ANNEX B

RVHS H2 Maths Preliminary Examination Paper 2

Qn/No	Topic Set	Answers
1	Differential Equation	$f(x) = \frac{1}{3}x^3$
2	Application of Integration	(a) $-e^{-x} - \tan^{-1}(e^x) + C$
		(b) $\pi e(e-1)$
3	Transformation	$x^{2} - \frac{y^{2}}{4} = 1 \xrightarrow{A} x^{2} - y^{2} = 1 \xrightarrow{B} x^{2} - (y - 1)^{2} = 1$
		A: Scaling parallel to the y-axis with a scale
		factor of $\frac{1}{2}$.
		B: Translation of 1 unit in the positive direction of the y-axis.
4	Complex Numbers	(i) $z = 2e^{i\left(\frac{2k}{3}\right)\pi}, k = 0, \pm 1$
		(i) $z = 2e^{-3/2}$, $k = 0, \pm 1$ (iii) Since $z = z_1$ satisfy the equation
		$ z - z_2 = z - z_3 $ with
		$ z_1 - z_2 = z_1 - z_3 = 2\sqrt{3}$, thus locus of P
		passes through the point Z_1 .
		(v) $(-1+\sqrt{3})+i(-\sqrt{3}+3)$
5	Sampling Methods	(i) The age group may be classified as $21 - 30$, $31 - 40$, $41 - 50$ and last group with age more than 50.
		For each age group, interview 25 people
		which add up to 100. (ii) The sample selected is biased and not
		representative of the district.
		(iii) Stratified random sampling
6	P&C	72, 432, 255
7	Correlation & Regression	(b)(i), $r \approx 0.970$
		(b)(ii) $y = 1.46 + 4.30 \ln x$
0	Normal Distribution	(b)(iii) $x = 3.17$
8	Normal Distribution	(i) Least $\alpha = 925$ (ii) 0.375 (iii) 0.0974
		(iv) $P(R \ge 1080) = 0.115$. There is a
		probability of 0.115 that the Regular bottle of
		cooking oil will not fall within the bottle,
		hence using a normal distribution is not
		appropriate.

9	Hypothesis Testing	(i) $H_0: \mu = \mu_0$ vs $H_1: \mu > \mu_0$ (ii) It means that there is a probability of 0.025 that the test concludes that the mean time spent by a technician of Open Network to install a fibre optic cable unit in a household unit is more than μ_0 minutes when in fact it is not true. (iii) $\mu_0 \ge 18.4$ The time spent by a technician of Open Network to install a fibre optic cable unit in a household unit, is assumed to be normally distributed. (iv) 5.56%.
10	Probability	(a) 0.49 (b) (i) $\frac{2}{15}$ (b) (ii) $\frac{2}{3}$, 0.177
11	Poisson distribution	 (i) 0.554 (ii) 0.836 (iii) 0.967 (iv) The Poisson distribution may not be a good model for a day as the mean number of customers entering the café may fluctuate, with more customers during the lunch and dinner period.