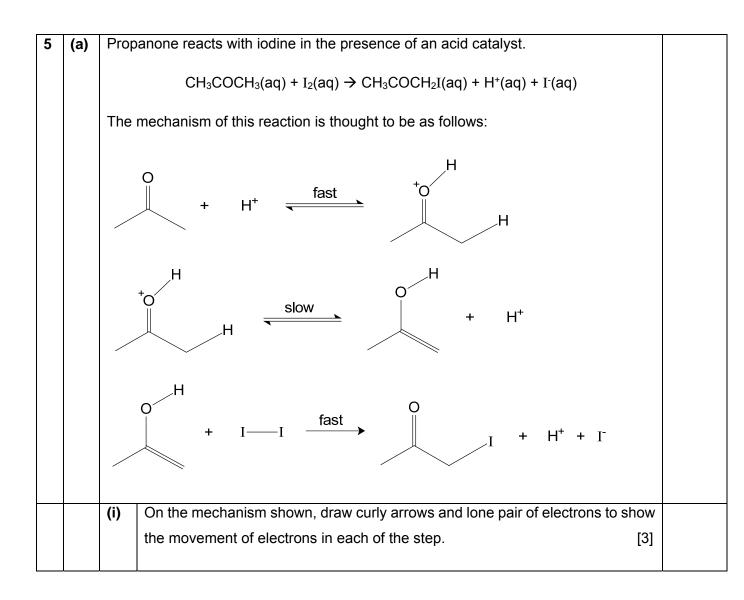
	(ii)	Explain why MgCO ₃ undergoes thermal decomposition more readily than	
		BaCO ₃ .	
		[2]	
		Mg ²⁺ has a smaller ionic radius hence a higher charge density, its higher	
		polarising power allows it to distort the electron cloud of carbonate to a greater	
		extent. The C-O bond in MgCO ₃ is weakened to a greater extent hence more easily decomposed.	
	(iii)	Suggest the structure of X.	
		[4]	
		[1]	
	(:)	CH ₃ CH ₂ COCH ₂ CH ₃	
	(iv)	Write a balanced chemical equation for the decomposition of barium	
		propanoate.	
		[1]	
		$(CH_3CH_2COO)_2Ba \rightarrow BaCO_3 + CH_3CH_2COCH_2CH_3$	
	(v)	Suggest why barium propanoate undergoes thermal decomposition more	
		readily than barium carbonate.	
		· · · · · · · · · · · · · · · · · · ·	
		[2]	
		Propanoate ion has a larger electron cloud size ;	
/h)	The	hence it is more easily polarised ; scheme below shows the reactions of 2-methylbutanal.	
(b)	ine		

	V		
		[5]	
	Step	Reagents and Conditions	
	II	cold HCN, trace NaCN or NaOH	
	III	LiAlH₄ in dry ether	
	V	CH ₂ Cl ₂	
		CN OH $O^{-}Na^{+}$ O	
(iii)	Suggest	the type of reaction undergone by 2-methylbutanal in step I.	
		[1]	
	condensa	ation	

3	(a)	Cyanogen is a colourless yet extremely poisonous gas that is used in fumigation.						
		Cyanogen is made up of carbon and nitrogen only, of which 46.2% is composed of						
		carbon by mass.						
		At 30°C and 1 bar, 1.03 g of cyanogen occupies 0.500 dm ³ . It dissolves readily in						
		water.						
		Calculate the molecular formula of cyanogen.						

