

Anglo-Chinese School (Barker Road)

SECONDARY FOUR EXPRESS COMPUTING PRELIMINARY EXAMINATION

Solution Paper 2

Task 1 ORDERS_sample - Formula view

A	В	C	D	E	F	G	Н	1 1	J	K
			ABC C	ompany Car Orders t	or July 2020					
Order Number	Model Type	Package	Basic Price	Package Price	Total Price	Loan %	Loan Amount	Loan Tenure (Years)	Rate	Monthly Instalmen
S1001	1.5L Hatchback	Classic	=HLOOKUPIB3.B\$26;F\$27.2;FALSE)	=IFIC3="Luxuro".0.2.IFIC3="Deluxe".0.	LI =D3+E3	0.5	-F3*G3	5	=VLOOKUP(I)	PMT[J3/12]3*12.H3.0]
S1002	15L Sedan	Classic	-HLOOKUP(B4.B\$26;F\$27.2;FALSE)	-IFIC4-"Luxuru" 0.2 IFIC4-"Deluxe" 0.	LI -D4+E4	0.4	-F4°G4	7	-VLOOKUP(I-	PMT[J4/12]4*12;H4,0)
51003	1.5L Hatchback	Deluxe	=HLOOKUPIB5.B\$26.F\$27.2.FALSE)	=IFIC5="Luxurv".0.2.IFIC5="Deluxe".0.	U=D5+E5	0.3	-F5*G5	5		PMT(J\$12J5*12.H5.0)
51004	1.5L Sedan	Luxuro	=HLOOKUPIB6.B\$26.F\$27.2.FALSE)	=IFIC6="Luxury".0.2.IFIC6="Deluxe".0.	LI=D6+E6	0.2	=F6*G6	5	=VLOOKUP(II	=-PMT[J6/12]6*12.H6.0]
S1005	2.0L.2WD	Deluxe	=HLOOKUPIB7.B\$26;F\$27.2;FALSE)	=IFIC7="Luxuru".0.2.IFIC7="Deluxe".0.	LI =D7+E7	0.2	-F7*G7	4	=VLOOKUP(I)	PMT[J7/12]7*12.H7.0]
S1006	2.0L 2WD	Deluxe	-HLOOKUPIB8.B\$26.F\$27.2.FALSE)	-IFIC8-"Luxurv".0.2.IFIC8-"Deluxe".0.	U =D8+E8	0.5	-F8*G8	3	-VLOOKUP(II	PMT[J8/12.18*12.H8.0]
S1007	2.0L Sedan	Luxurv	=HLOOKUPIB9.B\$26.F\$27.2.FALSE1	=IF(C9="Luxurv",0.2.IF(C9="Deluxe",0.		0.4	=F9*G9	2		=-PMT[J9/12]9*12.H9.0)
51008	2.5L Wagon	Classic	=HLOOKUPIB10.B\$26:F\$27.2 FALSE1	=IFIC10="Luxury".0.2.IFIC10="Deluxe".	1. =D10+E10	0.2	-F10*G10	3	=VLOOKUP(I)	0 =-PMT(J10/12.110*12.H10.0
S1009	25L Wagon	Classic	-HLOOKUPIBI1B\$26F\$272FALSEL	-IFIC11-"Luxury" 0.2 IFIC11-"Deluxe" 0	1 -D11+E11	0.4	-F11*G11	2	-VLOOKUP(I)	1 PMT(J1812 J11112 H11.0)
S1010	1.5L Hatchback	Classic	=HLOOKUP(B12.B\$26.F\$27.2.FALSE)	=IFIC12="Luxurv".0.2.IFIC12="Deluxe".) =D12+E12	0.5	-F12*G12	5	=VLOOKUP(I)	2 = -PMT[J12/12.112*12.H12.0
