Solutions to Volumetric Analysis & Redox Tutorial

(A) Discussion Questions (Volumetric Analysis)

Acid-Base Titration

1. 45 cm³ of concentrated aqueous NH₃ was diluted to 250 cm³ solution labelled as **FA 1**. Given that 10.0 cm³ of **FA 1** required 23.20 cm³ of 0.18 mol dm⁻³ of HNO₃ for complete neutralisation, calculate the concentration of the concentrated aqueous NH₃.

[2.32 mol dm⁻³]

Eqn for rxn: $NH_3 + HNO_3 \rightarrow NH_4NO_3$

$$\eta_{NH_3}$$
 in 10.0 cm³ FA 1 = η_{HNO_3} used = 0.18 × $\frac{23.20}{1000}$ = 4.176 × 10⁻³ mol

$$\eta_{\text{NH}_3}$$
 in 250 cm³ of FA 1 = 4.176 × 10⁻³ × $\frac{250}{10}$ = 0.1044 mol [NH₃]_{conc soln} = 0.1044 / $(\frac{45}{1000})$ = $\frac{2.32 \text{ mol dm}^{-3}}{10000}$

- **2.** A solution of a dibasic acid contains 7.30 g dm⁻³ of HOOC–(CH₂)_n–COOH. 20.0 cm³ of this acid solution was titrated with 25.00 cm³ of NaOH(aq) containing 1.36 g of hydroxide ion per dm³. Calculate
 - (a) the relative molecular mass of the acid;

[146.0]

Eqn for rxn:
$$HO_2C-(CH_2)_n-CO_2H + 2NaOH \rightarrow NaO_2C-(CH_2)_n-CO_2Na + 2H_2O$$

$$[OH^-] = \frac{1.36}{17.0} = 0.08 \text{ mol dm}^{-3}$$

Amount of NaOH reacted =
$$\frac{25}{1000} \times 0.08 = 2.00 \times 10^{-3} \text{ mol}$$

Amount of dibasic acid reacted = $\frac{1}{2} \times 2.00 \times 10^{-3} = 1.00 \times 10^{-3}$ mol

[dibasic acid] =
$$\frac{1.00 \times 10^{-3}}{20/1000}$$
 = 0.0500 mol dm⁻³

$$M_{\rm r}$$
 of dibasic acid = $\frac{7.30}{0.0500} = \frac{146.0}{0.0500}$

(b) the value of *n* in the formula.

$$M_r$$
 of dibasic acid = $2(12.0 + 16.0 \times 2 + 1.0) + n(12.0 + 2.0) = 146.0$
 $n = 4.07 = 4$ (to nearest integer)

3. FA 8 solution contains 20.2 g of the acid H**Z**O₄ per dm³ of solution.

FA 9 is a 0.100 mol dm⁻³ NaOH solution. In a titration, 20.0 cm³ of **FA 8** solution reacted with 21.05 cm³ of **FA 9** solution. Calculate the relative atomic mass of element **Z** and identify **Z**.

[126.9; I]

 $NaOH = HZO_4$ (since HZO_4 is monobasic with 1 H⁺ per molecule)

Amount of NaOH =
$$0.100 \times \frac{21.05}{1000} = 2.105 \times 10^{-3} \text{ mol}$$

Amount of HZO₄ in 20.0 cm³ FA 8 = $2.105 \times 10^{-3} \text{ mol}$

$$[HZO_4] = \frac{2.105 \times 10^{-3}}{20/1000} = 0.1053 \text{ mol dm}^{-3}$$

$$M_r \text{ of } HZO_4 = \frac{20.2}{0.1053} = 191.9$$

$$A_r \text{ of } Z = 191.9 - 1.0 - 4 \times 16.0 = \underline{126.9}$$

Z is lodine.

4. Washing soda has the formula Na₂CO₃·*n*H₂O. A mass of 1.43 g of washing soda was made up to 250 cm³ with water. 25.0 cm³ of this solution was neutralised by 20.00 cm³ of 0.050 mol dm⁻³ dilute hydrochloric acid. The equation for the reaction is:

$$Na_2CO_3(aq) + 2HCl (aq) \rightarrow 2NaCl(aq) + CO_2(g) + H_2O(l)$$

Find the value of *n*, and hence the chemical formula of the washing soda.

