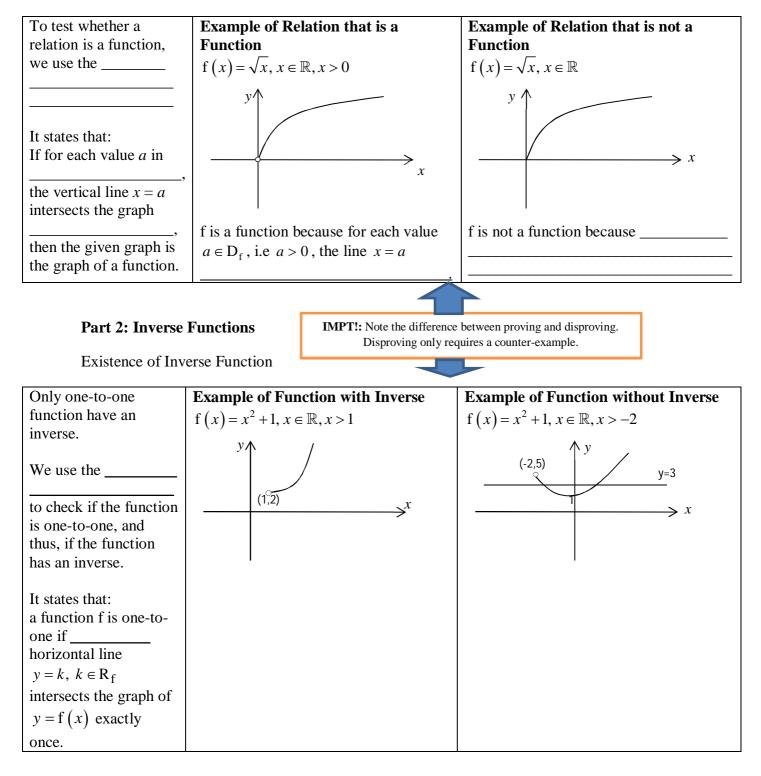
Chapter 5: Functions

Basics

Fill in the blanks.

Part 1: Definitions of Functions



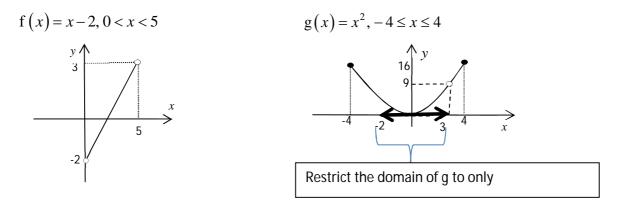
Finding Rule of Inverse Function and Sketching Graph of its Inverse

Consider the function: $f(x) = (x+1)^2 + 2, x \in \mathbb{R}, x \le -1$.

Verify that the inverse exists by sketching the graph and using the Horizontal Line Test.	Sketch the graph of $y = f(x)$ here.
To find the inverse function, let $y = f(x)$ and make x the subject.	$y = (x+1)^{2} + 2$ (x+1) ² = y-2 x+1 = $\pm \sqrt{y-2}$ x = $-1 \pm \sqrt{y-2}$ Since, f ⁻¹ (x) = $-1 - \sqrt{x-2}, x \ge 2$
Sketch the graph of the inverse function. The graphs of $y = f(x)$ and $y = f^{-1}(x)$ are reflections of each other in the line $y = x$	Use a few points to help guide you. Choose a different point on the graph $y = f(x)$ and write down the corresponding point on the inverse graph. $y = f(x) \qquad y = f^{-1}(x)$ (-1,2) (-2, 3)

Part 3: Composite Functions

Finding Range of a Composite Function gf



<u>Alternative Method (not recommended if question did not ask for rule of gf or if gf is a</u> <u>complex function to sketch)</u>

$$gf(x) = g(x-2) = (x-2)^{2}, 0 < x < 5$$

$$y = gf(x)$$

$$y = gf(x)$$

$$y = gf(x)$$