S1011	1.5L Sedan	Classic	=HLOOKUPIBI3.B\$26:F\$27.2 FALSE)	=IF(C13="Luxury",0.2,IF(C13="Deluxe")). =D13+E13	0.5	=F13*G13	4	=VLOOKUP(I)	3 = -PMT(J13/12.113*12.H13.0
S1012	15L Sedan	Luxuro	=HLOOKUPIB14.B\$26:F\$27.2.FALSE)	=IFIC14="Luxury".0.2.IFIC14="Deluxe".	0. =D14+E14	0.4	-F14°G14	7	=VLOOKUP(I)	4 = -PMT[J1412]14*12 H14.0
S1013	1.5L Sedan	Classic	-HLOOKUPIBIS B\$26/E\$27.2 FALSE)	-IFIC15="Luxurv".0.2.IFIC15="Deluxe".)	1 = D15+E15	0.3	-F151G15	6	-VLOOKUP(I)	5 = -PMT(J15/12,115*12,H15.0
S1014	1.5L Hatchback	Classic		=IF(C16="Luxury",0.2,IF(C16="Deluxe")		0.5	-F16*G16	1		6 =-PMT(J16/12.116*12.H16.0
S1015	25L Wagon	Classic		=IF(C17="Luxury".0.2.IF(C17="Deluxe")		0.3	-F17*G17	5		7 = -PMT[J17/12.117*12.H17.0
S1016	2.0L Sedan	Deluxe	-HLOOKUP(B18 B\$26 F\$27 2 FALSE)	-IF(C18-"Luxurv",0.2,IF(C18-"Deluxe")	1 -D18+E18	0.4	-F18*G18	4	-VLOOKUP(I)	8 PMT[J18/12,118*12,H18.0
S1017	2.0L Sedan	Deluxe		=IFIC19="Luxurv".0.2.IFIC19="Deluxe".		0.2	-F191G19	3	=VLOOKUP(I)	9 =-PMT(J19/12,I19*12,H19.0
S1018	1.5L Sedan	Luxurv		=IF(C20="Luxury",0.2 IF(C20="Deluxe")		0.2	=F20*G20	5		0 = -PMTIJ20/12 J20*12 H20
S1019	15L Hatchback	Deluxe		=IF(C21="Luxury",0.2,IF(C21="Deluxe")		0.5	-F21*G21	5		1 =-PMT[J21/12]21*12 H21.0
51020	2.5L Wagon	Classic	=HLOOKUP[822,8\$26,F\$27,2,FALSE]	=IF(C22="Luxury",0.2,IF(C22="Deluxe"	0 =D22+E22	0.4	=F22*G22	4	=VLOOKUP(I	=-PMT[J22/12]22*12,H22
			odel Basic Price							
Model	15L Hatchback	15L Sedan	2.0L Sedan	2.0L 2WD	2.5L Wagon					
Price	83188	88188	110188	120188	154388					
Number sold	=CDUNTIF(\$B3:\$B22;B26)	=CDUNTIF(\$B3:\$B22,C26)	=CDUNTIF(\$B3:\$B22,D26)	=COUNTIF(\$B3:\$B22;E26)	=COUNTIF(\$B3:\$B22,F26)					
Flates										
Loan Period (Years)	Description	Annual Interest Bate								
1	One year	0.02								
2	Two or Three years	0.0175								
4	Four years	0.015								
5	Five years or longer	0.0125								

