Normal Distribution and Sampling

1 ()	
1(a)	By symmetry, $\mu = \frac{155 + 185}{2} = 170$
	P(X < 155) = 0.025
	$\Rightarrow P\left(Z < \frac{155 - 170}{\sigma}\right) = 0.025$
	$\Rightarrow -\frac{15}{\sigma} = -1.95996$
	$\Rightarrow \sigma = 7.6532$
	$\therefore \sigma^2 = 58.6 \text{ (3 s.f.)}$
(i)	$X_1 + X_2 - 2X_3 \sim N(0, 6\sigma^2)$
	$E(X_1 + X_2 - 2X_3) = E(X) + E(X) - 2E(X) = 0$
	$\operatorname{Var}(X_{1} + X_{2} - 2X_{3}) = 2\operatorname{Var}(X) + 4\operatorname{Var}(X) = 6\sigma^{2}$
	$\mathbf{P}(\mathbf{X} + \mathbf{Y} - 2\mathbf{X} + 5)$
	$P(X_1 + X_2 > 2X_3 + 5)$
	$= P(X_1 + X_2 - 2X_3 > 5)$
	= 0.39484 = 0.394 (3 s.f.)
(ii)	
()	$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{50}\right)$ (Since X is normally distributed, there isn't a need to use CLT.)
	$P(\overline{X} < 172)$
	= 0.96769
	= 0.968 (3 s.f.)
(b)	Since <i>n</i> is large, by CLT
	$\overline{X} \sim N\left(\mu, \frac{5^2}{n}\right)$ approx.
	$\mathbf{P}\left(\left \overline{X}-\mu\right <1\right)>0.99$
	$\Rightarrow P\left(Z < \frac{1}{5/\sqrt{n}}\right) > 0.99$
	$\Rightarrow P\left(-\frac{1}{5/\sqrt{n}} < Z < \frac{1}{5/\sqrt{n}}\right) > 0.99$
	$\Rightarrow -0.2\sqrt{n} < -2.5758$
	$\Rightarrow 0.2\sqrt{n} > 2.5758$
	\Rightarrow <i>n</i> > 165.87
	Least $n = 166$

2(a)	Let <i>A</i> be the random variable that denotes the weight, in grams, of a bar of Brand <i>A</i> chocolate $A \sim N(180,100)$
	Let B be the random variable that denotes the weight, in grams, of a bar of Brand B chocolate
	$B \sim N(240,400) A_1 + A_2 + A_3 - 2B \sim N(60,1900)$
	$P(A_1 + A_2 + A_3 > 2B) = P(A_1 + A_2 + A_3 - 2B > 0)$ $P(A_1 + A_2 + A_3 - 2B > 0) = 0.916 (\text{to } 3 \text{ s.f.})$
(b)(i)	$\overline{A} \sim N\left(180, \frac{100}{60}\right)$ $P(\overline{A} > 179) = 0.781 (\text{to } 3 \text{ s.f.})$
	$P(\overline{A} > 179) = 0.781$ (to 3 s.f.)
(ii)	No need to use Central Limit Theorem because the population follows a Normal Distribution
(c)(i)	$0.02A \sim N((0.02)(180), (0.02)^2(100))$
	$0.02A \sim N(3.6,0.04)$
	P(0.02A > 3.80) = 0.1586552596 = 0.159 (to 3 s.f.)

$$\begin{array}{ll} 3(i) & Y = aX + b \sim N \ (\ 30a + b \ , 16a^2) \\ & P(Y < 4) = P(Y > 16) = \ 0.06681 \\ & By \ symmetry(since \ the \ two \ end \ tailed \ areas \ are \ equal), \\ & 30a + b = \frac{4 + 16}{2} = 10 - - -(1) \\ & \frac{4 - 30a - b}{4a} = -1.5000 \Rightarrow 24a + b - 4 = 0....(2) \\ & From (1), \ b = 10 - 30a \ subt. \ into \ (2) \ 24a + 10 - 30a - 4 = 0 \\ & a = 1 \ and \ b = -20 \ (Shown) \\ & \mathbf{Alternative \ solution \ :} \\ & P \ (Z < \frac{4 - 30a - b}{4a}) = 0.06681 \\ & \frac{4 - 30a - b}{4a} = -1.5000 \Rightarrow 24a + b - 4 = 0....(1) \\ & P(Y > 16) = 0.06681 \Rightarrow P(Y < 16) = 0.93319 \\ & P \ (Z < \frac{16 - 30a - b}{4a}) = 0.93319 \\ & \frac{16 - 30a - b}{4a} = 1.5000 \Rightarrow 36a + b - 16 = 0....(2) \end{array}$$

River Valley High School, Mathematics Department

River Valley High School, Mathematics Department

(iii) P(both pickles to meet his guaranteed standard |
$$X_1 + X_2 < 16 \text{ cm}$$
)

$$= \frac{P(both pickles fail his g'teed standard & $X_1 + X_2 < 16$)
$$P(X_1 + X_2 < 16)$$

$$= \frac{(P(X < 8))^2}{P(X_1 + X_2 < 16)} \dots (***)$$

$$= \frac{(0.1056498)^2}{0.03854989} = 0.290$$$$

6(i)	Let X denotes the height of a girl
	$X \sim N(155, 100)$
	P(155 - a < X < 155 + a) = 0.4
	P(X < 155 - a) = 0.3
	$P(Z < -\frac{a}{10}) = 0.3$
	$-\frac{a}{10} = -0.5244 \Longrightarrow a = 5.24$
	range of girls' height is (149.76,160.24)
(ii)	$P(X > 170) = P(Z > \frac{170 - 155}{10}) = 0.066807$
	required probability = $(0.066807)^2 (1 - 0.066807)^2 \frac{4!}{2!2!}$
	= 0.0233
(iii)	$X_T \sim N(155n, 100n)$
	$P(X_T > 150n) = P(Z > \frac{150n - 155n}{\sqrt{100n}})$
	$= P(Z > -\frac{1}{2}\sqrt{n})$
	=1 (since <i>n</i> is large)

