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1 Introduction

“Among all the mathematical disciplines, the theory of differential
equations is the most important; it furnishes the explanation of all those

elementary manifestations of nature which involve time.”

Thus declared Sophus Lie, a famed mathematician responsible for ad-
vances in linear and abstract algebra, and most importantly here, differential
equations.

Differential equations are responsible for virtually every single interac-
tion in this universe (this is meant literally): it is the language of Physics
and all the other physical sciences. Indeed, these kinds of equations allow
us to model ongoing processes that evolve with time, like radioactive decay
and population growth.

So, what exactly is a differential equation? Differential equations are
really just equations where the variable – usually a number in elementary
algebra – is replaced by a derivative. It is quite similar to, but not exactly
a polynomial. Here is an example:

d2y

dx2
+ 3

dy

dx
+ 4y = 0

If we compare this to a polynomial, it would look something like:

k2 + 3k + 4 = 0

As we can see, differential functions are made up of derivatives of varying
orders. The main difference between regular, algebraic equations and differ-
ential equations is that instead of solving for a value, we solve for a function.
Hence we have the following:

Definition 1.1. A linear ordinary differential equation of order n ∈ Z+ in
y can be written in the form∑

0≤k≤n

fk(x)
dky

dxk
= g(x)

where y is a function of x and d0y
dx0 = y. Furthermore, the differential equation

is called homogenous when g(x) = 0 and non-homogenous otherwise.

Do note the mention of the word ordinary. This is for accuracy purposes;
in fact, it is completely possible to form differential equations using partial
derivatives. These equations are called partial differential equations, and
they are outside the scope of the syllabus and this document.

In H2 Mathematics, you will have dealt with differential equations of the
form

dy

dx
= f(x)g(y)
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which can be solved by separating variables and integrating afterwards. If
g(y) is not a linear polynomial (i.e. degree 1), then the equation is not
linear. The Further Mathematics syllabus concerns itself with differential
equations which are strictly linear, albeit harder to solve compared to the
aforementioned method.
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2 First order linear differential equations

We recall that using Definition 1.1, a first order linear differential equation
may be expressed in the form

dy

dx
+ P (x)y = Q(x)

where P (x) and Q(x) are functions of x.

Example 2.1. Consider the following equation:

dy

dx
− 4x2y − 4 = 0 ⇐⇒ dy

dx
− 4y = 4

This is a first order linear differential equation with P (x) = 4x2 and Q(x) =
4. This is a non-homogenous equation since Q(x) ̸= 0.

2.1 Analytical solution for homogenous equations

We now proceed to find a solution to any equation in the form above. For
starters, let us consider the general form of this type of equation:

dy

dx
+ P (x)y = Q(x)

Clearly, we need some term in the left-hand side to contain Q(x). Hence
y must contain Q(x) or some function of it. Now, let us integrate both sides
to get rid of the derivative:∫ (

dy

dx
+ P (x)y

)
dx =

∫
Q(x) dx

y +

∫
P (x)y dx =

∫
Q(x) dx

We have y standing alone. Hence
∫
P (x)y dx yields Q(x) in some way.

Recall that integrating f ′(x)ef(x) with respect to x gives ef(x) + C. We
could now think that maybe, P (x)y integrates to give a mere −y, when
y = e−

∫
P (x) dx. If only we could have Q(x) = 0, then indeed,

y +

∫
P (x)y dx = y −

∫
(−P (x)) e−

∫
P (x) dx dx = y − y = 0

2.2 Analytical solution for non-homogenous equations

However, Q(x) isn’t always 0 for most equations. In that case, we need y to
contain Q(x) as part of some factor, while containing e−

∫
P (x) dx as a factor.

