Answers to 2023 JC2 Preliminary Examination Paper 3 (H2 Physics)

Suggested Solutions:

No.	Solution	Remarks
1(a)(i)	horizontal component	
	$= 67 \cos 14^{\circ}$	
	= 65.01	[1] for correct
	≈ 65.0 m s ⁻¹	answer
	vertical component	
	$= 67 \sin 14^{\circ}$	
	= 16.21	[1] for correct
	≈ 16.2 m s ⁻¹	answer
4(a)(ii)	herizentel dienlesement	[1] for correct
1(a)(ll)	$= 65.01 \times 4.9$	substitution and
	= 318.5	answer
	≈ 319 m	
1(a)(iii)	Using $s_{\rm v} = u_{\rm v}t + \frac{1}{2}a_{\rm v}t^2$,	
	Taking downward as positive,	
	$s = (-1621)(49) + \frac{1}{2}(981)(49)^2$	[1] for correct
	$S_y = (10.21)(100)^2 2^{(0.01)(100)}$	substitution
	= 38.34	[1] for correct
	≈ 38.3 m	answer
1(a)(iv)	angle of the slope to the horizontal	
	$\theta = \tan^{-1} \left(\frac{38.34}{38.34} \right)$	[1] for correct
	(318.5)	substitution
	= 6.864	[1] for correct
	≈ 6.86°	answer
1(b)(i)		
	new path	
	θΒ	
	[1] for correct new path	
	Note: new path under present path	

No.	Solution	Remarks
1(b)(ii)1.	The path of the ball at the start is determined by the direction of the force of the club acting on the ball	[1] for correct answer
	or air resistance has acted only for a short period of time.	
1(b)(ii)2.	The horizontal velocity is much reduced by air resistance.	[1] for correct answer
2(a)(i)	Gravitational force on satellite provides for centripetal force to keep satellite in orbit.	
	$\frac{GM_EM_S}{r^2} = M_S r\omega^2$	
	$\frac{GM_E}{r^2} = r \left(\frac{2\pi}{T}\right)^2$ $T = \sqrt{\frac{4\pi^2 r^3}{GM_E}} = \sqrt{\frac{4\pi^2 (9.0 \times 10^6)^3}{(6.67 \times 10^{-11})(5.97 \times 10^{24})}}$	[1] correctsubstitution[1] correct
	= 85008	answer
2(a)(ii)	Work done = increase in total energy of satellite = $E_{T,f} - E_{T,i}$ = $\left(-\frac{GM_EM_s}{2r_f}\right) - \left(-\frac{GM_EM_s}{2r_i}\right)$	
	$=\frac{(6.67\times10^{-11})(5.97\times10^{24})(500)}{2}\left(-\frac{1}{1.0\times10^7}+\frac{1}{9.0\times10^6}\right)$	[1] correct substitution
	$= 1.1 \times 10^9 J$	[1] correct answer
2(b)(i)	The gravitational force acts towards centre of Earth provides the	[1]
	plane of orbit which passes through centre of Earth.	[1]
	Additionally, in order for the satellite to orbit such that it remains at a fixed relative position above the Earth, <u>its axis of rotation</u> <u>must coincide with Earth's axis of rotation</u> and thus it has to orbit in the equatorial plane.	[1]
2(b)(ii)	Geostationary satellites move in orbits where they are at a fixed relative position above the Earth.	
	This allows the satellites to <u>constantly receive and transmit</u> <u>telecommunication signals to and from the same position</u> on the Earth's surface.	[1]
3(a)(i)	The internal energy of a system is the sum of a random distribution of kinetic and potential energies associated with the molecules of a system.	[1]