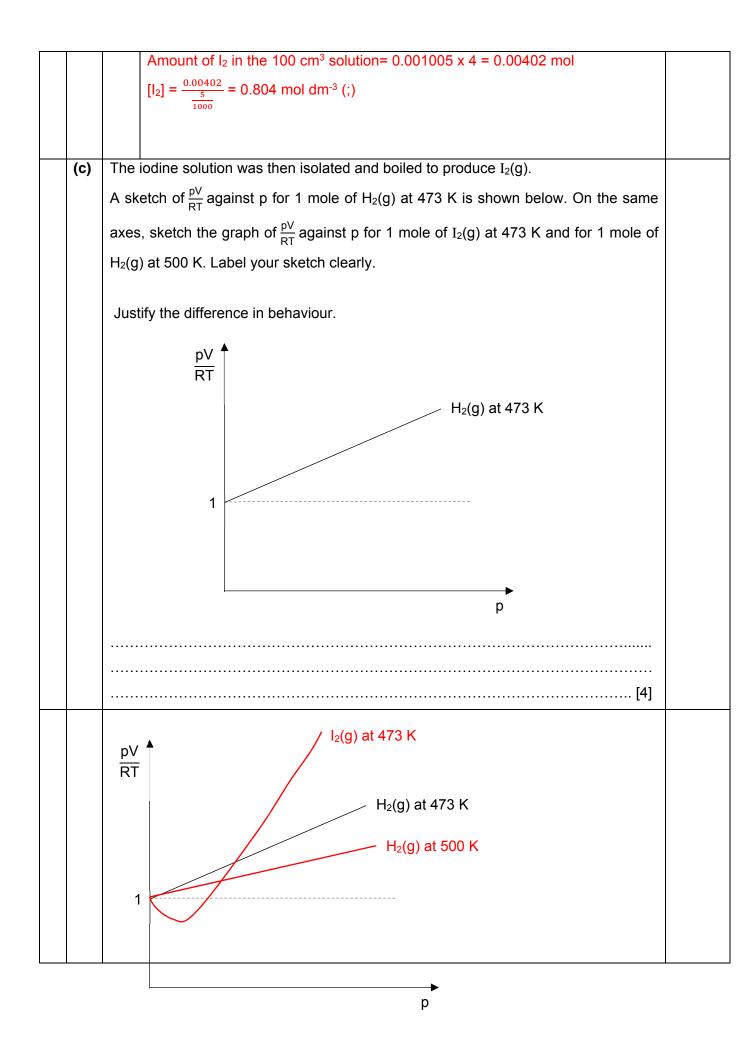

					[3]
			С	N	
		% by mass	46.2	53.8	
			10.2	00.0	
		A _r	12.0	14.0	
		Amount	3.85	3.84	
			0.00	0.01	
		Ratio	1	1	
			EF: CN (;)		
		pV=nRT			
		10 ⁵ x0.5x10 ⁻³ = n(8.31)(303)			
		n= 0.01986 mol			
		$n = \frac{mass}{Mr} = \frac{1.03}{Mr} = 0.01986$			
		M _r = 51.87 (;)			
		MF = (CN) _y			
		$y = \frac{51.87}{12+14} = 2$			
		MF: (CN) ₂ (;)			
(b)	Draw the 'dot-and-cross' diag	gram of the cyanogen mole	cule and suggest the	shape
		of the molecule with respect t	o the central atom.		
		Shape:			[2]
		•			
		•N • C • C • X N × (;)			
		Shape: linear(;)			
(c)	Explain, in terms of bonding,	why cyanogen dissolves re	eadily in water.	

	r		
		[2]	
	Ener	gy given out from the formation of hydrogen bonding between cyanogen and	
	wate	r (;) is sufficient to overcome the instantaneous dipole-induced dipole between	
	cyan	ogen molecules(;) and hydrogen bonding between water molecules.	
(d)	Oxai	mide is manufactured from cyanogen by hydrolysis that only involves water.	
		0 0	
		H_2N NH_2	
		Oxamide	
	(i)	Write the balanced equation for the reaction of manufacturing oxamide from	
		cyanogen and water. You may use the molecular formula of oxamide in your	
		equation.	
		[1]	
		$(CN)_2 + 2 H_2O \rightarrow H_2NC(O)C(O)NH_2$	
	(ii)	With the use of Data Booklet, calculate the enthalpy change of the reaction in	
		(d)(i).	
		[2]	
		$\Delta H_{rxn} = 890x2+350+4(460) - [4(390)+2(305)+2(740)+350](;)$	
		= -30.0 kJ mol ⁻¹ (;)	
	(iii)	The entropy change for the reaction in (d)(i) is +64.1 J mol ⁻¹ K ⁻¹ . Use your	
		answer in (d)(ii) to calculate ΔG at 298 K. Hence predict if the reaction is	
		spontaneous at 298 K.	


	[2]	
	ΔG_{rxn} = -30 – 298(+64.1x10 ⁻³) = -49.1 kJ mol ⁻¹ (;) ΔG_{rxn} < 0 The reaction is spontaneous at 298 K (;)	

4 (a)	A bottle of supplement has the following nutritional information.					
	The serving size is 42.5g and each bottle contains 20 servings.					
			Each serving	% of Recommended Daily		
			contains	Allowance		
	Total fat		3 g	5		
	Die	tary Fibre	6 g	24		
	Pro	otein	15 g	30		
	Ca	lcium	546 mg	47		
	Iroi	ı	9 mg	43		
	lodine		80 µg	48		
	Vita	amin C	30 mg	52		
	Vita	amin K	40 µg	51		
	She	made the volume up to 250 cm ³ portion of solution A with) cm ³ forming solut	tion A . Finally, she titrated a potassium dichromate(VI).		
	(i)	Use the Data Booklet to cor	struct an ionic equa	ation for the reaction between		
		Fe ²⁺ in solution A and dichror	mate(VI) ions.			
		·····		[1]		
		$6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \rightarrow 2C$	$r^{3+} + 7H_2O + 6Fe^{3+}$			
	(ii) Calculate the volume of potassium dichromate(VI) solution that would be		e(VI) solution that would be			
	required to react with Fe^{2+} in 25.0 cm ³ of solution A .			A .		