 Let X be the amount of lemonade delivered. X ~ N(260,10²) (i) prob. reg'd = P(X > 275) = 0.0668[normalcdf(275, E99, 260, 10)] (ii) P(X < 250) = 0.158655Let Y be the number of cups out of five that contain less than 250 ml of lemonade. $Y \sim B(5, 0.158655)$ Prob. req'd = $P(Y \le 1) = 0.819$ [binomcdf{5,0.158655,1}] (iii) Let μ be the value of the required mean. We need $P(X < 250) \le 0.05$. Thus $P\left(Z < \frac{250 - \mu}{10}\right) \le 0.05$. Since $P(Z \le -1.645) = 0.05$, $\frac{250 - \mu}{10} \le -1.645 \Rightarrow \mu \ge 266.45$. Thus a suitable value for the mean is 266.45. (iv) Let W be the total amount of lemonade dispensed for n cups. Thus $W \sim N(260n, 100n)$. $P(W > 280n) = P\left(Z > \frac{280n - 260n}{10\sqrt{n}}\right)$ $= P(Z > 2\sqrt{n})$ When n is large, the required probability is approximately 0. Let C and W be the random variables denoting the mass of a roll of Cleanex and **8(i)** WoolSoft toilet paper in grams, respectively. $C \sim N(200, 10^2)$ $W \sim N(220, 15^2)$

P(202 < C < 208) = 0.20888 = 0.209(ii) Let $A = C_1 + C_2 + ... + C_{10}$ and $B = W_1 + W_2 + ... + W_{10}$ $B - 1.05A \sim N(10(220) - 1.05(10)(200), 10(15^{2}) + 1.05^{2}(10)(10^{2}))$ ~ N(100,3352.5) P(B > 1.05A) = P(B - 1.05A > 0)= 0.95792= 0.958 $A + B_1 + B_2 + B_3 \sim N(10(200) + 3(10)(220), 10(10)^2 + 3(10)(15)^2)$ (iii) $\sim N(8600, 7750)$ $P(A + B_1 + B_2 + B_3 < k) = 0.4$ k = 8577.7= 8580 (to 3 s.f.) Let U be the random variable denoting the mass of a roll of 4-ply toilet paper in grams, respectively.

	(2)
	$U \sim N(\mu, \sigma^2)$
$\mathbf{D}(\mathbf{U} = 220) = 0.04$	
P(U < 220) = 0.04	
$\mathbf{P}\left(Z < \frac{220 - \mu}{\sigma}\right) = 0.04$	
$\frac{220-\mu}{\sigma} = -1.7507$	
$\mu - 1.7507\sigma = 220$ (1)	
P(U > 230) = 0.80	
$P\left(Z > \frac{230 - \mu}{\sigma}\right) = 0.80$	
$\frac{230-\mu}{\sigma} = -0.84162$	
$\mu - 0.84162\sigma = 230$ (2)	
$\mu = 239.26 = 239$	
$\sigma = 11.000 = 11.0$	

18 Let X - time taken for giving order
Y- time taken to fulfill an order
Then X-N(60,20°), Y-N (40,10°).
1) $P(\gamma > 60) = 0.0228 $
[normalcdf (60, e ⁹⁹ , 40, 10)]
\ddot{H}) $\bar{\gamma} \sim N(40, \frac{10^2}{8})$
$P(352.\overline{y} < 55) = 0.921_{3}$
$[normalcdf(35,55,40,\frac{10}{18})]$
iii) $I_1 + Y_2 + Y_3 + X_3 + X_3 = T \sim N(240, 1100)$
$1 \le 1(1 \le 180) = 0.0352 $
Gnormated f (-e ⁹⁹ , 180, 240, J1100)]

10(i)	Let X be the waiting time on a randomly chosen day. $X \sim N(8,5)$ Let Y be the journey time on a randomly chosen day. $Y \sim N(11,4)$ Let T be the total time taken on a randomly chosen day. $T=X+Y\sim N(19,9)$ P(T>20) = 0.369 (to 3 sf)	
(ii)	Expected no. of days late in a month = $30 \times 0.369 = 11.07 \approx 11$ days	
2023 N	formal Distribution and Sampling	<u>T6</u>