Question	Answer	Marks
1	One mark for correct working HLOOKUP with FALSE lookup (top formula), One mark for the rest =HLOOKUP(B3,B\$26:F\$27,2,FALSE)	[2]

Question	Answer	Marks
2	One mark for correct conditional statement. One mark for multiplying with Basic Price.	[2]
	=IF(C3="Luxury",0.2,IF(C3="Deluxe",0.1,IF(C3="Classic",0)))*D3	

Question	Answer	Marks
3	One mark for summing up Basic Price and Package Price.	[1]
	=D3+E3	
4	One mark for multiplying Loan% to get the Loan amount	[1]
	=F3*G3	

Question	Answer	Marks
----------	--------	-------

5	One mark for correct working VLOOKUP with TRUE lookup (top formula. One mark for the rest	[2]
	=VLOOKUP(I3,A\$33:C\$36,3,TRUE)	

Question	Answer	Marks
6	One mark for working top formula. (Accept negative answers)	[1]
	=-PMT(J3/12,I3*12,H3,0)	

Question	Answer	Marks
7	One mark for working top formula.	[1]
	=COUNTIF(\$B3:\$B22,B26)	

Task 2

```
MYBMI
students = 15
upp bound = 25
low bound = 18.5
underwt, overwt = 0, 0
for count in range (students):
    weight = float(input('Enter weight of student in kg '))
    height = float(input('Enter height of student in cm '))
    bmi = weight/height**2 * 10000
    if bmi > upp bound:
        print('Student is overweight')
        overwt += 1
    elif bmi < low bound:</pre>
        print('Student is underweight')
        underwt += 1
    else:
        print('Student\'s weight is normal')
print("Number of overweight students ", overwt)
print("Number of underweight students ", underwt)
MYBMI2
students = int(input("Enter number of students "))
upp bound = 25
low bound = 18.5
underwt, overwt = 0, 0
for count in range (students):
    weight = float(input('Enter weight of student in kg '))
    while weight < 30 or weight > 150:
        print('Invalid weight')
        weight = float(input('Enter weight of student in kg '))
    height = float(input('Enter height of student in cm '))
    while height < 80 or height > 200:
        print('Invalid height')
        height = float(input('Enter height of student in cm '))
    bmi = weight/height**2 * 10000
    if bmi > upp bound:
        print('Student is overweight')
        overwt += 1
    elif bmi < low bound:
        print('Student is underweight')
        underwt += 1
    else:
        print('Student\'s weight is normal')
print("Number of overweight students ", overwt)
print("Number of underweight students ", underwt)
```

Task 3

MYMARKS

```
nlist = ["Alden", "Belle", "Charles", "Dolly", "Elle", "Falken", "Grace",
"Hacken"]
mlist = [56, 64, 23, 78, 53, 46, 98, 33]
to find = input("Which name would you like to search for? ")
items = len(nlist)
num = 0
name found = False
while name found == False:
    while num < items:
        if nlist[num] == to_find:
            print("{} score {} for the test".format(nlist[num], mlist[num]))
            name_found = True
            num = items
        elif num == items - 1:
            print("{} is not in the list".format(to_find))
            name found = True
            num = items
        else:
            num += 1
```

Question	Answer	Marks
10	One mark for correct list syntax mlist = [56, 64, 23, 78, 53, 46, 98, 33]	[1]
	One mark for getting correct number of items items = len(nlist)	[1]
	<pre>One mark for correct while condition while name found == False:</pre>	[1]
	One mark for correct while condition while num < items:	[1]
	<pre>One mark for correct syntax and one mark for : if nlist[num] == to find:</pre>	[1] [1]
	<pre>One mark for correct index print("{} score {} for the test".format(nlist[num], mlist[num]))</pre>	[1]
	One mark for correct logic num = items	[1]
	One mark for correct logic name_found = True	[1]
	One mark for incrementing num += 1	[1]

Task 4

TPSTAFF

```
no staff = 5
staff list = []
time in = []
time out = []
work time = []
wage = []
for i in range(no staff):
    staff = input("Enter name of staff: ")
    staff list += [staff]
    tin = input("Time-in HH:MM for {}: ".format(staff))
    while not (tin[:2].isdigit()) and tin[2] == ":" and tin[-
2:1.isdigit()\
          and len(tin) == 5 and 0 \le int(tin[:2]) \le 23 and 0 \le int(tin[:2])
int(tin[-2:]) \le 59):
        tin = input("Invalid! Time-in HH:MM for {}:
".format(staff))
    time in += [tin]
    tout = input("Time-out HH:MM for {}: ".format(staff))
    while not (tout[:2].isdigit()) and tout[2] == ":" and tout[-
2:1.isdigit()\
          and 0 \le int(tout[:2]) \le 23 and 0 \le int(tout[-2:])
\leq 59 and len(tout) == 5\
               and (int(tout[:2]) > int(tin[:2]) or int(tout[:2])
== int(tin[:2]) and \
                     int(tout[-2:]) >= int(tin[-2:]))):
        tout = input("Invalid! Time-out HH:MM for {}:
".format(staff))
    time out += [tout]
    work = (int(tout[:2]) - int(tin[:2])) * 60 + int(tout[-2:]) -
int(tin[-2:])
    work time += [work]
print()
for i in range (no staff):
    print("{} worked for {} minutes".format(staff list[i],
work time[i]))
print()
print ("Average number of minutes worked:
{}".format(round(sum(work time)/len(work time),1)))
```

