Can	didate Ir	ndex Nu	mber

Anglo - Chinese School (Independent)

FINAL EXAMINATIONS 2012 YEAR 3 INTEGRATED PROGRAMME CORE MATHEMATICS PAPER 1

TUESDAY

2ND OCTOBER 2012

1 h 30 min

Additional Material
Graph Paper (1 sheet)

INSTRUCTIONS TO CANDIDATES

- Write your index number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Answer all questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- The maximum mark for this paper is 80.

	For Examiner's Use
Ī	
L	

This paper consists of 14 printed pages.

[Turn over

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Answer all the questions in the spaces provided.

(a)	Given that $x = 3\sqrt{\frac{5-y}{y+2}}$, express y in terms of x.	
(b)	Simplify $\frac{y^{4n} - x^{4n}}{x^2 y^{2n} - x^{2n+2}}$.	[3 m
	$x \ y - x$	[3 m

Give:	en that $-5 < x < 2$, $1 \le y \le 6$ and x and y are integers, find the least possible value of $x + y^3$.	
(u)		[2 marks
(b)	the least possible value of $\frac{y}{x}$.	
		[2 marks
•••••		
•••••		
•••••		
•••••		

3 [Maximum mark: 4]

In the diagram, PQR is a straight line, QR = 2 cm and RS = h cm.

Find the following in terms of h.

(a)	$\sin \angle SRQ$,	[2 marks]
(b)	$\tan \angle PQS$.	[2 marks]

4 [Maximum mark: 9]

- (a) A, B and C are points on level ground, with A due north of C. $\angle BAC = 45^{\circ}$, $\angle BCA = 60^{\circ}$ and AB = 48 m. Calculate the length of BC, leaving your answer in the form $a\sqrt{b}$ where a, b and c are constants. [$\sin 120^{\circ} = \frac{\sqrt{3}}{2}$, $\cos 120^{\circ} = -\frac{1}{2}$, $\tan 120^{\circ} = \sqrt{3}$, $\sin 45^{\circ} = \frac{1}{\sqrt{2}}$, $\cos 45^{\circ} = \frac{1}{\sqrt{2}}$, $\tan 45^{\circ} = 1$]
- (b) In the diagram, A, B, C and D are four towns.

Find the bearing of

- (i) A from D,
- (ii) D from C,
- (iii) A from B.

[6 marks]

5	[Maximum mark: 5]	
	Given that $\cos A = -\frac{1}{3}$ and $90^{\circ} \le A \le 180^{\circ}$, find the value of	
	(a) $\tan A$,	[2 marks]
	(b) $\frac{3\cos A - \tan A}{2 - 3\sin A}$, leaving your answer in the form $a + b\sqrt{2}$ where a constants.	a and b are
		[3 marks]
		•••••

	ximum mark: 8]	
y k	and Gabriel started together on a 7 km race at the same const m/h. After 1 km, Joel increased his speed by 1 km/h and ran the remanew speed. Gabriel walked at a constant speed of y km/h all the way. Write down the time, in terms of y, Joel took to complete the 7 km	ining 6 km a
(b)	Given that Joel finished the race 12 minutes earlier than Gabriel, f	[1 mark]
	equation in y and show that it reduces to $y^2 + y - 30 = 0$.	[3 marks]
(c)	Solve the equation $y^2 + y - 30 = 0$.	[e memes]
		[2 marks]
(d)	Calculate Joel's average speed, in km/h, for the whole journey.	[2 marks]

[Max	simum mark: 5]	
(a)	Express $y = 3x^2 - 12x + 16$ in the form $y = a(x - h)^2 + k$.	
(b)	[2 marks] Hence, sketch the curve $y = 3x^2 - 12x + 16$, indicating clearly, the points of intersection with the axes (if any) and the turning point.	1
	[3 marks]]

8	[Max	ximum mark: /]	
	(a)	Solve the equation	
		$64^{x^2} = (0.25)(16^x)^2$	[3 marks]
	(b)	Solve the simultaneous equations	
		$5^x = 125(5^{y-1})$	
		$\frac{1}{\log_3 2} + \log_2 (2x + y) = 2 + 2\log_4 6$	
			[4 marks]

(a)	Find the possible values of k for which the line $2y = x + 2k$ is a tangent to the curve $x^2 + y^2 = 8k$.
(b)	[4 marks] Find the range of values of k for which the expression $x^2 + k^2x^2 - 20kx + 90$ is positive for all real values of x .
	[4 marks]

10 [Maximum mark: 4]

The diagram below shows the straight line obtained by plotting $\frac{1}{x}$ against e^y . Express y in terms of x.