5



Much earlier before we began this chapter, we have learnt about the
product rule. We can now start with y = e−

∫
P (x) dxu(x) for some unknown

function u(x), and get

dy

dx
= e−

∫
P (x) dxdu

dx
− P (x)e−

∫
P (x) dxu(x)

We observe a common factor and thus factorize:

dy

dx
= e−

∫
P (x) dx

(
du

dx
− P (x)u(x)

)
We substitute this inside our general equation:

dy

dx
+ P (x)y = Q(x)

e−
∫
P (x) dx

(
du

dx
− P (x)u(x)

)
+ P (x)e−

∫
P (x) dxu(x) = Q(x)

e−
∫
P (x) dxdu

dx
= Q(x)

Rearranging, we get

du

dx
= Q(x)e

∫
P (x) dx =⇒ u =

∫
Q(x)e

∫
P (x) dx dx

Hence, we have the following:

Theorem 2.2. The solution of the equation

dy

dx
+ P (x)y = Q(x)

is given by

y = e−
∫
P (x) dx

∫
Q(x)e

∫
P (x) dx dx

for any P (x) and Q(x).

Proof. Consider the equation

dy

dx
+ P (x)y = Q(x)

Differentiating y, one gets

dy

dx
= −P (x)e−

∫
P (x) dx

∫
Q(x)e

∫
P (x) dx dx+ e−

∫
P (x) dxQ(x)e

∫
P (x) dx

= −P (x)e−
∫
P (x) dx

∫
Q(x)e

∫
P (x) dx dx+Q(x)
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Also,

P (x)y = P (x)e−
∫
P (x) dx

∫
Q(x)e

∫
P (x) dx dx

Therefore we have
dy

dx
+ P (x)y = Q(x)

and the proof is complete.

Make sure to not forget your constant of integration!

Example 2.3. Experiments indicate that the rate at which glucose is ab-
sorbed by the body is λG, where λ ∈ R and G is the amount of glucose
present in the bloodstream. Glucose is injected into a patient’s bloodstream
at a constant rate of r units per unit time. Write a differential equation
modelling the amount of glucose present in the patient’s bloodstream at
time t. Hence, given that the initial amount of glucose present is G0, solve
for G.

Solution. We are given that the rate r is constant, and we have λG. We
need to find a differential equation in G with respect to t. Furthermore, we
are told that glucose is removed since it is absorbed into the body out of
the bloodstream, so we must account for that. Hence we have

dG

dt
= r − λG

and so
dG

dt
+ λG = r

G = e−λt
( r

λ
eλt + C

)
G = Ce−λt +

r

λ

When t = 0, G = G0 so C =
(
G0 − r

λ

)
. Hence G =

(
G0 − λ

r

)
e−λt + r

λ and
we are done.

2.3 Alternate derivation of the solution

@garbageskill remarks that there is a faster way with less guessing of what
the solution y could be. In the above approach, we guessed that y had a
factor of e−

∫
P (x) dx. However, we can do away with this guess and instead

derive the solution systematically using something known as an integrating
factor.
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Definition 2.4. Consider any differential equation, for example

dy

dx
+ P (x)y = Q(x).

An integrating factor is an expression which all terms are multiplied by, so
that it is easier to solve the equation by integration.

Integrating factors can be used for nonlinear equations (for example, one
with a term in y2). However, we do not discuss it here; rather, we will use
this idea of an integrating factor to see how we can obtain y.

Recall the product rule

d

dx
(uv) =

du

dx
v + u

dv

dx

Using prime notation,

d

dx
(f(x)g(x)) = f ′(x)g(x) + f(x)g′(x)

Hence, we are left with the objective of expressing the differential equation

dy

dx
+ P (x)y = Q(x)

in the form

M(x)
dy

dx
+M(x)P (x)︸ ︷︷ ︸

M ′(x)

y = Q(x)M(x)

for some unknown, unique M(x), where

M ′(x) = M(x)P (x) =⇒
∫

P (x) dx =

∫
M ′(x)

M(x)
dx = ln(M(x))

This allows us to use the product rule (backwards). We have the fact that
M(x) = e

∫
P (x) dx and

d

dx
(M(x)y) = Q(x)M(x) =⇒ y =

1

M(x)

∫
Q(x)M(x) dx

Finally, we have

y = e−
∫
P (x) dx

∫
Q(x)e

∫
P (x) dx dx

and we have successfully derived the solution. It is worth knowing that this
method of finding some factor, multiplying it and integrating afterwards
after applying some differentiation rules can prove very useful in solving
other differential equations, especially nonlinear ones (beyond the syllabus).
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3 Second order linear differential equations

A second order linear differential equation is of the form

d2y

dx2
+ P (x)

dy

dx
+Q(x)y = R(x)

for any functions P (x), Q(x), R(x).

