
TUTORIAL 11: TEMPERATURE & IDEAL GAS SOLUTIONS

Level 1 Solutions

		F 4 3
1 (a)(i)	There is no net transfer of heat between the two bodies.	[1]
(ii)	There is a <u>net</u> transfer of heat from A (the one at the higher temp) to B.	[1]
(b)	The temperatures are quoted in degrees Celsius. In order to compare the	[1]
	temperature of the system, we need to use the absolute temperature scale, (i.e.	
	Kelvin scale). So in this case, it is not twice since (30 + 273.15) K is <i>not</i> twice that	
	of (15 + 273.15) K. Therefore, one <i>can</i> only say that "it is <u>hotter</u> today than	
	yesterday".	
2	T/ K = θ/°C + 273.15 K = 201.84 + 273.15 K = 474.99 K	[1]
Z	17 K = 07 C + 273.13 K = 201.04 + 273.13 K = 474.33 K	[,]
3	Absolute zero is the temperature at which all substances have a minimum internal	[1]
	energy (NOT zero energy ¹). On the thermodynamic scale, it is assigned a value of	
	0К.	
4 (a)(i)	The Avogadro constant, N _A , is defined as the number of atoms in 0.012 kg of	[1]
	<u>carbon-12</u> . (N _A = $6.02 \times 10^{23} \text{ mol}^{-1}$)	
(ii)	An ideal gas is one that obeys the equation $p V = n R T$ for all values of	[1]
	pressure, volume and temperature,	
	where <i>p</i> : pressure (Pa), <i>V</i> : volume (m ³), <i>n</i> : amount of gas (mol), R: molar gas	[1]
(constant (8.31 J K ⁻¹ mol ⁻¹), <i>T: thermodynamic</i> temperature (K).	
(iii)	The absolute scale of temperature is a theoretical scale that is independent of the	[1]
(1.)	properties of any particular substance.	543
(b)	Molecular mass is the mass of one molecule. The molar mass (kg mol ⁻¹) is the	[1]
	mass per mole of a substance {NOT: mass of one mole}.	[1]
	The relative atomic mass (no units), Ar, of an atom is defined by the following	
	Mass of an atom	[1]
	equation: $A_r = \frac{Mass of an atom}{1}$	נין
	$\frac{1}{12}x$ the mass of a carbon -12 atom	
	12	
	NB: Students are not required to state the definition of relative atomic mass but are required	
	to know how to deduce the molar mass of a substance given its relative atomic mass.	
5		
	Using $pV = nRT \Longrightarrow$ Initial pressure $p = \frac{nRT}{V}$	
	Final pressure, p'	
	$=\frac{n'RT'}{RT'}=\frac{(1.02n)R(1.01T)}{(1.01T)}$	
	V' = (1.002)V	F 4 7
		[1]
	$=\frac{nRT(1.02)(1.01)}{N(1.022)}=1.028p$	
	-1000000000000000000000000000000000000	
		[1]
	Therefore the percentage increase in p is 2.8 %.	
11(a)	Mapp encode $300 + 100 + 100 + 300 + 500$ 260 m s ⁻¹	[1]
	Mean speed \equiv \equiv 200 m s	r.1
/h)	5	[4]
(b)	Mean-square-speed = $\frac{(-300)^2 + (-100)^2 + 100^2 + 300^2 + 500^2}{5} = 90000 \text{ m}^2 \text{ s}^{-2}$	[1]
	Mean-square-speed = $\frac{(300)^{-1}(100)^{-1}(100)^{-1}(100)^{-1}(100)^{-1}(100)^{-1}}{5} = 90000 \text{ m}^2 \text{ s}^{-2}$	
	5	

¹ Originally, it was thought that all atomic motions would cease at absolute zero. The development of *quantum mechanics* (see chapter 18) showed that all motion does not cease; the atoms vibrate with the minimum possible motion.