[The equation for the dissolution of washing soda in water is: $Na_2CO_3 \cdot nH_2O(s) \rightarrow Na_2CO_3(aq) + nH_2O$]

[10]

Amount of HC
$$l$$
 = 0.050 × $\frac{20}{1000}$ = 1.00 × 10⁻³ mol
Amount of Na₂CO₃ in 25.0 cm³ solution = ½ × 1.00 × 10⁻³ = 5.00 × 10⁻⁴ mol
Amount of Na₂CO₃ in 250 cm³ solution = 5.00 × 10⁻⁴ × $\frac{250}{25}$ = 5.00 × 10⁻³ mol

Mass of Na₂CO₃ in 250 cm³ solution =
$$5.00 \times 10^{-3} \times (2 \times 23.0 + 12.0 + 3 \times 16.0)$$

= 0.530 g

: mass of H_2O in 1.43 g washing soda = 1.43 - 0.530 = 0.900 g

∴ amount of H₂O in 1.43 g washing soda =
$$\frac{0.900}{18.0}$$
 = 0.0500 mol

$$\frac{\eta_{H_2O}}{\eta_{Na_2CO_3}} = \frac{0.0500}{5.00 \times 10^{-3}} = 10$$

10 mol of water combine with 1 mol of Na₂CO₃

∴ n = 10; formula of washing soda is Na₂CO₃· $\underline{10}$ H₂O.

Back Titration

5. 3.92 g of an oxide of formula **M**O was completely dissolved in 30.0 cm³ of 2.00 mol dm⁻³ sulfuric acid. The resulting solution was made up to 100 cm³. 25.0 cm³ of this solution was neutralised by 27.50 cm³ of 0.10 mol dm⁻³ NaOH(ag).

What is the relative atomic mass of M? Identify the metal.

[55.9; Fe]

27.50 cm³ of 0.10 mol dm⁻³ NaOH(aq)

Reaction 1: $MO + H_2SO_4 \rightarrow MSO_4 + H_2O$

Reaction 2: $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$

Total starting amount of H_2SO_4 (S) = 2.00 × $\frac{30}{1000}$ = 0.0600 mol

For Reaction 2, Amount of NaOH reacted = $0.10 \times \frac{27.50}{1000} = 2.75 \times 10^{-3} \text{ mol}$

Amount of H₂SO₄ in the 25 cm³ solution = $2.75 \times 10^{-3} \times \frac{1}{2} = 1.375 \times 10^{-3}$ mol

Amount of H₂SO₄ in the 100 cm³ solution (E) = $1.375 \times 10^{-3} \times \frac{100}{25} = 5.50 \times 10^{-3}$ mol

For back titration, R = S - E

Amount of H_2SO_4 that reacted with MO (R) = $0.0600 - 5.50 \times 10^{-3} = 0.0545$ mol Amount of MO = 0.0545 mol

$$M_{\rm r}$$
 of MO = $\frac{3.920}{0.0545}$ = 71.9

 A_r of **M** = 71.9 - 16.0 = 55.9

M is Fe (A_r of 55.8).

- **6.** 5.00 g of ammonium chloride contaminated with sodium chloride was boiled with 100.0 cm³ of 2 mol dm⁻³ NaOH solution until no ammonia was evolved. The residual solution was made up to 250 cm³ with water. 25.0 cm³ of this solution required 22.40 cm³ of 0.50 mol dm⁻³ HC*l* for neutralisation.
 - (a) What was the mass of sodium chloride in the ammonium chloride sample?

