Qn	Suggested solution	Remarks	
1(a)	$t = \frac{1.2}{8.0} = 0.15 \text{ s}$	[1] - Sub	
(b)	$h = 0 + \frac{1}{2}(9.81)(0.15)^2 = 0.11 \text{ m}$	[1] – Sub [1] – Ans	
(c)	$v_x = 8.0 \text{ m s}^{-1}$	[4]	
	$v_y = 0 + (9.81)(0.15) = 1.472 \text{ m s}^{-1}$	$\begin{bmatrix} 1 \end{bmatrix} = \mathbf{v}_{\mathbf{y}}$	
	$v = \sqrt{8.0^2 + 1.472^2} = 8.13 \text{ m s}^{-1}$	[1] – Ans	
(d)	Both of them have the same vertical acceleration.	[1]	
	OR the ball must be targeted at the block.		
2(a)	As the mass moves upwards at constant speed, the upward force , <i>F</i> , must be equal to the weight of the object, <i>mg</i> . Hence work done on object = <i>Fh</i>	[1]	
	= (mg)h	[1]	
	By conservation of energy, since <i>Fh</i> is the work done on the object and is equal to the increase in gravitational potential energy, $E_p = mgh$ since its kinetic energy is constant	[1]	
(b)(i)	By conservation of energy,	[1] – Sub	
	$(0.100)(9.81)h - (0.100)(9.81)(0.50) = \frac{1}{2}(0.100)(1.6)^2 - 0$		
	0.100(9.81)h - 0.4905 = 0.128		
	<i>h</i> =0.63 m		
(ii)	By conservation of momentum,		
	(0.100)(3.5) + 0 = (0.180)v	[1] - v	
	$v = 1.94 \text{ m s}^{-1}$	[1]- V	
	By conservation of energy,	[1] – Sub	
	$\frac{1}{2}(0.180)(1.94)^2 - 0 = \frac{1}{2}(120)x^2$		
	x = 0.0751 m	[1] – Ans	
3(a)(i)	$P = V = 1.0 \times 10^3 = 0.0170 \text{ O}$	[1]	
	$N = \frac{1}{1} = \frac{1}{56 \times 10^3} = 0.017932$		
(ii)	Into the page/into the plane	[1]	
(b)(i)	$F = BIL\sin 90^{\circ} = 1.12(56 \times 10^{3})(0.04)$	[1] – Sub	
	= 2508.8		
	= 2510 N	[1] – Ans	
(ii)	As the projectile travels along the rail, resistance increases and current I	[1]	
	decreases.	[1]	
(iii)	To the right.	[1]	
	· • ···• ··· ··· ···	L . J	

Qn	Suggested solution					Remarks
(iv)	OR Use stronger voltage/ power supply				[1]	
	OR Decrease resistance of track (includes increasing the cross-sectional area of					
	the track)					
4(a)(i)	The photoelectric current reaches a maximum because it is limited by the rate of emission of photoelectrons which is dependent on the intensity of illumination. Increase in <i>V</i> only increases the acceleration of the photoelectrons but not				[1] [1]	
(ii)	 the rate of emissions of photoelectrons from the metal. The intensity of radiation is dependent on the rate of incidence of photons. The greater the rate of incidence of photons, the greater the rate of emission of photoelectrons. Since the maximum photoelectric current is dependent on the rate of emission of photoelectrons, increasing the intensity of illumination increases the maximum photoelectric current. 				Any 2 out of 3 points	
(b)(i)	The current, $l = ne$ where $n =$ number of photoelectrons emitted per second $\rightarrow n = \frac{l}{l} = \frac{4.8 \times 10^{-10}}{10} = 3.0 \times 10^9 \text{ s}^{-1}$				[1] – Ans	
(ii)	$e 1.6 \times 10^{-19}$ Number of photons incident per second $N = 2500(3.0 \times 10^9) = 7.5 \times 10^{12}$ The intensity $i = \frac{Nhf}{1000}$				[1] – N	
	$\Rightarrow \qquad i = \frac{Nhc}{A\lambda} = \frac{(7.5 \times 10^{12})(6.63 \times 10^{-34})(3.0 \times 10^{8})}{(24 \times 10^{-6})(410 \times 10^{-9})} = 0.152 \text{ W m}^{-2}$				[1] - Sub [1] - Ans	
				1		
5(a)(i)	Moon	Period <i>T</i> /days	mean distance from centre of Jupiter $r/10^9$ m	log₁₀ (<i>T</i> /days)	log ₁₀ (<i>r</i> /m)	1 mark for
	Sinope	758	23.7	2.88	10.37	two correctly
	Leda	239	11.1	2.38	10.05	filled blanks
	Callisto	16.7	1.88	1.22	9.27	
	Lo	1.77	0.422	0.25	8.63	
	Metis	0.295	0.128	-0.53	8.11	