RESULT screenshot

```
Enter name of staff: Andy
Time-in HH:MM for Andy: 08:05
Time-out HH:MM for Andy: 13:55
Enter name of staff: Ben
Time-in HH:MM for Ben: 07:03
Time-out HH:MM for Ben: 07:00
Invalid! Time-out HH:MM for Ben: eight o'clock
Invalid! Time-out HH:MM for Ben: 08:00
Enter name of staff: Charles
Time-in HH:MM for Charles: 10:03
Time-out HH:MM for Charles: 13:115
Invalid! Time-out HH:MM for Charles: 13:11
Enter name of staff: Dominic
Time-in HH:MM for Dominic: 09-04
Invalid! Time-in HH:MM for Dominic: 09:04
Time-out HH:MM for Dominic: 15:35
Enter name of staff: Ethan
Time-in HH:MM for Ethan: 08:42
Time-out HH:MM for Ethan: 16:55
Andy worked for 350 minutes
Ben worked for 57 minutes
Charles worked for 188 minutes
Dominic worked for 391 minutes
Ethan worked for 493 minutes
Average number of minutes worked: 295.8
```

TPSTAFF2 (appended to **TPSTAFF**)

```
print()
for i in range(no_staff):
    if work_time [i] <= 240:
        wage = work_time[i]//15*3
    else:
        wage = (work_time[i]-240)//15*4 + 240//15*3
    print("{} will be paid ${}".format(staff list[i], wage))</pre>
```

TPSTAFF3

```
staff_list = []
time_in = []
time_out = []
work_time = []
wage = []
staff = input("Enter name of staff: ")
while staff != '':
    staff_list += [staff]
    tin = input("Time-in HH:MM for {}: ".format(staff))
```

```
while not (tin[:2].isdigit() and tin[2] == ":" and tin[-
2:1.isdigit()\
          and len(tin) == 5 and 0 \le int(tin[:2]) \le 23 and 0 \le int(tin[:2])
int(tin[-2:]) <= 59):
                  input("Invalid! Time-in
                                               HH:MM for {}:
".format(staff))
    time in += [tin]
    tout = input("Time-out HH:MM for {}: ".format(staff))
    while not (tout[:2].isdigit() and tout[2] == ":" and tout[-
2:1.isdigit()\
          and 0 \le int(tout[:2]) \le 23 and 0 \le int(tout[-2:]) \le
59 and len(tout) == 5
               and (int(tout[:2])> int(tin[:2]) or int(tout[:2])
== int(tin[:2]) and \
                    int(tout[-2:]) >= int(tin[-2:])):
                   input("Invalid! Time-out HH:MM
                                                        for {}:
".format(staff))
    time out += [tout]
    work = (int(tout[:2]) - int(tin[:2]))*60 + int(tout[-2:]) -
int(tin[-2:])
   work time += [work]
    staff = input("Enter name of staff: ")
print()
for i in range(len(staff list)):
    print("{}
               worked for {} minutes".format(staff list[i],
work time[i]))
print()
print("Average
                     number
                                  of
                                           minutes
                                                          worked:
{}".format(round(sum(work time)/len(work time),1)))
print()
for i in range(len(staff list)):
    if work time [i] \le 240:
        wage = work time[i]//15*3
    else:
        wage = (work time[i]-240)//15*4 + 240//15*3
   print("{} will be paid ${}".format(staff list[i], wage))
```

End of Answer Key