[0.292 g]

Reaction 1: NH₄C
$$l$$
 + NaOH \rightarrow NH₃ + NaC l + H₂O

Reaction 2: NaOH + HC $l \rightarrow$ NaCl + H₂O

For reaction 2, amount of
$$HCl = \frac{22.40}{1000} \times 0.5 = 0.0112 \text{ mol}$$

Amount of unreacted NaOH in 25 cm³ = 0.0112 mol

Amount of unreacted NaOH in 250 cm³ (E) =
$$0.0112 \times \frac{250}{25} = 0.112$$
 mol

Initial amount of NaOH added (S) =
$$\frac{100}{1000}$$
 × 2.0 = 0.2 mol

For back titration, R = S - E

Amount of NaOH reacted with NH₄C
$$l$$
 (R) = 0.2 – 0.112 = 0.088 mol

Mass of NH₄Cl = 0.088 × 53.5 = 4.708 g

Mass of NaCl = 5.00 - 4.708 = 0.292 g

(b) Hence, calculate the percentage by mass of sodium chloride in the ammonium chloride sample. [5.84%]

Percentage by mass of NaCl in the sample =
$$\frac{0.292}{5.00} \times 100\% = 5.84\%$$

Redox Titration

7. FA 4 contains 10.0 g of Fe²⁺ and Fe³⁺, dissolved in 500 cm³ of solution. **FA 5** contains 0.015 mol dm⁻³ KMnO₄.

In an experiment, 10.0 cm³ of solution of **FA 4** was pipetted into a titration flask. Excess dilute sulfuric acid was added and the mixture titrated with **FA 5**. 26.65 cm³ of **FA 5** was required to reach end-point.

(a) Calculate the mass of Fe²⁺ in 500 cm³ of FA 4.

MnO₄⁻ + 8H⁺ + 5Fe²⁺
$$\rightarrow$$
 5Fe³⁺ + Mn²⁺ + 4H₂O
Amount of KMnO₄ reacted = 0.015 × $\frac{26.65}{1000}$ = 3.998 × 10⁻⁴ mol
Amount of Fe²⁺ in 10.0 cm³ **FA 4** = 5 × 3.998 × 10⁻⁴ = 1.999 × 10⁻³ mol
Amount of Fe²⁺ in 500 cm³ **FA 4** = 1.999 × 10⁻³ × $\frac{500}{10}$ = 0.09995 mol
Mass of Fe²⁺ in 500 cm³ **FA 4** = 0.09995 × 55.8 = $\frac{5.58}{9}$ g

(b) Calculate the percentage by mass of Fe³⁺ ions in **FA 4**.

% by mass of Fe³⁺ in **FA 4** =
$$\frac{10.00 - 5.58}{10}$$
 × 100 = $\underline{44.2 \%}$

8. Chlorate(V) ions, ClO_3^- , act as an oxidising agent according to the following half-equation:

$$ClO_3^- + 6H^+ + 6e^- \rightarrow Cl^- + 3H_2O$$

(a) Chlorate(V) ions are reduced by Fe²⁺ ions. Write a balanced equation for the reaction between Fe²⁺ and ClO_3^- .

[Hint: Write the half equation for Fe²⁺ oxidized to Fe³⁺ before combining the 2 half-equations]

$$ClO_3^- + 6H^+ + 6Fe^{2+} \rightarrow Cl^- + 3H_2O + 6Fe^{3+}$$

- (b) In an experiment, 25.0 cm³ of a solution of KClO₃ was titrated with a solution of iron(II) sulfate containing 6.72 g dm⁻³ of Fe²⁺. In the titration, 20.0 cm³ of iron(II) sulfate was used for the reaction.
 - (i) What other chemical is required for the titration? Suggest a reactant that can be added to the reaction mixture for the titration.

Note: HNO_3 and HCl are not suitable acids as they will take part in redox reaction. HNO_3 is an oxidising agent (NO_3 ⁻ can undergo reduction) and Cl⁻ can undergo oxidation.

(ii) Calculate the concentration of KClO₃ in mol dm⁻³.

[0.0161 mol dm⁻³]

[Fe²⁺] in mol dm⁻³ =
$$\frac{6.72}{55.8}$$
 = 0.1204 mol dm⁻³
Amount of Fe²⁺ reacted = 0.1204 × $\frac{20}{1000}$ = 2.409 × 10⁻³ mol
Amount of KClO₃ in 25.0 cm³ solution = $\frac{1}{6}$ × 2.409 × 10⁻³ = 4.014 × 10⁻⁴ mol
[KClO₃] = $\frac{4.014 \times 10^{-4}}{25.0/1000}$ = 0.0161 mol dm⁻³

(iii) Calculate the mass of potassium in 1 dm³ of the KClO₃ solution.

