

2024 End-of-Year Examination Pre-University 1

MATHEMATICS

Paper 1 QUESTION PAPER 14 October 2024 2 hours 15 minutes

9758/01

Additional Materials: Printed Answer Booklet List of Formulae (MF27)

READ THESE INSTRUCTIONS FIRST

Answer all the questions.

Write your answers on the Printed Answer Booklet. Follow the instructions on the front cover of the answer booklet.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You are expected to use an approved graphing calculator.

Unsupported answers from a graphing calculator are allowed unless a question specifically states otherwise. Where unsupported answers from a graphing calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands. You must show all necessary working clearly.

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 75.

1 The sum, S_n , of the first *n* terms of the sequence u_1, u_2, u_3, \dots is given by

$$S_n = n^2 + kn,$$

where *k* is a non-zero constant.

(i) Find
$$u_n$$
 in terms of n and k . [2]

- (ii) Hence determine if the sequence is an arithmetic progression. [2]
- 2 (i) Without using a calculator, solve the inequality

$$\frac{x^2 - 3x + 2}{x + 4} \ge 2.$$
 [4]

(ii) Hence solve the inequality

$$\frac{x^2 + 3x + 2}{4 - x} \ge 2.$$
 [2]

- 3 (i) A curve C has equation $y = ax^3 + bx^2 + cx + d$, where a, b, c and d are constants. The curve C intersects the y-axis at the point (0, 7) and passes through the points (-2, -11), (1, 1) and (3, 19). Find the values of a, b, c and d. [4]
 - (ii) C first undergoes a reflection about the y-axis and subsequently a translation of 1 unit in the positive y-direction. Find the equation of the resulting curve. [2]
- 4 Referred to the origin O, the points A, B and C have position vectors **a**, **b** and **c**. C lies on AB such that AC:AB=1:3.
 - (i) Find \mathbf{c} in terms of \mathbf{a} and \mathbf{b} . [2]
 - (ii) Show that the area of triangle *OAC* is given by $k |\mathbf{a} \times \mathbf{b}|$, where k is a constant to be determined. [2]

It is now given that **a** and **b** are unit vectors.

(iii) Using the result in part (i), find the value of $(2\mathbf{a} - \mathbf{b})\mathbf{c}$. [3]

- 5 (a) Describe a sequence of 2 transformations that transforms the curve C with equation $\frac{x^2}{9} + y^2 = 1 \text{ onto the curve } D \text{ with equation } (x-2)^2 + y^2 = 1.$ [2]
 - (b) The diagram shows the curve with equation y = f(x). The curve passes through the origin and the point (2, 0) and has a minimum point at (3,-4). The asymptotes of the curve are the lines x = 1, y = 0 and y = 2.

Sketch the graph of $y = \frac{1}{f(x)}$, indicating the equations of any asymptotes and the coordinates of any points where it crosses the axes and of any turning points, where applicable. [3]

(c) The graph of y = g(x) is a semi-circle with its centre at the point (a, 0), where a < 0. The diagram shows the graph of y = g(|x|), which intersects the axes at the points (-b, 0), (b, 0) and (0, c), where $a \neq -b$.

Sketch the graph of y = g(x), labelling the coordinates of the centre and the radius of the semi-circle, in terms of *a* and/or *b*. [3]

© Millennia Institute

9758/01/PU1/EOY/24

[Turn over

4

(i) Determine the values of *a* and *b*.

Use the values of a and b found in part (i) for the following parts.

- (ii) Sketch *C*, stating the coordinates of any points of intersection with the axes and of any turning points and the equations of the asymptotes. [4]
- (iii) By adding a suitable curve to your diagram in part (ii), solve the inequality

$$\frac{x^2 - bx + b}{x - a} - \ln(5 - x) \ge 2.$$
 [3]

[2]

7 The functions f and g are defined by

f:
$$x \mapsto 5 - (x-2)^2$$
, for $x \in \Box$, $x \ge 0$,
g: $x \mapsto e^x + 3$, for $x \in \Box$.

(i)	Show that the composite function fg exists.	[2]
(ii)	Find an expression for $fg(x)$ and state its domain.	[2]
(iii)	Find the range of fg.	[2]
(iv)	Show that f^{-1} does not exist.	[1]

(v) If the domain of f is restricted to $[k,\infty)$, find the smallest value of k such that f^{-1} exists. [1]

For the rest of the question, the domain of f is now restricted to $[k,\infty)$, with the value of k found in part (v).

(vi) Find $f^{-1}(x)$ and state the domain of f^{-1} . [3]

(i) Show that
$$a = d$$
. [4]

It is given that the sum of the first 20 terms of the arithmetic series is 630.

- (ii) Find the value of a. [2]
- (iii) Hence find the exact sum of the first 10 terms of the geometric series. [3]
- (iv) Give a reason why the geometric series converges and find the sum to infinity of this series.
- 9 To construct a special tentage, 3 steel poles *OR*, *AQ* and *BP* are secured to the horizontal ground such that each of the poles are perpendicular to the ground. The point *O* on the ground is taken as the origin and the unit vectors **i**, **j** and **k** are parallel to *OA*, *OB* and *OR* respectively, with units in metres. It is given that OR = 12, AQ = 9, BP = 6, OA = 20 and OB = 15 (see diagram).

(i) Find \overrightarrow{PR} and \overrightarrow{PQ} .

[2]

(ii) The canvas roof PQR, which is of negligible thickness, is part of the plane p. Using your answers in part (i), show that the equation of p is given by

$$\mathbf{r} \Box \begin{pmatrix} 3\\8\\20 \end{pmatrix} = 240.$$
 [2]

8

increasing.

9758/01/PU1/EOY/24

[Turn over

- (iii) Find the acute angle between the canvas roof and the plane *OAB*.
- (iv) A cable is to be installed close to the tentage. This cable is part of the line L with vector equation

$$\mathbf{r} = \begin{pmatrix} -2\\8\\12 \end{pmatrix} + \lambda \begin{pmatrix} 20\\-13\\-4 \end{pmatrix}, \text{ where } \lambda \in \Box .$$

Show that this cable is not parallel to the edge PR of the roof and does not meet the edge PR. [4]

(v) A lamp is hung vertically downwards from the canvas roof using a cable such that it is at the point *M* with coordinates $\left(\frac{20}{3}, 5, 8\right)$.

To secure the lamp, a second cable is connected from the lamp to the point N on the roof. It is assumed that the cables are laid in straight lines and have negligible thickness.

For the shortest length to be used for the second cable, show that

$$\overrightarrow{ON} = \begin{pmatrix} s \\ \frac{2525}{473} \\ t \end{pmatrix},$$

where s and t are constants to be found.

[3]

[2]

End of Paper