(iii)	Let c be the time taken.
	P(T > c) < 0.05
	P(T < c) > 0.95
	c > 23.9346
	Least value of $c = 24 \text{ min}$
	Thus, the latest time he can leave his house = $7:40am - 24min = 7:16am$
(iv)	Let \overline{T} be the average time taken in a month.
` ´	
	$T \sim N(19, 9/30)$
	$P(15 < \overline{T} < 20) = 0.966$ (to 3sf)
	1(13<1<20) = 0.000(10001)
11(a)	No.
(••)	The distribution would be asymmetric or skewed.
	If it can be modeled by Normal distribution, then there will be approximately the
	same number of employees earning above and below the mean salary
(b)(i)	$T_A \sim N(55, 25), T_B \sim N(53, 16)$
	Let $\bar{T} \sim N(54, 10.25)$ where $\bar{T} = \frac{T_A + T_B}{2}$
	2
	$P(50 < \overline{T} < 60) = 0.864$ (3 sig figures).
(ii)	$T_B \sim N(53, 16)$
(11)	
	$P(53 - a \le T_B \le 53 + a) \le 0.6$
	$\Rightarrow P(T_B \le 53 + a) \le 0.8$
	\Rightarrow 53 + a \leq 56.366 (from GC)
	$\Rightarrow a \leq 3.366$
	Hence greatest value of a is 3.36
12(i)	Let r.v. A be the mass of a snapper fish and r.v. B be the mass of a pomfret fish.
12(1)	$A \sim N(1, 0.1^2); B \sim N(0.6, 0.05^2)$
	(a)(i) $A_1 + A_2 + A_3 + B_1 + B_2 \sim N(4.2, 0.035)$
	$P[A_1 + A_2 + A_3 + B_1 + B_2 > 4.5] = 0.0544$
(ii)	$A_1 + A_2 + A_3 - 2B \sim N(1.8, 0.04)$
(11)	$n_1 + n_2 + n_3 = 2D \sim N(1.0, 0.04)$
	$P[A_1 + A_2 + A_3 - 2B > 1.85] = 0.401$
(iii)	$12A + 7(B_1 + B_2) \sim N(20.4, 1.685)$
(111)	
	$P[12A + 7(B_1 + B_2) > 21] = 0.322$
	$12(A_1 + A_2 + \ldots + A_n) + 7(B_1 + B_2 + \ldots + B_{15-n}) \sim N(63 + 7.8n, 1.8375 + 1.3175n)$
	$P[12(A_1 + A_2 + + A_n) + 7(B_1 + B_2 + + B_{15-n}) > 150] < 0.7.$
	Largest $n = 11$

13(i)	Let <i>A</i> be the mass of an avocado.
	$A \sim N(115, 9^2)$
	P(110 < X < 115) = 0.21074
	Required prob= $3 \times (0.21074)(0.5)^2 = 0.158$
(ii)	Let <i>K</i> be the mass of a kiwi.
	$K \sim N(82, \sigma^2)$
	P(X > 90) = 0.1055
	$P\left(Z > \frac{90 - 82}{\sigma}\right) = 0.1055$
	$\frac{8}{3} = 12508$
	σ
	$\sigma = 6.40$
(iii)	$\frac{K_1 + K_2 + A_1 + A_2 + A_3}{5} \sim N\left(\frac{1}{5}(509), \frac{1}{5^2}(324.92)\right)$
	$\frac{K_1 + K_2 + A_1 + A_2 + A_3}{5} \sim N(101.8, 12.9968)$
	$P\left(\frac{K_1 + K_2 + A_1 + A_2 + A_3}{5} > 100\right) = 0.691$
(iv)	Let $T = 0.012(K_1 + K_2) + 0.015(A_1 + A_2 + A_3)$
	$T \sim N\left(0.012(164) + 0.015(345), 0.012^{2}(6.40^{2}) + 0.015^{2}(9^{2})\right)$
	$\therefore T \sim N(7.143, 0.024123)$
	$P(T \le a) \ge 0.99$
	$a \ge 7.5403$
	lease value of $a = 8$
L	

14(i)	$X \sim N(10.2, 1.2^2)$
	$P(11 < Y < 15) = P\left(11 < \frac{1}{2}(30 - X) < 15\right)$
	= P(0 < X < 8) = 0.03376 = 0.0334(to 3 sf)
	Alternative Method:

	$Y \sim N\left(\frac{1}{2}(30-10.2), \left(\frac{1}{2}\right)^2 1.2^2\right) \Rightarrow Y \sim N(9.9, 0.36)$
	P(11 < Y < 15) = 0.03376 = 0.0334 (to 3 sf)
(ii)	P(letter will fit into envelope) = $P(X < 11 \text{ and } Y < 11)$
	$= P\left(X < 11 \text{ and } \frac{1}{2}(30 - X) < 11\right)$
	$= \mathbf{P} \big(8 < X < 11 \big)$
	= 0.714
(iii)	$X - Y = X - \frac{1}{2} (30 - X) = \frac{3}{2} X - 15$
	$\operatorname{Var}(X - Y) = \operatorname{Var}\left(\frac{3}{2}X - 15\right) = \left(\frac{3}{2}\right)^2 \operatorname{Var}(X) = \frac{9}{4}(1.2)^2 = 3.24$
	$\operatorname{Var}(X) + \operatorname{Var}(Y) = 1.2^{2} + \operatorname{Var}\left(15 - \frac{1}{2}X\right) = 1.2^{2} + \left(\frac{1}{2}\right)^{2} \operatorname{Var}(X) = 1.8$
	Therefore $\operatorname{Var}(X - Y) \neq \operatorname{Var}(X) + \operatorname{Var}(Y)$ The rule does not hold since X and Y are not independent.