Definition 3.1. If P (x) and Q(x) are constants, the differential equation
is said to have constant coefficients. Otherwise, it is said to have variable
coefficients.

The syllabus concerns itself only with the constant coefficient case, for
this order of differential equations. As such, we will be discussing equations
of the form

d2y

dx2
+ a

dy

dx
+ by = f(x) a, b ∈ R.

In this chapter, we begin with the homogenous case, and then show how it
relates to the non-homogenous case through the concept of a complementary
equation.

3.1 Analytical solution for homogenous equations

Recall that an equation is homogenous when

d2y

dx2
+ a

dy

dx
+ by = 0.

Using the same idea of an exponential in Section 2.1, we notice that y = eλx

for some unknown λ. Substituting this in,

λ2eλx + aλeλx + beλx = 0

Since eλx is a common factor, and is nonzero because all exponentials are
nonzero, we obtain

λ2 + aλ+ b = 0

Definition 3.2. Consider the second order homogenous linear differential
equation

d2y

dx2
+ a

dy

dx
+ by = 0.

The characteristic equation of this differential equation is defined as

λ2 + aλ+ b = 0
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Math ever generalizes, so if we had a third order linear differential equa-
tion

d3y

dx3
+ a

d2y

dx2
+ b

dy

dx
+ cy = 0

its characteristic equation is a cubic, which can also easily be solved.
Returning back to the discussion of second order equations, we are re-

quired to find λ such that the equation holds true. Quadratic equations have
three possible cases where either λ ∈ C, the equation has real and distinct
roots, or the equation is a perfect square with repeated roots. While the
complex case and the real, distinct cases have fairly similar treatment, we
must deal with the repeated root case specially.

3.1.1 Distinct roots

Suppose that a2 − 4b ̸= 0. If the roots are complex, then λ = α ± βi
for some α, β ∈ R. We have C1e

α+βi as a solution, as well as C2e
α−βi, for

C1, C2 ∈ R. This is true for any C1, C2 because they will all cancel out when
substituted into the equation. Also, since Cea±bi = Ceae±bi, the solution
can be expressed in polar form. Thus we have found two distinct solutions.

The same applies for the real distinct roots case; it is merely the case
where β = 0.

However, we are not done yet. Let us recall about this property of
differentiation as a linear operation:

d

dx
(u+ v) =

du

dx
+

dv

dx
.

So if we had y = u + v where u = eλ1x and v = eλ2x where λ1 and λ2 are
the roots of the characteristic equation, we have

d2y

dx2
+ a

dy

dx
+ by = 0

if and only if (
d2u

dx2
+

d2v

dx2

)
+ a

(
du

dx
+

dv

dx

)
+ b(u+ v) = 0

Therefore, we can conclude the following:

Theorem 3.3. A second-order homogenous linear differential equation

d2y

dx2
+ a

dy

dx
+ by = 0

admits the solution
y = C1e

λ1x + C2e
λ2x

where C1, C2 ∈ R and λ2 + aλ + b = 0, and λ1 and λ2 are distinct roots of
the quadratic equation.
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Since we have an infinite choice of what C1 and C2 can be, we have
infinitely many solutions. This leads to the next definition:

Definition 3.4. A particular solution of a differential equation is one with-
out any arbitrary constants (for example, C1 or C2).

Indeed, it is possible to represent this family of solutions diagramatically.
We will see this using the concept of a slope field.