[0.630 g]

Amount of K in 1 dm³ of solution =
$$0.0161$$
 mol Mass of K in 1 dm³ of solution = $39.1 \times 0.0161 = 0.630$ g

- **9. FA 2** is a solution containing 6.70 g dm⁻³ of a metal ethanedioate, **M**₂C₂O₄.
 - FA 3 is a solution containing 0.010 mol dm⁻³ of manganate(VII) ions, MnO₄⁻.

10.0 cm³ of **FA 2** was pipetted into a conical flask and dilute sulfuric acid was added in excess. The mixture was then titrated with **FA 3** and the end-point was reached when 20.00 cm³ of **FA 3** had been added.

(a) (i) How do you know when the end-point was reached?

Colour change from colourless to first permanent pale pink colour (after adding 1 excess drop of MnO₄⁻)

(ii) What other condition was required for the titration to be successful?

Conduct the titration in a hot water bath / heat the reaction mixture.

The reaction occurs too slowly at room temperature due to repulsion between like charges of the two reacting species, $C_2O_4{}^{2-}$ and $MnO_4{}^-$ (may result in lower than actual titre). Heat is required to overcome the high activation energy barrier.

(b) Calculate the relative formula mass of M₂C₂O₄ and the relative atomic mass of M.

[134.0; 23.0]

Overall eqn:
$$2MnO_4^- + 16H^+ + 5C_2O_4^{2-} \rightarrow 2Mn^{2+} + 8H_2O + 10CO_2$$

Amount of KMnO₄ reacted =
$$0.010 \times \frac{20}{1000} = 2.00 \times 10^{-4}$$
 mol

Amount of
$$C_2O_4{}^{2-}$$
 in 10.0 cm³ **FA 2** = $\frac{5}{2}$ × 2.00 × 10⁻⁴ = 5.00 × 10⁻⁴ mol

$$\label{eq:c2042-lower} [C_2O_4{}^{2-}] \text{ in } \textbf{FA 2} = \frac{5.00\times10^{-4}}{10.0} = 0.0500 \text{ mol dm}^{-3}$$

$$M_{\rm r}$$
 of $M_2C_2O_4 = \frac{6.70}{0.0500} = 134.0$

$$A_r$$
 of M = $\frac{1}{2}$ [134.0 - (2 × 12.0 + 16.0 × 4)] = $\frac{23.0}{1}$

10. Hydroxylamine, NH₂OH, can be oxidised to nitrogen according to the following half-equation:

$$2NH_2OH \rightarrow N_2 + 2H_2O + 2H^+ + 2e^-$$

Hydroxylamine can also be oxidised to dinitrogen oxide, N₂O, according to the following half-equation:

$$2NH_2OH \rightarrow N_2O + H_2O + 4H^+ + 4e^-$$

(a) In an experiment, 40.00 cm³ of 0.05 mol dm⁻³ NH₂OH(aq) was reacted with 10.0 cm³ of 0.40 mol dm⁻³ Fe³+(aq). In the reaction, the Fe³+ was reduced to Fe²+. Calculate the amount of Fe³+ that reacted with 1 mole of NH₂OH.

[2]

[R]
$$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$$

Amount of Fe³⁺ reacted =
$$0.40 \times \frac{10}{1000} = 4.00 \times 10^{-3}$$
 mol

Amount of NH₂OH reacted =
$$0.05 \times \frac{40}{1000} = 2.00 \times 10^{-3}$$
 mol

∴ 2 mol of Fe3+ reacted with 1 mol of NH2OH

(b) Hence deduce whether the NH₂OH is oxidised to N₂ or N₂O by the Fe³⁺ and write a balanced ionic equation for the reaction.

If NH₂OH was oxidised to N₂:

Overall eqn will be $2NH_2OH + 2Fe^{3+} \rightarrow N_2 + 2H_2O + 2H^+ + 2Fe^{2+}$

1 mol of Fe³⁺ should react with 1 mol of NH₂OH; inconsistent with answer in obtained in (a).

If NH₂OH is oxidised to N₂O:

Overall eqn will be $2NH_2OH + 4Fe^{3+} \rightarrow N_2O + H_2O + 4H^+ + 4Fe^{2+}$

2 mol of Fe³⁺ should react with 1 mol of NH₂OH; consistent with answer in obtained in (a).