15(i)	Let X denote the waiting time (in minutes) for SuperX Ride
	Let Y denote the waiting time (in minutes) for SuperY Ride
	$X \sim N(50, 10^2)$
	$Y \sim N(45, 12^2)$
	$E(X_1 + X_2 - 2Y) = 2(50) - 2(45) = 10$
	$\operatorname{Var}(X_1 + X_2 - 2Y) = 2(10^2) + 4(12^2) = 776$
	$\therefore X_1 + X_2 - 2Y \sim N(10,776)$
	P (sum of waiting times of Jay and Kay is less than twice the waiting time of
	Candy) = $P(X_1 + X_2 < 2Y) = P(X_1 + X_2 - 2Y < 0) = 0.360$
(ii)	Let W denotes the number of tourists, out of 20, who purchase souvenir photos.
	$W \sim B(20, 0.4)$
	$\mathbf{P}(W \ge k) > 0.5$
	$\mathbf{P}(W \le k-1) < 0.5$
	$P(W \le 7) = 0.41589 < 0.5$
	$P(W \le 8) = 0.59560 > 0.5$
	Largest value of $k - 1 = 7$
	k = 8
	$\kappa = 0$

(iii)	Let <i>M</i> denote the mean amount spent by 60 tourists. Since <i>n</i> is large, by Central Limit Theorem, $M \sim N\left(35, \frac{9.4^2}{60}\right)$ approximately P(M > 36.50) = 0.108
-------	--

16(i)Let X and Y be random variables denoting the waiting times, in minutes, for one
random order of Chili Crab and one random order of Pepper Crab respectively.Then
$$X \sim N(\mu, 3^2)$$
 and $Y \sim N(10, 2^2)$ $Y - X \sim N(10 - \mu, 3^2 + 2^2)$ $Y - X \sim N(10 - \mu, 13)$
 $P(Y - X > 0) = 0.290$ $\Rightarrow P(Z > \frac{0 - (10 - \mu)}{\sqrt{13}}) = 0.290$ $\Rightarrow \mu = 11.99525697 \approx 12.0$ (to 3 s.f.) (shown)(ii)Carpark charges \$0.05 per minute
Let T be the random variable denoting the carpark charges of one random customer
in cents.
 $T \sim N(150, 500)$
 $P(T > 52) = P(T > 200 cents) = 0.0126736174 \approx 0.0127$ (iii)Since $Y \sim N(10, \frac{2^2}{n})$ Given $P(\overline{Y} > 10.5) \le 0.0385$
Method 1: Using G.C. table $\frac{n - P(\overline{Y} > 10.5) \le 0.0385}{51 - 0.03571}$
Hence, least value of n is 51.Method 2: Using standardization
 $P(\overline{Y} > 10.5) \le 0.0385$ $\Rightarrow P(Z > \frac{10.5 - 10}{2\sqrt{n}}) \le 0.0385$

	$\Rightarrow \qquad \frac{0.5\sqrt{n}}{2} \ge 1.768364425$
	$\Rightarrow \qquad n \ge 50.03380381$
	Hence, least value of <i>n</i> is 51.
	No assumption needed since Y is normally distributed
17(a)	Let T s be the time taken to complete a race. I think 5 s is the wrong standard
	deviation. Suppose $T \sim N(10, 5^2)$.
	If $T \sim N(10, 5^2)$, then 99.7% of the values should lie within $10 \pm 3(5)$, i.e. $(-5, 25)$,
	which contains a significant range of negative values.
	Then $P(T < 0) \approx 0.0228$ which is significantly large. However <i>T</i> is a non-negative quantity
(b)(i)	Now let $T \sim N(10, 2^2)$. $P(T < t) = 0.99 \implies t \approx 14.7$
(ii)	Let <i>Y</i> be the number of races out of 20 races that are less than <i>t</i> seconds. $Y \sim B(20, 0.99)$
	Required probability = $P(Y \le 18) = 0.0169$
(iii)	Let $W = \frac{T_1 + T_2 + \dots + T_5}{5} - 2T$. $W \sim N(-10, 16.8)$
	$P(\frac{T_1 + T_2 + \dots + T_5}{5} > 2T) = P(W > 0) \approx 0.00735$
18(i)	Let <i>X</i> be rv representing the time in minutes taken by a boy in completing the obstacle course.
	$\therefore X \sim N(33, 5^2)$
	Given $P(X-33 < k) = 0.80$
	$\mathbf{P}\left(\mid Z \mid < \frac{k}{5}\right) = 0.80$
	$P\left(Z < \frac{k}{5}\right) = 0.90$ or $P\left(Z < -\frac{k}{5}\right) = 0.10$
	Using GC, $\frac{k}{5} = 1.28155$
	$\Rightarrow k = 6.40776 = 6.41 (3 \text{ s.f.})$
(ii)	Let <i>Y</i> be the rv representing time in minutes taken by a girl in completing the obstacle course
	$\therefore Y \sim N(48, 7^2)$
	$Y_1 + Y_2 - 3X \sim N(96 - 99, 2(49) + 3^2(25))$
(ii)	$\Rightarrow k = 6.40776 = 6.41 (3 \text{ s.f.})$ Let <i>Y</i> be the rv representing time in minutes taken by a girl in completing the obstacle course $\therefore Y \sim N(48, 7^2)$

$$Y_1 + Y_2 - 3X \sim N(-3, 323)$$
$$P(Y_1 + Y_2 > 3X) = P(Y_1 + Y_2 - 3X > 0) = 0.43371 = 0.434$$