No.	Solution	Remarks
3(a)(ii)	$\Delta U = Q + W$	[1] equation
	ΔU – increase in internal energy	[1] correct
	Q – heat supplied to the system	definition of
	<i>W</i> – work done on the system	symbols
3(a)(iii)	There is work done by gas against the atmosphere during expansion for gas at constant pressure.	[1]
	Using $\Delta U = Q + W \rightarrow Q = \Delta U + W_{BY}$, amount of heat supplied has to be larger for the same amount of increase in internal energy.	[1]
	Since ΔT depends on ΔU , therefore a larger amount of heat must be supplied to have the same amount of ΔT .	[1]
3(b)	Let θ be the equilibrium temperature.	
	$m_w c_w \left(90 - heta ight) = m_{ice} L_{f} + m_{water at 0} \circ c c_w \left(heta - 0 ight)$	[1] substitution
	$(0.5) (4200) (90 - \theta) = (0.1) (3.34 \times 10^5) + (0.1) (4200) (\theta)$ $\theta = 61.7 \text{ °C}$	[1] answer
4(a)	Simple harmonic motion is defined as an oscillatory motion in which the <u>acceleration</u> of an object is <u>directly proportional to the</u> <u>displacement</u> of the object <u>from its equilibrium position</u> , and the acceleration is always <u>directed towards that position</u> .	[1]
4(b)(i)	Angular frequency	
	$\omega = \frac{2\pi}{k} = \sqrt{\frac{k}{k}}$	
	$T \sqrt{m}$	[1] value for ω
	$=\sqrt{\frac{18.5}{0.400}}=6.80 \text{ rad s}^{-1}$	[.]
	Amplitude $x_0 = \frac{v_{\text{max}}}{\omega} = \frac{1.40}{6.80} = 0.206 \text{ m}$	[1] answer
4(b)(ii)	Maximum tension of the spring occurs at the lowest position.	
	At the lowest position, acceleration is maximum $= (6.80)^2 (0.206)$	
	$= 9.53 \text{ m s}^{-2}$	[1] value for max
	At lowest point,	acceleration
	T - mg = ma	
	T = mg + ma = (0.400)(9.81) + (0.400)(9.53) T = 7.74 N	[1] sub [1] ans

2023/JPJC/Prelim/9749/03

No.	Solution	Remarks
	number of atoms per unit volume	
	= number of mole per unit volume $\times N_A$	
	$= 1.40157 \times 10^5 \times 6.02 \times 10^{23}$	
	$= 8.44 \times 10^{28}$	[1] answer
	$\approx 8.4 \times 10^{28} \text{ m}^{-3}$	before rounding
	Hence number density of charge carriers	
	$= 8.4 \times 10^{28} m^{-3}$	
5(a)(ii)	$I_{\text{long}} I = A_{\text{RV}} a_{\text{long}}$	
5(a)(II)	Using $I = Anvq$	
	$17 \times 10^{-3} = \pi \times \left(\frac{1.8 \times 10^{-3}}{2}\right) \times 8.4 \times 10^{28} \times v \times 1.60 \times 10^{-19}$	[1] for correct
		[1] for correct
	$V = 4.97 \times 10^{-7}$	answer
	≈ 5.0×10 ⁻ ′ m s ⁻ ′	
5(b)	Current is the same in all segments of the wire, including the	[1] same
	thinner segment. For the thinner segment, the cross-sectional	current and
	<u>area is smaller</u> . The charge carriers hence move with a <u>higher</u> drift velocity (number density of charge carriers does not	sectional area
	change).	[1] higher drift
		velocity
6(a)	Faraday's law of electromagnetic induction states that the	[1]
	induced e.m.t. in a coil is directly proportional to the rate of change of magnetic flux linkage through the coil	
6(b)(i)	$B = \mu_0 nI$	
	$=4\pi\times10^{-7}\times\left(\frac{400}{1.6}\right)\times3.8$	
	$= 1.19 \times 10^{-3} \text{ T}$	[1] value of <i>B</i>
	$\Phi = NBA$	
	$=80\times(1.19\times10^{-3})\times\pi\times\left(\frac{0.040}{2}\right)^{2}$	[1] sub
	$= 1.2 \times 10^{-4}$ Wb	[1] ans
6(b)(ii)	$E_{mean} = \frac{\Delta \Phi}{\Delta t}$	
	ΔI 2 × 1 2 × 10 ⁻⁴	
	$=\frac{2\times12\times10}{0.30}$	[1] sub
	$= 8.0 \times 10^{-4}$ V	[1] ans