	1000	
	Amount of Fe ²⁺ in 25 cm ³ of solution $\mathbf{A} = \frac{25}{1000} \times 0.001138 = 0.00002846$ mol (;)	
	Amount of $Cr_2O_7^{2-}$ to titrate with 25 cm ³ of solution A = $\frac{0.00002846}{6}$ = 0.000004744	
	mol	
	Volume of $Cr_2O_7^2 = \frac{0.00001717}{1.8 \times 10^{-4}} = 26.4 \text{ cm}^3$	
(b)	Overdosage of iodine has many side-effects, including abdominal pain, delirium,	
	fever, vomiting, and shortness of breath.	
	Justify with calculations.	
	(b)	mol Volume of $Cr_2O_7^2 = \frac{0.000004744}{1.8 \times 10^{-4}} = 26.4 \text{ cm}^3$ (b)Overdosage of iodine has many side-effects, including abdominal pain, delirium, fever, vomiting, and shortness of breath. Assuming that a person does not consume any other food that contains iodine other than the supplement and a serving refers to 5 tablets, deduce if it is within the % daily recommended allowance for him to consume as many as 11 tablets in a single day.


lodide is an anion while Ca^{2+} and Fe^{2+} are cations. Thus anion will be deflected towards the positively charged plate while the cations will be deflected towards the negatively charged plate(;) Based on charge/mass ratio, Fe^{2+} will have a smaller magnitude as it has a larger A_r, thus the angle of deflection will be smaller.(;)

ŀ

		$+ H$ $I + H^{+} + \Gamma$	
		[1] per step ;;;	
	(ii)	Based on the mechanism above, write the rate equation for this reaction. [1]	
		Rate = $k[CH_3COCH_3][H^+]$	
	(iii)	Hence, sketch the graph of rate against [I ₂] [1]	
		Rate [I2]	

(b)	5.0 0	cm ³ of the reaction mixture v	vas taken out wh	nen the reaction h	has proceeded for	
	30 seconds. The resultant solution was then made up to 100 cm ³ in a volumetric flask.					
	25.0 cm ³ portions of this solution were then titrated with 0.100 mol dm ⁻³ of aqueous					
	potassium thiosulfate, $K_2S_2O_3$, with the addition of starch solution. The results are					
	shown below.					
	1 2 3					
	Initial burette reading / cm ³ 0.00 19.95 2.05					
	Final burette reading / cm³ 19.90 40.05 22.15					
		ume of titre / cm ³	19.90	20.10	20.10	
	(i)	Write the ionic equation for	or the reaction b	etween potassiu	m thiosulfate and	
		iodine in the solution.				
					[4]	
					[1]	
		$2S_2O_3^{2-} + I_2 \rightarrow 2I^- + S_4O_6^{2-}$				
	(ii)	Use the above results to d	letermine the cor	ncentration of iod	ine in the original	
	(,	5.0 cm ³ of the aliquot taker			-	
					[3]	
		Average titre volume = $\frac{20.10}{10}$	$\frac{0+20.10}{2}$ = 20.10 c	:m ³ (;)		
		Amount of $S_2O_3^{2-} = \frac{20.10}{1000} \times 0$).100 = 0.00201 r	nol		
		Amount of I_2 in the 25.0 cm			5 mol(:)	

$H_2(g)$ behaves more ideally than $I_2(g)$ as it has a weaker instantaneous dipole-induced dipole forces of attraction between molecules due to smaller size of electron cloud. (;)	
At higher temperature, $H_2(g)$ has higher kinetic energy and moves more quickly. Thus,	
the molecules are further away and there will be weaker forces of attraction between them. (;)	
Describe all types of interactions found within the lattice structure of solid iodine fully.	(d)
[3] [Total: 16 marks]	
Iodine molecules are held by instantaneous dipole-induced dipole forces of attraction	
between molecules(;) and strong covalent bonds between iodine atoms within the	
molecule(;). The covalent bond is the electrostatic forces of attraction between the	
bond pair and the nuclei of the iodine atoms.(;)	