19(i)	$P(X > \mu - a) + P(X > \mu + a) + P(\mu < X < \mu + 2a) = 1.38$			
	$1 + P(\mu < X < \mu + 2a) = 1.38$			
	$\mathbf{P}\left(\mu < X < \mu + 2a\right) = 0.38$			
	$P(X > \mu + 2a) = 0.5 - 0.38$			
	$\mathbf{P}(X > \mu + 2a) = 0.12$			
(ii)(a)	$\mathrm{P}\left(X-\mu \leq L ight)=0.4$			
	$\begin{pmatrix} X-\mu & L \end{pmatrix}$			
	$P\left(\left \frac{X-\mu}{\sigma}\right \le \frac{L}{\sigma}\right) = 0.4$			
	$\begin{pmatrix} L & X - \mu & L \end{pmatrix}$			
	$P\left(-\frac{L}{\sigma} \le \frac{X-\mu}{\sigma} \le \frac{L}{\sigma}\right) = 0.4$			
	$\frac{L}{L} = 0.5244005 = 0.524$ (to 3 s.f)			
	σ			
(ii)(b)	$P(X \rightarrow 2I) = (X - \mu - 2I)$			
	$P(X - \mu \ge 2L) = P\left(\frac{X - \mu}{\sigma} \ge \frac{2L}{\sigma}\right)$			
	$= P\left(Z > \frac{2L}{\sigma}\right) = P\left(Z > 2(0.5244005)\right)$			
	$-1\left(\frac{z}{\sigma}\right)^{-1}\left(\frac{z}{z}\right)^{-1}$			
	= P(Z > 1.048801)			
	= 0.14713488 = 0.147 (to 3 s.f)			

20 P(Wise misses the bus) = P(X - Y < 0) $X - Y \sim N(25 - 15, 9 + 4)$ i.e. $X - Y \sim N(10, 13)$ Thus, probability required = 0.0027728 \approx 0.00277 (3 s.f.) T = 45 - (W + X)E(T) = 45 - 30 - 25 = -10 Var(T) = 3 + 9 = 12 P(the bus arriving after 8.30 a.m.) = P(T < 0) = 0.99805 \approx 0.998 (3 s.f.)

21(i) $X \sim N(\mu, \sigma^2)$

$$P(X > 2a) = 0.10$$

$$P(X < 2a) = 0.90$$

$$P\left(Z < \frac{2a - \mu}{\sigma}\right) = 0.90$$

$$\frac{2a - \mu}{\sigma} = 1.28155$$

$$2a - \mu = 1.28155 \qquad (1)$$

$$P(X < a) = 0.30$$

$$P\left(Z < \frac{a - \mu}{\sigma}\right) = 0.30$$

$$\frac{a - \mu}{\sigma} = -0.52440 \qquad (2)$$

$$(1) - (2): a = 1.80595\sigma$$

$$\sigma = \frac{a}{1.80595} = 0.553725a$$

$$a - \mu = -0.52440 \times \frac{a}{1.80595}$$

$$= -0.29037a$$

$$\mu = 1.29a$$

$$E(X) = \mu = 1.29a$$

$$Var(X) = \sigma^{2} = 0.553725^{2}a^{2} = 0.30661a^{2} = 0.307a^{2}$$
(ii)
$$E(X_{1} + X_{2} - 2X_{3}) = E(X) + E(X) - 2E(X) = 0$$

$$Var(X_{1} + X_{2} - 2X_{3}) = Var(X) + Var(X) + 4Var(X)$$

$$= 6Var(X)$$

$$= 1.83966526a^{2}$$

$$X_{1} + X_{2} - 2X_{3} \sim N(0, 1.83966526a^{2})$$

$$P(X_{1} + X_{2} - 2X_{3} > a) = P\left(Z > 0.737276848\right)$$

$$\approx 0.230$$

22(i) Let X = number of customers who pay by credit card in sample of 4 Let Y = number of customers who pay by credit card in sample of 15

	$X \sim B(4,0.3) , Y \sim B(15,0.3)$ Required probability = $P(X = 1)P(Y > 4) \times 0.3$ = $P(X = 1)[1 - P(Y \le 4)] \times 0.3$ = 0.05982 = 0.0598
(ii)	Let \overline{Y} = average number of customers who pay by credit card $Y \sim B(15, 0.3)$
	E(Y) = 15(0.3) = 4.5 and $Var(Y) = 15(0.3)(0.7) = 3.15$
	By CLT, $\overline{Y} \sim N\left(4.5, \frac{3.15}{50}\right)$
	$P\left(4 < \overline{Y} < a\right) = 0.95$
	$\Rightarrow P(\overline{Y} < a) - P(\overline{Y} < 4) = 0.95$
	$\Rightarrow P(\overline{Y} < a) = 0.95 + P(\overline{Y} < 4)$
	$\Rightarrow P(\overline{Y} < a) = 0.97318$
	$\Rightarrow a = 4.98$

23(i)	n = 50, large using Central Limit theorem
	$\bar{X} \sim N(20\ 000,\ \frac{2200^2}{50})$
	$P(\left \bar{X} - 20\ 000\right < 800) = P(19200 \le \bar{X} \le 20\ 800) = 0.990$
(ii)	Let <i>Y</i> be the random variable for number of samples with sample mean within \$800
	of the population mean
	$Y \sim B(5, 0.989868)$
	$P(Y=3) = 9.96 \text{ x } 10^{-4}$
	Assume : $P(success) = 0.989868$ is a constant for each trial

24
(i)
$$\bar{X} = 11 \cdot 3$$

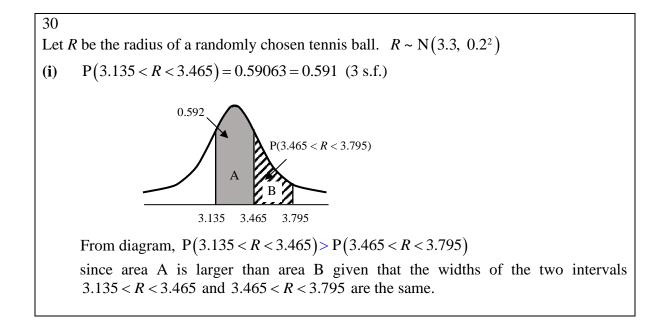
 $S^2 = \frac{\Sigma (X - \bar{X})^2}{n - 1} = \frac{14400}{99} = 145.45$
(ii) Since $n = 100$ is large, $\bar{X} = N(12, \frac{145.45}{100})$ by CUT
 $\therefore P(\bar{X} > 11.3) = 0.719$.