No.	Solution	Remarks
6(b)(iii)		[1]
	E/V	E = 0 V from t = 0 to 0.5 s &
	8.0 × 10 ⁻⁴	0.8 s to 1.4 s
		[1] $E = 8.0 \times 10^{-4} \text{ V}$ from $t = 0.5 \text{ s}$ to 0.8 s
	-2.0×10^{-4} 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 $t/$ s	[1] $E = -2.0 \times 10^{-4}$ V from $t = 1.4$ s to 2.0 s
6(b)(iv)	The magnitude of the maximum e.m.f. induced in the coil increases,	[1] state
	The iron core in the solenoid <u>increases the magnetic flux density</u> in the coil, resulting in <u>increase in the magnetic flux linkage in</u> the coil.	[1] explain
	Hence by Faraday's law, the magnitude of the maximum e.m.f. induced in the coil increases,	
7(a)(i)	r.m.s. current $I_{rms} = \frac{I_o}{\sqrt{2}} = \frac{2}{\sqrt{2}}$ = 1.4 A	[1] substitution [1] answer
7(a)(ii)	r.m.s. voltage $V_{rms} = \frac{V_o}{\sqrt{2}}$	
	$=\frac{240}{\sqrt{2}}V$	
	$\sqrt{2}$ Mean power supplied $\langle P \rangle = I \dots V$	[1] substitution
	$\langle \boldsymbol{P} \rangle = \left(\frac{2}{\sqrt{2}}\right) \left(\frac{240}{\sqrt{2}}\right)$	[1] answer
	= 240 W	
	Peak power $P_o = V_o I_o = (240)(2) 480 \text{ W}$ $\langle P \rangle = \frac{P_o}{2} = \frac{480}{2} = 240 \text{ W}$	

2023/JPJC/Prelim/9749/03

No.	Solution	Remarks
7(b)(i)	$\frac{V_2}{V_2} = \frac{N_2}{N_2} \rightarrow \frac{V_2}{N_2} = \frac{10}{100} \rightarrow V_2 = 4.8 \text{ V}$	[1] opowor
	$V_1 N_1 240 500^{-1}$	
	$\frac{V_1}{V_2} = \frac{I_2}{I_1} = \frac{I_1}{N_2} \to \frac{I_2}{2} = \frac{500}{10} \to I_2 = 100 \text{ A}$	[1] answer
	Assumption: Transformer is 100% efficient / ideal with zero ohmic, magnetic	
	leakage, copper and core losses. The output power is equal to	[1] reasonable
	the input power of the transformer.	answer
7(b)(ii)	Welding	[1] reasonable
	Induction furnace Smelting scrap metal	answer
0 ()(!)		543 6 4
8(a)(I)	string and <u>get reflected at fixed points A and B</u> .	[1] reflection at fixed ends
	The incident and reflected waves along the string, superpose and interfere to form stationary waves on the string	[1] incident and reflected waves
		superpose and
	OR	Interiere
	The two waves along the string travel with same speed in opposite directions superpose and interfere to form stationary	
	waves on the string.	
8(a)(ii)		<u> </u>
	point P	
		B
	Line has an approximate sinusoidal shape with maximum downw	ard displacement
	at P and zero displacement at each node.	•
	[1] for correct shape	
8(a)(iii)	Using $v = f\lambda = \frac{\lambda}{T}$,	
	$\lambda = \mathbf{vT}$	
	$= 35 \times 0.040$	[1] for correct
	= 1.4 m	wavelength
	Distance AB	
	$=2.5\lambda$	[1] for correct
	$= 2.5 \times 1.4$	answer
	= 5. 5 m	

No.	Solution	Remarks
8(a)(iv)	No. of periods	
	$=\frac{t}{\tau}$	
	0.060	
	$=\frac{0.000}{0.040}$	[1] for correct
	= 1.5	Substitution
	Amplitudo	
	72	
	$=\frac{1}{6}$	[1] for correct
	= 12 mm	answer
8(b)(i)	Constant phase difference between the waves	[1] for correct
		answer
8(b)(ii)1	Path difference	
	$=1.5\lambda$	
	= 1.5 × 640	[1] for correct
	= 960 nm	answer
8(b)(ii)2	Phase difference	
0(0)(11)2.	$= 360^{\circ} \times 1.5$	[1] for correct
	= 540°	answer.
		Accept 180°
8(b)(iii)	Distance OR	
	=1.5 <i>x</i>	
	$=1.5\frac{\lambda D}{\Delta m}$	
	a	
	$=1.5 \times \frac{(640 \times 10^{-4})(1.8)}{2.11 \times 10^{-3}}$	[1] for correct
	0.44×10^{-3}	substitution
	$= 3.926 \times 10^{-3}$	[1] for correct
	≈ 3:9 × 10 III	
8(b)(iv)	The bright fringes are brighter due to the increased intensity.	[1]
	No change to the intensity of the dark fringes.	[1]
	The fringe separation remains unchanged.	[1]
8(b)(v)	Since the fringe separation is <u>directly</u> proportional to the	[1] for correct
	wavelength of the incident light and inversely proportional to the	explanation
	sint separation.	
	Blue light has a shorter wavelength. So decrease the slit	[1] for correct
	separation in order to maintain the same fringe separation.	answer