We have discussed the case for real and complex distinct roots, so now
we are left with the case of real, repeated roots. As seen in the other cases,
we always had two terms which do not add up into one; we will call them
linearly independent, although this is not the formal definition. However,
does this also hold for our real, repeated case? Yes, it does. A formal proof
of this will not be provided as it is beyond the scope of this document.
Currently, we can only assume that there is a second solution which is
linearly independent of the first one.

3.1.2 Repeated roots

To start off, suppose that we have y = Ceλx for C ∈ R and λ the only
distinct real root of the characteristic equation. We return to the product
rule:

d

dx
(uv) =

du

dx
v + u

dv

dx

Hence if y = uv for some unknown u and v which are functions of x, we
have the following equations:

d2y

dx2
+ a

(
du

dx
v + u

dv

dx

)
+ buv = 0

d2y

dx2
=

(
d2u

dx2
v +

du

dx

dv

dx
+ u

d2v

dx2
+

du

dx

dv

dx

)
=

(
d2u

dx2
v + 2

du

dx

dv

dx
+ u

d2v

dx2

)
Substituting in, we have(

d2u

dx2
v + 2

du

dx

dv

dx
+ u

d2v

dx2

)
+ a

(
du

dx
v + u

dv

dx

)
+ buv = 0

We know that y = uv must have a factor of eλx, because how it differentiates
is the key to solving our equation. Suppose that u = eλx then. We require
that(

λ2eλxv + 2λeλx
dv

dx
+ eλx

d2v

dx2

)
+ a

(
λeλxv + eλx

dv

dx

)
+ beλxv = 0

Again, exponentials are never zero so we obtain, after dividing by eλx:(
λ2v + 2λ

dv

dx
+

d2v

dx2

)
+ a

(
λv +

dv

dx

)
+ bv = 0
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By the characteristic equation,
(
λ2 + aλ+ b

)
v = 0. Hence(

2λ
dv

dx
+

d2v

dx2

)
+ a

(
dv

dx

)
= 0

d2v

dx2
+ (a+ 2λ)

dv

dx
= 0

By the definition of λ using the quadratic formula,

λ =
−a

2
=⇒ 2λ = −a

d2v

dx2
+ (a+ 2λ)

dv

dx
= 0

d2v

dx2
= 0 =⇒ v = C1x+ C2 C1, C2 ∈ R

Finally, we have found that the second linearly independent solution
takes on the form y = Cxeλx. Hence we have the following:

Theorem 3.5 (Theorem 3.3 generalized). A second-order homogenous lin-
ear differential equation

d2y

dx2
+ a

dy

dx
+ by = 0

admits the solution
y = C1y1 + C2y2

where C1, C2 ∈ R and y1, y2 are linearly independent particular solutions to
the differential equation.

Theorem 3.6. A second-order homogenous linear differential equation

d2y

dx2
+ 2k

dy

dx
+ k2y = 0

admits the solution
y = C1e

−k/2 + C2xe
−k/2

where C1, C2, k ∈ R.

3.2 Analytical solution for non-homogenous equations

A constant-coefficient second order linear non-homogenous equation takes
on the form

d2y

dx2
+ a

dy

dx
+ by = f(x)

for any a, b ∈ R and any function f(x).
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3.2.1 Relationship with homogenous equations

In order to solve non-homogenous equations, we must ourselves solve a par-
ticular homogenous equation. It has a name, as we see below:

Definition 3.7. The complementary equation to a second order linear non-
homogenous differential equation with constant coefficients of the form

d2y

dx2
+ a

dy

dx
+ by = f(x)

is defined to be
d2y

dx2
+ a

dy

dx
+ by = 0

for any a, b ∈ R and any function f(x).

Now, suppose that y1 and y2 solve the complementary equation, and
Y1, Y2 and YP (where YP is a particular solution) solve the main (non-
homogenous) equation. Indeed, Y must be of the form Y = y+ YP because
differentiation is linear over addition. Hence we can argue that Y1 − Y2 =
C1y1 + C2y2 for arbitrary C1, C2 ∈ R, because we want to get rid of YP .