∴ NH₂OH was oxidised to N₂O in the reaction.

- 11. A solution of vanadium ions, VO₂⁺(aq) is blue. The VO₂⁺(aq) are reduced by zinc powder and acid to violet V^{z+}(aq) ions.
 - (a) What is the oxidation number of the vanadium in VO_2^+ ?

[+5]

Let O.S. of V be a
$$a + 2(-2) = +1$$
 $a = +5$

- (b) The V^{z+}(aq) can be oxidised quantitatively to VO₂+(aq) by acidified MnO₄-(aq). It was found experimentally that 20.0 cm³ of 0.10 mol dm⁻³ V^{z+}(aq) reacted with 24.00 cm³ of 0.050 mol dm⁻³ MnO₄-(aq).
 - (i) Calculate the number of moles of Vz+(aq) that react with 1 mol of acidified MnO₄-(aq).

Amount of KMnO₄ reacted =
$$0.050 \times \frac{24}{1000} = 1.20 \times 10^{-3}$$
 mol Amount of V^{z+} reacted = $0.10 \times \frac{20}{1000} = 2.00 \times 10^{-3}$ mol

Amt of KMnO₄: Amount of
$$V^{z+} = 1.20 \times 10^{-3} : 2.00 \times 10^{-3} = 3 : 5$$

- ∴ Amount of V^{z+} that reacted with 1 mol of $MnO_4^- = \frac{5}{3}$ mol
- (ii) Hence deduce the number of moles of electrons transferred per mole of $V^{z+}(aq)$ in the reaction and value of z on V^{z+} .

[2]

[R]:
$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$

During reduction, one mole of MnO₄⁻ gains 5e⁻;

During oxidation,
$$\frac{5}{3}$$
 mole of V^{z+}loses 5e⁻

∴1 mole of Vz+ loses 3e-

 \therefore no of electrons transferred (lost) per mole of V^{z+} is $\underline{3}$.

O.S. of V in
$$VO_2^+ = +5$$

During oxidation, $V^{z+} \rightarrow VO_2^+$ after losing 3 e⁻

Oxidation number of V increases by 3 units from ± 2 (in V^{z+}) to ± 5 (in VO_2^+)

Hence z = 2

- **12.** A 25.0 cm³ sample of 0.0210 mol dm⁻³ potassium peroxodisulfate(VI),K₂S₂O₈, was treated with an excess of potassium iodide. The iodine liberated reacted with 21.00 cm³ of 0.0500 mol dm⁻³ thiosulfate.
 - (a) Calculate the amount of S₂O₈²⁻ used.

$$[5.25 \times 10^{-4} \text{ mol}]$$

Amount of
$$S_2O_8^{2-}$$
 used = 0.0210 $\times \frac{25}{1000}$ = 5.25 $\times 10^{-4}$ mol

(b) Calculate the amount of I⁻ that reacted with 1 mol of S₂O₈²⁻.

Reaction 1:
$$S_2O_8^{2-} + 2I^- \rightarrow ? + I_2$$
 (unbalanced)

The iodine liberated is then reacted with thiosulfate.

Reaction 2:
$$2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-$$

Amount of
$$S_2O_3^{2-} = 0.0500 \times \frac{21.00}{1000} = 1.05 \times 10^{-3} \text{ mol}$$

Amount of I_2 in Reaction 2 = $\frac{1}{2}$ × 1.05 × 10⁻³ mol = 5.25 × 10⁻⁴ mol

= Amt of I₂ formed in Reaction1

Amount of I^- reacted in 1st rxn to form $I_2 = 2 \times 5.25 \times 10^{-4} = 1.05 \times 10^{-3}$ mol

$$\frac{\text{Amount of I}^{\text{T}}}{\text{Amount of S}_{2}O_{8}^{2^{-}}} = \frac{1.05 \times 10^{-3}}{5.25 \times 10^{-4}} = \frac{2}{1}$$

∴ 2 mol of I⁻ reacted with 1 mol of S₂O₈²⁻

(c) Suggest a likely equation for the reaction between $K_2S_2O_8$ and KI, given that $S_2O_8^{2-}$ is reduced to SO_4^{2-} .