[4 marks]

(a)	A line L passes through the point P (-2, 2) and has gradient 1. Find equation of L.	
		[2 marks]
(b)	The point Q $(3a, a)$ lies on L. Find the value of a .	[1 mark]
(c)	R is the point $(0, -8)$. Prove that $\triangle PQR$ is a right-angled triangle.	[4 marks]
(d)	Find the area of Δ PQR and hence, the shortest distance of Q from F	PR. [2 marks]

12	[Max	ximum mark: 4]	
	Give	on that $\lg 3 = p$ and $\lg 5 = q$, express the following in terms of p	and q .
	(a)	$\lg\sqrt{\frac{243}{5}}$	[2 marks]
	(b)	$\lg 0.54$	
			[2 marks]
	• • • • • •		
	•••••		
	•••••		
	•••••		
	• • • • • •		
	•••••		
	•••••		
	•••••		
	•••••		

13 [*Maximum mark: 7*]

Answer the whole of this question on a sheet of graph paper.

The variables x and y are connected by the equation $y = x + \frac{8}{x} - 5$. The corresponding values of x and y are given in the table below.

	х	1	2	3	4	5	6
ĺ	у	4.00	1.00	0.67	1	1.60	2.33

(a) Using a scale of 2 cm to represent 1 unit on each axis, draw the graph of $y = x + \frac{8}{x} - 5$ where $1 \le x \le 6$.

[4 marks]

(b) By drawing a suitable straight line graph on the same axes, solve the equation $2x + \frac{8}{x} - 9 = 0$.

[3 marks]

****** END OF PAPER 1 *******

Answers:

1a	$y = \frac{45 - 2x^2}{x^2 + 9}$ $y^{2n} + x^{2n}$
11	$\frac{x^2+9}{2n+2n}$
1b	$ \frac{y^{2n} + x^{2n}}{x^2} $ $ -3 $ $ -6 $
2a	-3
2b	-6
	<u> </u>
3a	$\sin SRQ = \frac{\sqrt{4 - h^2}}{2}$
3b	$\tan SQP = -\frac{h}{\sqrt{4 - h^2}}$
4a	$B = 16\sqrt{6}$
4bi	228
4bii	312
4biii	328
5a	$\tan A = -\sqrt{8} = -2\sqrt{2}$
5b	$\tan A = -\sqrt{8} = -2\sqrt{2}$ $-\frac{3}{2} - \frac{1}{2}\sqrt{2}$ $1 6$
	2 2
6a	$ \frac{1}{y} + \frac{6}{y+1} $ $ 5 $ $ 5\frac{5}{6} $ $ y = 3(x-2)^2 + 4 $ $ x = \frac{1}{3} \text{or} x = 1 $ $ 10 $
6c	5
6d	5
04	5 -
7.	6
7a	$y = 3(x - 2)^2 + 4$
8a	$x = \frac{1}{3} \qquad \text{or} \qquad x = 1$
8b	$x = \frac{1}{2}$
9a	k = 0 or $k = 10$
9b	-3 < k < 3
10	2
	$k = 0 \text{or} k = 10$ $-3 < k < 3$ $y = \ln(6 - \frac{2}{x})$
11a	y = x + 4
11b	a = -2
11d	$a = -2$ $\frac{12}{13}\sqrt{26}$
12a	$\frac{1}{2}[5p-q]$ $3p-q-1$
12b	2
	3p - q - 1
13	◆ 1.1 → *Unsaved ⇒ ♠
	10 y
	$f1(x)=x+\frac{8}{x}-5$
	x x
	(1.22, 2.78) $f2(x)=-x+4$
	(3.28, 0.719)
	9