Theorem 3.8. Suppose that Y1 and Y2 solve a second order non-homogenous
linear differential equation. Then Y2−Y1 is of the form Y1−Y2 = C1y1+C2y2
for arbitrary C1, C2 ∈ R.

Proof. This is left as an exercise to the reader.

By Theorem 3.8, we can set Y1 = y to be the general solution and
Y2 = YP to be some kind of particular solution. We get y = C1y1+C2y2+YP .
Hence, we are left to solve for any YP because as said earlier, all we need is
a particular solution to find the general solution of the differential equation.

3.2.2 Method of undetermined coefficients

For equations of the form above, we can use themethod of undetermined coef-
ficients because we are dealing with constant coefficients. (There is another
method called the variation of parameters which is much more powerful;
this can be found in [2].)

This method only works for cases when f(x) is a polynomial, or of the
form pekx, p cos(kx) + q sin(kx) where p, q ∈ R. This allows us to make
certain guesses about what our particular solution could be; Table 1 is due
to [2].

Example 3.9. Consider the differential equation

y′′ + 4y′ + y = 5 sin(2x).

Our guess will be of the form A sin(2x) + B cos(2x) (even though b = 0 in
the above equation).
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Form of f(x) Guess for the form of YP

k A

a0x
n + a1x

n−1 + ...+ an A0x
n +A1x

n−1 + ...+An

aekx Aekx

a sin(kx) + b cos(kx) A sin(kx) +B cos(kx)

Table 1: Guesses for YP .

Example 3.10. Consider the differential equation

y′′ − 3y = 5e−2x.

Our guess will be of the form A sin(2x) + B cos(2x) (even though b = 0 in
the above equation).

Once we have a guess for YP , we set y = YP and substitute it into the
differential equation, in order to find any unknown constants.

Example 3.11. Solve the differential equation

y′′ − 4y = 5ex.

Solution. The characteristic equation of the complementary (homogenous)
equation is λ2 − 4 so λ = ±2. Hence y = C1e

2x + C2e
−2x + YP where YP is

of the form Aex, as seen in Table 1. Substituting y = YP , one obtains

Aex − 4Aex = 5ex =⇒ −3A = 5 =⇒ A = −5

3

Finally, our solution is y = C1e
2x + C2e

−2x − 5
3e

x.

However, if we had f(x) = 5e2x instead, we would run into a problem:
f(x) is a solution of the complementary equation, so our guess Ae2x solves
the complementary equation y′′−4y = 0. To fix this, we can consider Axe2x,
similar to the approach in Section 3.1.2. If that still does not work, we can
consider Ax2e2x, Ax3e2x and so on.

To generalize, suppose that for our particular solution YP we guess that
YP = g(x) where g(x) takes on one of the forms in Table 1. If YP = xng(x)
where n ≥ 0 solves the complementary equation, try YP = xn+1g(x).
Clearly, there must not be any term in YP solving the comple-
mentary equation.
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4 Family of solution curves

From the previous chapters, we know that there are infinitely many solutions
of differential equations (varying the arbitrary constants). Since they all
ultimately have similar shapes, we can call them a family of solution curves.

4.1 Sketching solution curves

Some questions may ask you to sketch the graph of some kind of solution to
a differential equation, possibly with further conditions.

Example 4.1 (NJC 2017 Preliminary P2 Q4). Find the general solution of
the differential equation

(1 + x)y − x
dy

dx
= x3 − x2.

Hence sketch and label clearly the equations of 2 distinct members of the
family of solution curves where their nature of stationary points differ from
each other.

Solution. The solution of the equation is y = x2+Cxex. Consider the cases
C = 0 (yielding a parabola with only one minimum point) and C = 1. Your
sketch (and your graphing calculator’s sketch) should be similar to the one
below:

C = 0

C = −1

Figure 1: The graph when C = 0 and C = −1.

As required, the stationary points have different natures.