(ii) Since
$$n = 50$$
 is large, by Central Limit Theorem,
 $\overline{X} \sim N\left(80, \frac{115}{7}\right)$ approximately
(iii) $P\left(\overline{X} > 85\right) = 0.109$ (3 sig. fig.)
(iv) Let n be the sample size.
 $\overline{X} \sim N\left(80, \frac{5750}{7n}\right)$ approximately
 $P(\overline{X} > 85) < 0.03$
 $P\left(Z > \frac{5}{\sqrt{\frac{5750}{7n}}}\right) < 0.03$
 $5\sqrt{\frac{5750}{7n}} > 1.8808$
 $\sqrt{n} > \frac{1.8808}{5}\sqrt{\frac{5750}{7}} = 10.781$
 $n > 116.2$
Hence least number of sample size is 117.

29 (i) Let L be the amount of drink in a large cup and S be the amount of drink in a small cup. $L \sim N(405, 74)$ $S \sim N(202, 21)$ $L_1 + L_2 - 4S \sim N(2, 484)$ $P(L_1 + L_2 - 4S < 0) = 0.464$ (ii) He can buy 3 small cups of drink OR 1 large cup and 1 small cup of drink. 3 small cups of drink : $S_1 + S_2 + S_2 \sim N(606, 63)$ $P(S_1 + S_2 + S_2 > 600) = 0.775$ 1 large cup and 1 small cup of drink : $L + S \sim N(607, 95)$ P(L + S > 600) = 0.764He should buy 3 small cups. (Note: the amount he needs to spend is the same for both cases) (iii)

Let
$$T = \frac{S_1 + S_2 + ... + S_{20} + L_1 + L_2 + ... + L_n}{20 + n}$$

 $T \sim N\left(\frac{20(202) + n(405)}{20 + n}, \frac{20(21) + n(74)}{(20 + n)^2}\right)$
 $T \sim N\left(\frac{4040 + 405n}{20 + n}, \frac{420 + 74n}{(20 + n)^2}\right)$
P(T > 350) > 0.8
Using GC, when $n = 54$, P(T > 350) = 0.5598 < 0.8
when $n = 55$, P(T > 350) = 0.834 > 0.8
Least value of $n = 55$
OR
 $P(Z > \frac{350 - \frac{4040 + 405n}{20 + n}}{\sqrt{\frac{420 + 74n}{(20 + n)^2}}}) > 0.8$
 $\frac{350 - \frac{4040 + 405n}{\sqrt{\frac{420 + 74n}{(20 + n)^2}}}}{\sqrt{\frac{420 + 74n}{(20 + n)^2}}} < -0.8416212$
Using GC, Least value of $n = 55$



(ii) Required probability = $\left[P(R < 3.4)\right]^3 = 0.331$ (3 sf) (iii) Let *H* be the height of a randomly chosen cylindrical tube. $H \sim N(20, 0.3^2)$ Gap, $G = H - 2 (R_1 + R_2 + R_3)$ $G \sim N(20 - 2(3.3 \times 3), 0.3^2 + 2^2(0.2^2 \times 3))$ i.e. $G \sim N(0.2, \sqrt{0.57}^2)$ $P(G \ge k) \ge 0.15$ Using GC, $0 < k \le 0.982$

31(i)	Let random variable A be the BFE of Brand A mask.	
	Since $P(A < 95.7) = P(A > 95.78)$,	
	$\mu = \frac{95.7 + 95.78}{2} = 95.74$	
	P(A < 95.7) = 0.0912	
	$P(Z > \frac{95.7 - 95.74}{\sigma}) = 0.0912$	
	$\frac{-0.04}{\sigma} = -1.333401746$	
	$\sigma = 0.0299984608 = 0.03 (2 \text{ d.p})$	
31(ii)	Let random variable <i>B</i> be the BFE of Brand <i>B</i> mask.	
	$B \sim N(92.19, 0.03^2)$	
	$A \sim N(91.09, 0.08^2)$	
	$\overline{A} \sim N\left(91.09, \frac{0.08^2}{n}\right)$	
	$B - \overline{A} \sim N\left(1.1, 0.03^2 + \frac{0.08^2}{n}\right)$	

	$P(B-\overline{A} \leq$	1.15) ≥ 0.9405	
	$P(-1.15 \le B - \overline{A} \le 1.15) \ge 0.9405$		
	$P\left(\frac{-1.15 - 1.1}{\sqrt{0.03^2 + \frac{0.08^2}{n}}} \le Z \le \frac{1.15 - 1.1}{\sqrt{0.03^2 + \frac{0.08^2}{n}}}\right) \ge 0.9405$		
	Using GC,		
	n	$P(\left B-\overline{A}\right \le 1.15)$	
	49	0.9403	
	50	0.9406	
	51	0.9408	
	\therefore Least $n = 50$.		
31(iii)	$X \sim N(203, \sigma_1^2)$ $Y \sim N(203, \sigma_2^2)$		
	$3X - [Y + Y_2 + Y_3] \sim N(0, 9\sigma_1^2 + 3\sigma_2^2)$		
	$P(3X > Y + Y_2 + Y_3) = P(3X - [Y + Y_2 + Y_3] > 0)$		
		= 0.5	

32:(i) The distribution might become bimodal when the data for both volumes of Grade X and Grade Y petrol sold in an hour are combined.