Level 2 Solutions

	$\Delta n = 4 \text{ x Ans (a)(i)} = 1.18 \text{ mol.}$	[1]
	The subsequent decrease in pressure, Δp , of this supply = $\frac{\Delta nRT}{V} = \frac{(1.18)(8.31)(25 + 273.15)}{0.0108} = 2.70 \times 10^5 \text{ Pa}$	[1]
	Therefore, the pressure remaining in portable supply = $p_i - \Delta p = 8.72 \times 10^5 - 2.70 \times 10^5 = 6.01 \times 10^5$ Pa, without falling below 3.23 x 10 ⁵ Pa.	[1]
(b)(i)	Average kinetic energy of one molecule of gas = $\frac{3}{2}$ kT	[1]
(11)	$= 6.17 \times 10^{-21} \text{ J}.$	[1]
(ii) (iii)	Average kinetic energy of one mole of gas = $N_A x Ans (b)(i) = 3710 J$ Increase in total kinetic energy = Ans (a)(i) x Ans (b)(ii)	[1] [1]
(111)	= 1100 J	[1]
9 (a)(i)	From the ideal gas equation,	
0 (0)(1)	$pV = nRT$ where $n = \frac{mass}{molar mass}$	
	$1.0 \times 10^5 \times 0.064 = \frac{mass}{0.03} (8.31)(27 + 273.15)$	[2]
	\Rightarrow mass = 0.0770 kg	[1]
(ii)	From $p_f V_f = n_f R T_f$ (1.0 x 10 ⁵)(0.064) = n_f (8.31)(180 + 273.15)	[1]
	Hence $n_f = 1.70 \text{ mol} = (1.70 \text{ x} 0.030) \text{ kg} = 0.051 \text{ kg} = m_f$	
	$\Delta m = m_i - m_f = 0.077 - 0.051 = 0.026 \text{ kg}$	[1]
10	PV = nRT n = PV/RT	
	Total amt of gas ntot	
	$= n_1 + n_2$ = PV ₁ /RT + PV ₂ /RT	
	$= 1.01 \times 10^{5} \times (400 \times 10^{-6} + 200 \times 10^{-6})/(8.31 \times 293.15)$	
	= 0.02488 mol	[1]
	$n_{tot} = n_1 + n_2$ $n_{tot} = P_{com} V_1/RT_1 + P_{com} V_2/RT_2$	
	$\begin{array}{l} 0.02488 = P_{com} \ x400 \ x \ 10^{-6} / (8.31 x 373.15) + P_{com} \ x200 \ x \ 10^{-6} / (8.31 x 273.15) \end{array} \begin{array}{l} \mbox{[1]} \\ 0.02488 \ = \ 2.171 \ x \ 10^{-7} \ x \ P_{com} \\ P_{com} \ = \ 1.15 \ x \ 10^{5} \ Pa \end{array}$	[1]
12	As the temperature in the cylinder increases, the average kinetic energy of the gas molecules increases.	[1]
	Thus the root-mean-square speed of the molecules also increases. With greater speed, when a particle collides against the wall, the momentum change per collision increased, exerting a greater force on the wall.	[1]
	As a result, the volume increases causing the collision frequency to decrease and the pressure to stay constant.	[1]
	{From examiner's report: Any explanation using $pV = nRT$ does not answer the question, since there is no reference to the forces exerted by molecules.}	