4.2 Phase lines

A phase line is a vertical line which tells us the gradient of any solution
curve to a first order autonomous differential equation defined as follows:
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Definition 4.2. A differential equation of order n in y (where n ≥ 1 and y
is a function of t) is said to be autonomous when it can be expressed in the
form

dny

dtn
= f

(
y,

dy

dt
, ...,

dn−1y

dtn−1

)
for any function f . In other words, the differential equation does not explic-
itly depend on t.

For purposes seen later, we introduce another definition:

Definition 4.3. c ∈ R is said to be an equilibrium point of an autonomous
differential equation if

f

(
y,

dy

dt
, ...,

dn−1y

dtn−1

)
= f (y, 0, ..., 0) = 0

when y = c. It is also called a ‘critical point’ and a ‘stationary point’.

To simplify our discussion, we only consider first order equations of the
form

dy

dx
= f(y).

In order to construct a phase line of an autonomous differential equation,
we follow the procedure below:

1. Draw a vertical line.

2. Find the equilibrium points of the differential equation.

3. By drawing filled-in circles on the line to mark all the equilibrium
points, separate the line into different regions.

4. For each region where f(y) > 0 (y is increasing), draw an arrow point-
ing upwards.

5. For each region where f(y) < 0 (y is decreasing), draw an arrow
pointing downwards.

This will help us sketch solution curves because we know about their
behavior (and their gradients) in the different regions.
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0

2

4

y

Figure 2: A sample phase line.

Figure 2 is an example of a phase line. The equilibrium points are at
y = 0, y = 2 and y = 4.

We can also tell the regions where y is increasing and y is decreasing,
and thus sketch a possible graph of y when we put this diagram and the
graph of y side-by-side.

Additionally, we also introduce some new terminology that classifies
equilibrium points.

Definition 4.4. Consider a first-order autonomous differential equation of
the form

dy

dt
= f(y)

and let y = k be a zero of f(y), in other words an equilibrium point of the
differential equation. If solution curves on both sides of y = k converge to
y = k as t → ∞, y = k is said to be a stable equilibrium point. Otherwise,
if the solution curves diverges, y = k is said to be unstable. If one side of
the equilibrium point has solution curves diverging, and the other side has
solution curves converging, y = k is said to be semistable.

Although we don’t know the reasons behind this terminology, we could
probably assume that the word stable comes from the fact that when we
change a particular solution curve slightly, we still converge towards y = k.
However, when it’s unstable, the path of the curve significantly changes, as
seen below. Finally, semistable points may have gotten their name because
they possess both properties of stable and unstable equilibrium points to
some extent.

The easiest way to classify these equilibrium points is to draw a phase
line of some differential equation with equilibrium points. If the arrows point

17



Figure 3: A phase line and the graphs of some solution curves from [1].

away from the region, the point is said to be unstable. Otherwise, the point
is said to be stable when the arrows are pointing into the region. Lastly, the
point is semistable if one arrow points into the region and the other arrow
points away.

Example 4.5. Classify the equilibrium points in Figure 2.

Solution. The point y = 4 is unstable, the point y = 0 is stable, and the
point y = 2 is semistable.

4.3 Slope fields

Besides phase lines, we can obtain information about a first-order differential
equation of the form

y′ = f(x, y)

where the differential equation need not be autonomous by a different di-
agram. Sometimes, it is impossible to explicitly find a solution for y (try
solving y′+y2 sin(xy)+1 = 0; even WolframAlpha can’t). As an alternative
to solving this, we can use a slope field. By computing f(x, y) at different
points, and drawing lines slanted to reflect the gradient, we get a diagram
like the one in Figure 4. We now have a diagram which tells us the gradient
of any solution curve at a particular point, and so we can just trace along
the arrows to sketch a solution curve (as seen in red in Figure 4).

18



Figure 4: The slope field of
dy

dx
= x

√
x.
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5 Population models

Differential equations, as Sophus Lie said, ‘furnish the explanation of all
those elementary manifestations of nature which involve time’. Indeed, they
make for excellent models in predicting how processes evolve as time passes.

One such process is population change (growth or decay). The syllabus
discusses two such models: the exponential growth model and the logistic
growth model which builds on the previous model.