(ii) Given
$$X \sim N(\mu, \sigma^2)$$
,
 $P(X \le 170) = 0.023$
 $P\left(Z \le \frac{170 - \mu}{\sigma}\right) = 0.023$
 $\frac{170 - \mu}{\sigma} = -1.9954$ (5s.f.)
 $\mu - 1.9954\sigma = 170 - --(1)$
 $P(X > 180) = 0.16$
 $P\left(Z > \frac{180 - \mu}{\sigma}\right) = 0.16$
 $\frac{180 - \mu}{\sigma} = 0.99446$ (5s.f.)
 $\mu + 0.99446\sigma = 180 - --(2)$
Solving (1) and (2) using GC,
 $\mu = 176.67$ (5 s.f.) and $\sigma = 3.3446$ (5 s.f.)
 $\therefore \mu = 177$ (3 s.f.) and $\sigma = 3.34$ (3 s.f.)

(iii) Let *Y* be the random variable denoting the volume of Grade *Y* petrol sold in an hour. $X \sim N(176.67, 3.3446^2)$ and $Y \sim N(200, 5^2)$ Let $W = X_1 + X_2 + X_3 - 3Y$, $W \sim N(3(176.67) - 3(200), 3(3.3446^2) + 3^2(5^2))$ $\sim N(-69.99, 258.56)$ P(|W| < 72) = 0.5497389693= 0.54974(5 S.F.)

- (iv) The volumes of Grade *X* and Grade *Y* petrol sold in an hour is independent of each other.
- (v) Let *J* be the random variable denoting the volume of Grade *Y* petrol sold in an hour during the month of June.

$$J = 1.1Y \sim N(1.1(200), 1.1^{2}(5^{2}))$$

$$\sim N(220, 30.25)$$

$$\overline{J} \sim N\left(220, \frac{30.25}{24}\right) \text{ and } \overline{Y} \sim N\left(200, \frac{5^{2}}{24}\right)$$

$$\overline{J} - \overline{Y} \sim N(20, 2.3021)$$
Given $P\left(\overline{J} - \overline{Y} \ge k\right) \le 0.2$,
$$k \ge 21.277 \text{ (5 s.f.)}$$

$$\therefore \text{ minimum value of } k = 22$$

$$21.277 \quad k$$

33 (i)	Let <i>F</i> be the random variable denoting the mass of a packet of fettucine in
	grams.
	$F \sim N(450, \sigma^2)$
	Given that

$$\begin{array}{|c|c|c|c|c|} \hline P(F \leq 437) = 0.1 \\ P\left(\frac{F - 450}{\sigma} \leq \frac{437 - 450}{\sigma}\right) = 0.1 \\ P\left(Z \leq \frac{-13}{\sigma}\right) = 0.1, \text{ where } Z \sim N(0,1) \\ \hline -\frac{13}{\sigma} = -1.2816 \\ \sigma = 10.144 = 10.1 (3 \text{ sig fig}) \\ \hline (ii) & \text{Let } S \text{ be the random variable denoting the mass of a packet of spaghetti produced in g.} \\ S \sim N(500, 9.2^2) \\ F \sim N\left(450, 10.144^2\right) \\ \text{Required probability} \\ = P\left(\left|S_1 + S_2 + S_3 + S_4 + S_5 + S_6 - 2(F_1 + F_2)\right| \geq 1250\right) \\ \text{Let } A = S_1 + S_2 + S_3 + S_4 + S_5 + S_6 - 2(F_1 + F_2) \\ = E\left[S_1 + S_2 + S_3 + S_4 + S_5 + S_6 - 2(F_1 + F_2)\right] \\ = E\left(S_1 + S_2 + S_3 + S_4 + S_5 + S_6 - 2(F_1 + F_2)\right] \\ = E\left(S_1 + S_2 + S_3 + S_4 + S_5 + S_6 - 2(F_1 + F_2)\right) \\ = 66(50) - 2(2)E(F) \\ = 6(500) - 4(450) \\ = 1200 \\ \text{Var}(A) \\ = \text{Var}\left[S_1 + S_2 + S_3 + S_4 + S_5 + S_6 - 2(F_1 + F_2)\right] \\ = \text{Var}\left[S_1 + S_2 + S_3 + S_4 + S_5 + S_6 - 2(F_1 + F_2)\right] \\ = Var\left(S_1 + S_2 + S_3 + S_4 + S_5 + S_6 - 2(F_1 + F_2)\right) \\ = 6(9.2^2) + 8(10.144^2) \\ = 1331.045 \\ A \sim N(1200, 1331.045) \end{array}$$