$$S_2O_8^{2-} + 2I^- \rightarrow 2SO_4^{2-} + I_2$$

13. A solution contained 5.53 g dm⁻³ of a metal iodate(VII), **M**IO₄. 25.0 cm³ of the solution was added to excess acidified potassium iodide. The iodate(VII) ions reacted with the iodide according to the following equation:

$$IO_4^- + 7I^- + 8H^+ \rightarrow 4I_2 + 4H_2O$$

The iodine liberated was then titrated with 0.120 mol dm⁻³ $S_2O_3^{2-}$, where starch was added only when the solution turned pale yellow. It was found that 33.30 cm³ of $S_2O_3^{2-}$ was required for the dark-blue colour to be discharged.

(a) Explain why it is necessary for the potassium iodide to be added in excess.

To ensure <u>all</u> IO_4^- reacted completely to give I_2 . (or else its amount determined by titrating with $S_2O_3^{2-}$ will be inaccurate)

(b) Why was the starch indicator not added at the beginning of the titration of iodine with thiosulfate?

high $[I_2]$ at start of titration, some of the I_2 forms an insoluble complex with starch. Hence, not all the I_2 liberated reacts with $S_2O_3^{2-}$, titre value is lesser than actual. $\therefore [IO_4^{-}]$ calculated is thus inaccurate

(c) Calculate the relative atomic mass of element \mathbf{M} . Suggest the identity of \mathbf{M} .

[85.9; Rb]

Reaction 1:
$$IO_4^- + 7I^- + 8H^+ \rightarrow 4I_2 + 4H_2O$$

Reaction 2: $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^-$

Amount of
$$S_2O_3^{2-} = 0.120 \times \frac{33.30}{1000} = 3.996 \times 10^{-3} \text{ mol}$$

Amount of $I_2 = \frac{1}{2} \times 3.996 \times 10^{-3} = 1.998 \times 10^{-3} \text{ mol}$
Amount of IO_4^- in 25.0 cm³ solution = $\frac{1}{4} \times 1.998 \times 10^{-3} = 4.995 \times 10^{-4} \text{ mol}$

$$[\mathbf{M}\mathrm{IO_4}] = \frac{4.995 \times 10^{-4}}{25.0/_{1000}} = 0.01998 \text{ mol dm}^{-3}$$

$$M_{\mathrm{r}} \text{ of } \mathbf{M}\mathrm{IO_4} = \frac{5.53}{0.01998} = 276.8$$

$$A_{\mathrm{r}} \text{ of } \mathbf{M} = 276.8 - 126.9 - 4 \times 16.0 = 85.9$$

$$\mathbf{M} \text{ is Rb.}$$

4

(B) Discussion Questions (Redox Practice)

1 Nitrogen dioxide reacts with iodine under acidic conditions according to the equation shown.

$$NO_2 + 2I^- + 2H^+ \rightarrow NO + I_2 + H_2O$$

How many moles of electrons are gained by one mole of the nitrogen dioxide?

A 1 **B** 2 **C** 3 **D**

Ans: (B)

Half equation: $2I^- \rightarrow I_2 + 2e^-$

2 moles of e⁻⁻ will be gained by 1 mole of NO₂.

- Write the half-equations and balance them in the respective mediums.
- (a) $As_2O_3(s) + VO_2^+(aq) \rightarrow As_2O_5(s) + VO^{2+}(aq)$ (in acidic medium) Half eqn: [O] $As_2O_3 + 2H_2O \rightarrow As_2O_5 + 4H^+ + 4e^-$ -----(1)

[R]
$$VO_2^+ + 2H^+ + e^- \rightarrow VO^{2+} + H_2O$$
 ----- (2) x4

Overall eqn: $As_2O_3(s) + 4VO_2^+(aq) + 4H^+(aq) \rightarrow As_2O_5(s) + 4VO^{2+}(aq) + 2H_2O(l)$

(b) $H_2O_2(aq) + Sn^{2+}(aq) \rightarrow Sn^{4+}(aq) + H_2O(l)$ (in acidic medium)

Half eqn: [R]
$$H_2O_2 + 2H^+ + 2e^- \rightarrow H_2O + H_2O$$
 ----- (1)