13(a)	Thermal equilibrium means that X and Y are at the same temperature. Since translational kinetic energy is directly proportional to thermodynamic temperature, X has the same mean translational kinetic energy as Y, $6.0 \times 10^{-21} \text{ J}$	[1]
(b)	$\frac{m_x < c_X^2 >}{2} = \frac{m_y < c_y^2 >}{2},$	[1]
	$\frac{\sqrt{\langle c_y^2 \rangle}}{\sqrt{\langle c_x^2 \rangle}} = \sqrt{\frac{m_x}{m_y}} = \sqrt{\frac{1}{2}} = 0.707$	[1]
14(i)	For an ideal gas: $P = \frac{Nm < c^2 >}{3V}$ $\Rightarrow P = \frac{1}{3}\rho < c^2 >$	[1]
	Since $\frac{1}{2}m < c^2 > = \frac{3}{2}kT$, for the same temperature, $< c^2 >$ is constant. $\Rightarrow P \propto \rho$	
	Since p is proportional to density of gas for a fixed temperature, it behaves like an ideal gas.	
	Alternatively, thinking from pV = nRT $pV = \frac{Mass}{Molar mass}RT$ $p = \frac{Mass}{V} \frac{1}{Molar mass}RT$ $p = \rho \frac{1}{Molar mass}RT$	
	$p \propto \rho$ at a fixed temperature	
(ii)	Pick a suitable point from the graph. E.g. (P = 1.5×10^5 and ρ = 1.75 at 300 K) P = $\frac{1}{3}\rho < c^2 >$ $1.5 \times 10^5 = 1/3 \times 1.75 < c^2 >$ rms speed = 507 ms ⁻¹	[1] [1] [1]
(iii)	For the same Pressure, the density value at T is at a lower value than at 300K, which means that the mean square speed is higher at T, $(P = \frac{1}{3}\rho_1 < c_1^2 > = \frac{1}{3}\rho_2 < c_2^2 >))$ so temperature T is higher.	[1] [1]
	Or for the same density, the Pressure exerted at T is higher which implies that T is higher	[1] [1]
(iv)	At density of 1.0, $P_T = 1.5$ and $P_{300} = 0.85$ Since $\frac{P_T}{P_{300}} = \frac{T}{300}$	[1] [1]
	T = 300 x 1.5/0.85 = 529 K	[1]
15.(a)	average force = $\Delta p / \Delta t = 6.0 \times 10^{-23} / 1 \times 10^{-3} = 6 \times 10^{-20} N$	[1]
(b)	Average during the 1ms contact = $6 \times 10^{-20} \text{ N}$ Average force during the remaining 9 ms = 0 Average force during the 10 ms = $6 \times 10^{-20}/(1+9) = 0.6 \times 10^{-20} \text{ N}$	[1]
	Value is obtained = Area under graph for 1 collision / 10 ms	
(C)	The value is (b) is used.	[1]

16. (a)	Since $\frac{1}{2}m < c^2 > \alpha$ T and they are at the same temperature,	
	$\frac{1}{2} m_N < c_N^2 > = \frac{1}{2} m_0 < c_0^2 >$	
	$\frac{\left\langle c_{N}^{2}\right\rangle}{\left\langle c_{O}^{2}\right\rangle}=\frac{m_{O}}{m_{N}}$	[1]
	$Ratio = \frac{\sqrt{32}}{\sqrt{28}} = 1.07$	[1]
(b)	Since $\frac{1}{2}m < c^2 > \alpha$ T and they have the same mass,	
	$\frac{(1)}{(2)}:\frac{\left\langle c_{10}^{2}\right\rangle}{\left\langle c_{100}^{2}\right\rangle}=\frac{T_{10}}{T_{100}}$	
		[1]
	Ratio = $=\frac{\sqrt{283.15}}{\sqrt{373.15}} = 0.871$	[1]
17(a)(i)	$\Delta p = mv - mu = mu - (-mu) = 2mu$	[1]
(ii)	time taken = distance travelled between successive collisions / speed of	
	molecule = 2L / u	[1]
(iii)	$\Delta p/\Delta t = 2mu/(2L/u) = mu^2/L$ (shown)	[1]
(b) (i)	From ideal gas and given equation: $pV = \frac{1}{3}Nm < c^2 > = nRT$ (or NkT)	[1]
	Multiply both sides by $\frac{3}{2}$: $\frac{1}{2}$ Nm <c<sup>2> = $\frac{3}{2}$ nRT (or $\frac{3}{2}$NkT) where $\frac{1}{2}$ m<c<sup>2> is the av. KE of a molecule</c<sup></c<sup>	[1]
	Since <i>n</i> , N and <i>R</i> (or <i>k</i>) are constant, hence $\frac{1}{2}$ m <c<sup>2> ∞ T</c<sup>	[1]

- End of tutorial solutions -