5.1 Exponential growth

The exponential growth model appears in the form

dP

dt
= kP

where P is the size of the population, dependent on the time t. This assumes
that the rate of change of P is proportional to its total population at some
particular time t, which is not always the case.

This is a first order autonomous linear differential equation which can
be solved by separating variables.∫

1

P
dP =

∫
k dt =⇒ P = Cekx

When k > 0, there is growth, Otherwise, when k < 0, P is decreasing
and thus there is decay.

Example 5.1 (O-Level Additional Mathematics 2024 modified). The man-
ager of a coffee shop purchases a coffee machine for $1800. The value of the
machine $V can be modelled by a differential equation, which depreciates at
a rate with respect to time t in months. The rate of change is proportional
to V . When 12 months have passed, the value of the machine has dropped
to $1000. Find V in terms of t.

Solution. Because the coffee machine’s value V depreciates at a rate pro-
portional to V , one has dV

dt = kV . Obviously V = Cekt and since the initial
value is V = 1800 when t = 0, C = 1800. Now we are left to solve for k,
and we leave this to the reader to do so.

5.2 Logistic growth

Recall the equation dP
dt = kP . Although a decent model, it is largely unre-

alistic for most populations, because they will eventually decrease in growth
due to internal competition to survive (with limited resources, assuming
they grow in a closed environment). P. F. Verhulst, a Belgian demographer,
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adapted the exponential growth model to create the logistic growth model
represented by the differential equation

dP

dt
= rP

(
1− P

K

)
where r is the growth rate and K is the carrying capacity. Note that as the
carrying capacity grows to infinity, one has

lim
K→∞

rP

(
1− P

K

)
= rP

and this reduces to the exponential growth model. However, when K is
sufficiently low, we have dP

dt = rP − r
KP 2 and P 2

K generally grows faster
than P .

This is another first order autonomous linear differential equation which
can be solved using the same method to yield

P (t) =
KP0

P0 + (K − P0)e−rt

where P (0) = P0.
We also observe that

lim
t→∞

P (t) =


KP0

P0 + (K − P0)(0)
= K if r > 0

0 if r < 0

We assume that, of course, P0 > 0.

5.3 Harvesting

Suppose that a house has a bedbug infestation problem, and over a period
of time 35 bedbugs were caught. The process of catching these bedbugs is
known as harvesting (bedbugs).

We can include this concept into our logistic equation by simply adding
a term H(t) into the equation. This has a special name:

Definition 5.2. Consider the logistic equation

dP

dt
= rP

(
1− P

K

)
−H(t)

where r is the growth rate and K is the carrying capacity. Then H(t) is
called the harvesting term in the equation.
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Normally, we letH(t) be a constant and thus write onlyH. While solving
this equation is doable, most applications of this model involve studying
whether the population will reach extinction (i.e. P = 0 eventually) or
survive. Here, we assume that r,K > 0.

Now, suppose we fix r and K such that we only vary H. Then we can
find the equilibrium points:

rP

(
1− P

K

)
−H = 0 =⇒ P =

K

2
±
√

K2

4
− KH

r

Because the coefficient of P on the left-hand side is negative, dP
dt is a

quadratic which has a maximum point. Hence as H increases, the graph
of dP

dt against P moves down (is translated in the direction of the negative
y-axis), and the zeroes of the graph (the equilibrium points) get closer to
each other.

In order to find the number of equilibrium points, we can use an ex-
pression rK2 − 4KH in a similar spirit to the discriminant of a quadratic
equation. Hence we have the following:

1. When H = 0, the equilibrium points are P = 0 and P = K.

2. When rK2 − 4KH > 0 or H >
rK

4
, there are two equilibrium points.

3. When rK2 − 4KH < 0 or H <
rK

4
, there are no equilibrium points,

because all the roots are complex.

For case 3, H is large enough to ensure that P decreases because dP
dt < 0 for

all P . Hence P is guaranteed to reach P = 0 (i.e. extinction).
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