[O]
$$Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}$$
 (2)

Overall eqn: $H_2O_2(aq) + Sn^{2+}(aq) + 2H^+(aq) \rightarrow Sn^{4+}(aq) + 2H_2O(l)$

(c) $Cl_2(aq) \rightarrow Cl^-(aq) + ClO_3^-(aq)$ (in alkaline medium)

Half eqn: [R]
$$Cl_2 + 2e^- \rightarrow 2Cl^-$$
 (1) x5

[O]
$$Cl_2 + 12OH^- \rightarrow 2ClO_3^- + 10e^- + 6H_2O$$
 ------ (2)

Overall eqn: $6Cl_2(aq) + 12OH^-(aq) \rightarrow 10Cl^-(aq) + 2ClO_3^-(aq) + 6H_2O(l)$

Simplified eqn: $3Cl_2(aq) + 6OH^-(aq) \rightarrow 5Cl^-(aq) + ClO_3^-(aq) + 3H_2O(l)$

(d) MnO_4^{2-} (aq) $\rightarrow MnO_2(s) + MnO_4^{-}$ (aq) (in alkaline medium)

Half eqn: [R]
$$MnO_4^{2-} + 2H_2O + 2e^- \rightarrow MnO_2 + 4OH^-$$
 (1)

[O]
$$MnO_4^{2-} \rightarrow MnO_4^{-} + e^{-}$$
 ----- (2) x2

Overall eqn: $3MnO_4^{2-}$ (aq) + $2H_2O(l) \rightarrow MnO_2(s) + 2MnO_4^{-}$ (aq) + $4OH^{-}$ (aq)

- 3 Write the half-equations and hence the full balanced equation for each reaction below.
- (a) Sodium sulfite, Na₂SO₃, reduces an orange acidified solution of dichromate(VI) ions, Cr₂O₇²⁻, to green solution containing Cr³⁺ ions. Sulfate ions are formed in the reaction.

Half eqn: [R]
$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$
 -----(1)

[O]
$$SO_3^{2-} + H_2O \rightarrow SO_4^{2-} + 2H^+ + 2e^-$$
 (2) x3

Overall eqn: $Cr_2O_7^{2-} + 3SO_3^{2-} + 8H^+ \rightarrow 2Cr^{3+} + 3SO_4^{2-} + 4H_2O$

(b) When copper is added to concentrated nitric acid, the solution becomes pale blue due to Cu²⁺(aq), & brown fumes of nitrogen dioxide are produced.

Half eqn: [O]
$$Cu \rightarrow Cu^{2+} + 2e^{-}$$
 (1)
[R] $NO_3^- + 2H^+ + e^- \rightarrow NO_2 + H_2O$ ----- (2) x2
Overall eqn: $Cu + 2NO_3^- + 4H^+ \rightarrow Cu^{2+} + 2NO_2 + 2H_2O$

(c) When potassium iodide (KI) is added to acidified hydrogen peroxide, brown I₂ solution is formed.

Half eqn: [O]
$$2I^- \rightarrow I_2 + 2e^-$$
 (1)
[R] $H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$ (2)
Overall eqn: $H_2O_2 + 2I^- + 2H^+ \rightarrow I_2 + 2H_2O$

(d) When heated, phosphorus acid, H₃PO₃, gives phosphoric acid, H₃PO₄, and phosphine gas, PH₃.

Half eqn: [O]
$$H_3PO_3 + H_2O \rightarrow H_3PO_4 + 2H^+ + 2e^-$$
 (1) x3
[R] $H_3PO_3 + 6H^+ + 6e^- \rightarrow PH_3 + 3H_2O$ (2)
Overall eqn: $4H_3PO_3 \rightarrow 3H_3PO_4 + PH_3$

(e) When zinc is added to silver nitrate solution, AgNO₃(aq), silver solid forms on the surface of zinc. Zn²⁺ ions are formed.

Half eqn: [O]
$$Zn \rightarrow Zn^{2+} + 2e^{-}$$
 (1)
[R] $Ag^{+} + e^{-} \rightarrow Ag$ ----- (2) x2
Overall eqn: $Zn + 2Ag^{+} \rightarrow Zn^{2+} + 2Ag$