	$P(A \ge 1250)$		
	· · · · ·		
	= 1 - P(-1250 < A < 1250)		
	= 0.085268		
	= 0.0853 (to 3 sf)		
(iii)	The mass of each packet of pasta (for both spaghetti and fettuccine) must be		
	independent of each other.		
	- 8	termingling or within the pasta	group]
(iv)	P(495 < S < 505) = 0.41320		
Let <i>X</i> be the random variable denoting the number of packets of s of <i>n</i> purchased that has a mass between 495 g and 505 g each. $X \sim B(n, 0.41320)$			
	Given $P(X > 7) \ge 0.85 \Rightarrow P(X \ge 8) \ge 0.85$		
	$ 1 - P(X \le 7) \ge 0.85 \implies 1 (3)$	$A \ge 0 \ge 0.03$	
	$P(X \le 7) \le 0.15$		
	Using GC	$\mathbf{D}(\mathbf{V}, \mathbf{z}, \mathbf{z})$	
	n	$P(X \le 7)$	
	24	0.1582>0.15	
	25	0.1241<0.15	
	26	0.0963<0.15	
	Hence, the least value of n is	25.	
(v) From (iv), $X \sim B(25, 0.41320)$			
	E(X) = np		
	= 25(0.41320)		
	=10.33		
Var(X) = np(1-p)			
	= 25(0.41320)(1 - 0.41320)		
	= 6.0616		
	Since the sample size $= 24$ is	sufficiently large, by Central I	Limit Theorem,
	$\overline{X} \sim N\left(10.33, \frac{6.0616}{24}\right)$ appr	oximately	
	$P(\overline{X} \le 11) = 0.90876 = 0.909$	(to 3 sf)	

34(i)	Let X be the number of standard size packets (out of 10 in a family pack) that contains a winning		
54(1)	coupon. $X \sim B(10, p)$		
	Most likely number of winning coupons in a family pack is 2		
	$\Rightarrow \text{ mode of } X = 2$		
	Thus $P(X = 2) > P(X = 1)$ and $P(X = 2) > P(X = 3)$		
	$\binom{10}{2}p^{2}(1-p)^{8} > \binom{10}{1}p(1-p)^{9} \text{ and } \binom{10}{2}p^{2}(1-p)^{8} > \binom{10}{3}p^{3}(1-p)^{7}$		
	45p > 10(1-p) and $45(1-p) > 120p$		
	$p > \frac{2}{9}(1-p)$ and $(1-p) > \frac{8}{3}p$		
	$p > \frac{2}{11}$ and $p < \frac{3}{11}$		
	Thus $\frac{2}{11}$		
(ii)	$X \sim B(10, 0.2)$		
	P(a family pack has at least 1 winning coupon) = $P(X \ge 1) = 1 - P(X = 0) = 0.89263$ (5 s.f.)		
	Let Y be the number of family packs (out of N packs) with at least 1 winning coupon.		
	$Y \sim B(N, 0.89263)$		
	Given: $P(Y \ge 30) > 0.99$		
	$\Rightarrow \qquad 1 - P(Y \le 29) > 0.99$		
	Using GC,		
	$N \qquad 1 - P(Y \le 29)$		
	38 0.9829 < 0.99		
	$\begin{array}{ c c c c c }\hline 39 & 0.9931 > 0.99 \\ \hline \text{Least } N = 39 \end{array}$		
(iii)(a)	Let W be the number of standard size packets (out of $12 \times 10 = 120$ packets in a carton) that		
	contains a winning coupon.		
	$W \sim B(120, 0.2)$		
	P(a carton contains exactly 28 winning coupons)		
	= P(W = 24) = 0.0907 (3 s.f.)		
(iii)(b)	P(every family pack in a carton contains exactly 2 winning coupons each)		
	$= [P(X = 2)]^{12} = 5.75 \times 10^{-7} (3 \text{ s.f.})$		
(iii)(c)	The answer for (b) is smaller than that for (a) because the case in (b) is only one of the many cases		
	for (a). In addition to the case in (b), (a) includes many other cases such as 4 family packs containing 10 winning coupons, 1 family pack containing 8 winning coupons and the remaining family packs do not contain any winning coupons.		
L			

Qn	Suggested Solution		
35(a)	558 580 646 x		
(b)	$X \sim N(580, 22^2)$		
	Expected number		
	$= 300 \times P(X > 600)$		
	$=300 \times 0.18165$		
	= 54.495		
	= 54.5 (3 s.f.)		
(c)	No. By combining the masses, it would give a distribution with 2 peaks instead of a single peak.		
(d)	Let <i>K</i> and <i>L</i> be the selling price of a randomly chosen rock melon and watermelon		
	respectively. K = 0.003X, $L = 0.0028Y$		
	$K \sim N(0.003 \times 580, 0.003^2 \times 22^2)$		
	$K \sim N(0.003 \times 580, 0.003 \times 22)$ $K \sim N(1.74, 0.004356) \Rightarrow \bar{K} \sim N\left(1.74, \frac{0.004356}{4}\right)$		
	$L \sim N(0.0028 \times 870, 0.0028^2 \times 30^2)$		
	$L \sim N(2.436, 0.007056)$		
	$\overline{K} - L \sim N(-0.696, 0.008145)$		
	$\mathbf{P}(\left \overline{K} - L\right \le 0.60)$		
	$= P(-0.60 \le \bar{K} - L \le 0.60)$		
	= 0.14373		
	= 0.144 (3s.f.)		

(e)	$K_1 + \dots + K_n \sim N(1.74n, 0.004356n)$	
	$L_1 + \ldots + L_{20-n} \sim \mathrm{N}(2.436(20-n), 0.007056(20-n))$	
	Let W be the total cost of the 20 melons.	
	$W = K_1 + \ldots + K_n + L_1 + \ldots + L_{20-n}$	
	$W \sim \mathrm{N}(1.74n + 2.436(20 - n), 0.004356n + 0.007056(20 - n))$	
	P(W > 38) > 0.95	
	Using GC table,	
	n = 13, $P(W > 38) = 1 > 0.95$	
	n = 14, $P(W > 38) = 0.9988 > 0.95$	
	n = 15, $P(W > 38) = 0.8113 < 0.95$	
	Greatest $n = 14$	