No.	Solution	Remarks
8(c)(i)	Using $d \sin \theta = n\lambda$ $(n = 4)$,	
	$d\sin\theta = 4\lambda$	
	$\sin\theta = \frac{4}{d}\lambda$	
	So, $G = \frac{4}{d}$	
	$\therefore d = \frac{4}{G}$	[1] for correct answer
8(c)(ii)		<u> </u>
	$\sin\theta$	
	0 400 700	
		27 nm
	[1] straight line from 400 nm to 700 nm that is always below print smaller gradient than printed line	ted line and has a
	[1] straight line is 3 small squares high at wavelength of 400 nm ar high at wavelength of 700 nm	nd 5 small squares
9(a)	The half-life of a radioactive nuclide is the <u>time taken for the</u> <u>radioactive nuclei to reduce to half its initial value</u> .	[1]
9(b)(i)	For α -decay: ${}^{214}_{83}\text{Bi} \rightarrow {}^{210}_{81}\text{T}l + {}^{4}_{2}\text{He}$	[1]
	For β^- -decay: $^{214}_{83}\text{Bi} \rightarrow ^{214}_{84}\text{Po} + ^0_{-1}\text{e}$	[1]
9(b)(ii)	mass difference = $213.9987u - (209.9901u + 4.0015u)$	[1]
	= 0.0071u	
	$= 0.0071 (1.66 \times 10^{-27}) (3.00 \times 10^{8})^{2}$ = 1.06074 × 10 ⁻¹² ~ 1.06 × 10 ⁻¹²	[1] for correct substitution[1] for correct answer

No.	Solution	Remarks
9(b)(iii)	The mass difference of reactant and products in both decay	[1]
	processes are <u>different</u> .	
	So the total amount of energy released for each process will also	[1]
	<u>be different</u> . Hence the γ -ray photons emitted will have different energies.	
0(a)(i)		
and	activity	[1] for correct Bi
9(c)(ii)	t	graph
	Ν	[1] for correct T <i>l</i>
	Ві	graph
	o une	
9(d)(i)	214 g of Bi contains 1 mol of atoms, which is 6.02×10^{23} atoms.	
	number of atoms in sample	
	$=\frac{2.0\times10^{-6}}{214}(6.02\times10^{23})$	[1] correct
	$= 5.626 \times 10^{15}$	Substitution
	$\approx 5.6 \times 10^{15}$ (shown)	
9(d)(ii)	activity $A = \lambda N$	
	$\lambda = \frac{A}{N}$	[1] correct
	3.3×10^{12}	substitution
	$=\frac{1}{5.626\times10^{15}}$	answer
	$= 5.866 \times 10^{-4}$	
	$\approx 5.9 \times 10^{-4} \text{ s}^{-1}$	
9(d)(iii)	$t = \frac{\ln 2}{2}$	
	$^{1/2} - \lambda$	
	$=\frac{\ln 2}{5.866 \times 10^{-4}}$	
	=1182	[1] tor correct answer
	$\approx 1.2 \times 10^3$ s	

No.	Solution	Remarks
9(d)(iv)	$A = A_{o}e^{-\lambda t}$ 3.3×10 ⁶ = 3.3×10 ¹² e ^{-5.866×10⁻⁴ t}	[1] correct
	$\frac{3.3 \times 10^{6}}{3.3 \times 10^{12}} = e^{-5.866 \times 10^{-4}t}$ $t = 2.355 \times 10^{4}$ $\approx 2.4 \times 10^{4} \text{ s}$	substitution [1] correct answer
9(e)	β - particles are fast moving electrons and the β - particles are emitted collide with the atoms of the lead container. These collisions result in the β - particles undergoing <u>deceleration</u> , either being slowed down <u>by collision or by deflection</u> . The electrons will then <u>release energy</u> in the form of the continuous <u>spectrum of the X-ray produced</u> , also called Bremsstrahlung radiation.	[1] [1] [1] [1]