Qn	Suggested solution	Remarks
(b)	By definition of force, the body can be instantaneously at zero momentum when its momentum is changing with respect to time.	[1]
(c)(i)	The high rate of change of momentum of her hand will exert a large force to fracture the bricks.	[1]
(ii)	There will be a higher rate of change in momentum and the force exerted on the bricks on impact would be larger.	[1] [1]
(d)(i)	$P = Fv = \left(\frac{mv - 0}{t}\right)v = \frac{mv^2}{t}$	[1] – Sub
	$= (0.50)(2.0)^2$ = 2.0 W	[1] – Ans
(ii)	$P = \frac{\frac{1}{2}mv^2}{t}$	[1] – Sub
	$= \frac{1}{2}(0.50)(2.0)$ = 1.0 W	[1] – Ans
(iii)	Energy lost due to frictional forces acting on the sand.	[1]
(e)(I)	T_1 40° T_2	[-1] for any wrong force
(ii)	$T_1 \cos 50^\circ + T_2 \cos 40^\circ = W (1)$	[2] – Eqn
	$I_1 \sin 50^\circ = I_2 \sin 40^\circ$ (2) W = 125 N	[1] – Ans
(iii)	Tension in shorter rod will increase as its horizontal component acts in the opposite direction to the wind.	[1] [1]
(iv)	Vertical fall in height = $2.0 - 2.0 \cos 50^\circ = 0.71 \text{ m}$	[1] – h
	By conservation of energy,	
	$\frac{1}{2}mv^2 - 0 = mgh$	
	$v = \sqrt{2gh} = \sqrt{2(9.81)(0.71)}$	[1] – Ans
	= 3.74 m s ⁻¹	
(v)	It will be lower as energy is lost to the drag force due to the surrounding air	[1]
	on inclion at hinge can lead to energy lost.	

Suggested Solutions with Markers' Comments			
Qn	Suggested solution	Remarks	
7(a)	Resistance of a resistor is defined as the ratio of the potential difference across it to the current flowing through it.	[1]	
(b)	Volume $V = A \times I$		
	$\Rightarrow A = \frac{V}{I}$		
	Resistance, $R = \frac{\rho I}{A} = \frac{\rho I}{V/I} = \frac{\rho I^2}{V} = 6.0 \ \Omega$	[1] – Exp	
	When the length is 3 <i>I</i> ,	[1] – Sub	
	new resistance $=\frac{\rho(3l)^2}{A} = \frac{\rho(9l^2)}{A} = 9\frac{\rho l^2}{A} = 9 \times 6.0 = 54 \Omega$	[1] – Ans	
(c)(i)	Maximum safe current passing through the 1000 Ω resistor,		
	$I_{1000\Omega} = \sqrt{\frac{P}{R}} = \sqrt{\frac{0.40}{1000}}$	[1] - Value	
	= 0.020 A		
	Maximum safe current passing through the 160 Ω resistor,		
	$I_{160\Omega} = \sqrt{\frac{P}{R}} = \sqrt{\frac{0.40}{160}}$		
	= 0.050 A		
	Hence maximum safe current flowing through the circuit without damaging any of the resistor is $I_{max} = 0.020 + 0.020 = 0.040 \text{ A}$		
	Maximum safe potential difference applied between X and Y		
	$V = 0.040 \times 160 + 0.020 \times 1000$	[1] – Sub [1] – Ans	
	= 26.4 V	[1] - Alls	
(c)(ii)	One of the 1000 Ω resistors would be most likely to fail.	[1]	
	When the maximum safe potential difference is exceeded, the current flowing in the circuit will be more than the safe current. Thus the current flowing in the	[1]	
	nous set resistor will be more than 0.020 A which will result in exceeding the maximum safe power.		

Qn	Suggested Solution	Remarks
(d)(i)	Given $R = Ae^{\frac{B}{T}} \Rightarrow \ln R = \ln A + \frac{B}{T}$	
	Temperatures θ = 50 °C corresponds <i>T</i> = 50 + 273 = 323K and 80 °C correspond to <i>T</i> = 80 + 273 = 353 K	[1] read off values
	From graph, $R = 110 \Omega$ at 50 °C and $R = 50 \Omega$ at 80 °C respectively.	
	$\Rightarrow \ln 110 = \ln A + \frac{323}{323} - \dots + (1)$ ln 50 = ln A + $\frac{B}{353}$ (2)	[1] working
	(1) - (2) gives $\ln 110 - \ln 50 = \frac{B}{323} - \frac{B}{353}$ Solving	[1] ans
	$B \approx 3.0 \text{ x } 10^3 \text{ K}$	[1] ans
(ii)	A graph of In <i>R</i> against $\frac{1}{T}$ using the equation $\ln R = \ln A + \frac{B}{T}$ is plotted.	[1]
	Gradient of the graph is equal to B and the y-intercept equals to In A.	
(e)		[1]
(f)(i)	At 30.0 0 C, the resistance of X is approximately 188 Ω . The current flowing in the circuit,	
	$I = \frac{6.0}{188 + 40.0}$ = 0.0263 A	[1] – Value
	The voltmeter reading $V - IR$	
	-0.0263×40.0	
	= 1.05 V	[1] – Ans

Qn	Suggested solution	Remarks
(ii)	The voltmeter reading will increase.	[1] – State
	The current flowing in the circuit,	
	6.0	
	$I = \frac{1}{R_{\chi} + 40.0}$	
	As temperature rises, the resistance R_X decreases.	
	$\Rightarrow I = \frac{6.0}{R_{\chi} + 40.0} \text{ will increase}$	[1] – Expl
	The voltmeter reading $V = IR$ will increase.	
(iii)	The voltmeter could be replaced by a buzzer.	
	When the temperature rises beyond a certain level, the p.d. across the buzzer rises beyond a trigger value causing the buzzer to be activated.	[1]
8(a)(i)	In a longitudinal wave, the direction of propagation of the wave is parallel to the direction of vibration of the particles in the wave.	[1]
	In a transverse wave, the direction of propagation of the wave is perpendicular to the direction of vibration of the particles in the wave.	[1]
(ii)	Energy is transferred in the direction of travel of a progressive wave	[2] – any two
	whereas energy is not transferred in a stationary wave.	correct
	All wave particles in a progressive wave have the same amplitude whereas amplitude of neighboring particles of a stationary wave is different.	Statements
	Every wave particle within one wavelength of a progressive wave has a different phase whereas all particles between two adjacent nodes of a stationary wave have the same phase.	
(b)	$\phi = \pi/6$	[1] – Sub
	$x = \frac{\gamma}{2\pi} (\lambda) = \frac{\gamma}{2\pi} (1.5)$	
	= 0.125 m	[1] – Ans
(c)(i)	$\lambda = \frac{v}{c}$	
	<i>f</i> 220	
	$=\frac{550}{1780}$	
	= 0.185m	[1] – Ans
(ii)	$\frac{5.105m}{5.0 - \sqrt{12^2 + 4^2}}$	
	$S_1 D = \sqrt{12} + 4$ = 12.649 m	[1] – S₁D
	Path difference = $12.649 - 12$	
	$=\frac{0.649}{\lambda}$	
	0.18539	[4]
()	$= 3.5\lambda$	[1] – Ans
(111)	interference. For sources in phase, waves meet at D in antiphase (phase diff	[1] – expi [1] – phase
	of π rad).	
	Therefore the resultant amplitude is zero and results in minimum intensity .	[1] – intensity

Qn	Suggested solution	Remarks
8(d)(i)	Incident wave (from magnetron) and reflected wave from opposite wall superpose according to Principle of Superposition.	[1]
	Since the incident and reflected waves travel in opposite direction , with same speed , amplitude and frequency , stationary waves are formed.	[1]
(ii)	$v = f\lambda$	
	$3 \times 10^8 = 2.45 \times 10^9 \lambda$	[1] – Sub
	$\lambda = 0.122 \text{ m}$	[1] – Ans
(iii)	Node Antinode	 [1] – waveform [1] – node and antinode
(iv)	Food placed at nodes will not be heated OR those placed at antinodes may	[1]
	Constant rotation ensures even cooking	[1]

~ THE END ~