Raffles Girls' School (Secondary) 2022 Year 4 Chemistry PPA 2 Answer Scheme (Student)

Section A: MCQ (10 Marks)

*1	С	6	В
*2	D	7	В
*3	С	8	D
4	D	9	Α
*5	В	*10	С

Section B: Structured Questions (30 marks)

Qn		Answer	Marks	
11	*(a)	Reddish brown/Pink solid is formed.		
	(b)	No. of moles of Sn = No. of moles of CuSO ₄ = $2.0 \times (250 / 1000)$ = 0.500 mol	1	
		Mass of Sn = 0.500 x 119 = <u>59.5 g</u>		
	(C)	No. of moles of $SnSO_4$ = No. of moles of $CuSO_4$ = 0.500 mol	2	
		Theoretical yield of $SnSO_4$.H ₂ O = 0.500 x [119 + 32 + 4(16) + 18] = 0.500 x 233 = 116.5 g		
		% yield of SnSO ₄ .H ₂ O = (111.6 / 116.5) x 100 = <u>95.8 %</u>		
*12	(a)	 P: calcium, Ca Q: iodine, I₂ R: calcium iodide, CaI₂ S: silver iodide, AgI 	4	
	(b)	$2I^{-}(aq) + Cl_{2}(aq) \rightarrow 2Cl^{-}(aq) + I_{2}(aq)$	1	
	(c)	Oxidising agent / To oxidise I ⁻ to I ₂	1	
13	(a)	A: anode / positive electrode B: cathode / negative electrode Direction of electron flow: → clockwise	2	
	(b)	A: $2H_2O(l) \rightarrow O_2(g) + 4H^+(aq) + 4e^-$ B: $2H_2O(l) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	2	
	(C)	Effervescence is observed. Colourless and odourless gas evolved relights a glowing splint.	2	
	(d)	Concentration of zinc sulfate will increase over time due to decomposition of water to form oxygen and hydrogen gas.	2	

	(e)	The product formed at the anode will be the same.	3
		But, the product formed at the cathode would be copper metal [1] as Cu^{2+} ion is below H ⁺ ion in the electrochemical series and will be preferentially discharged.	
14	*(a)	Aluminium, zinc, X, iron	1
	*(b)	Aluminium oxidises readily / reacts readily with oxygen in air to form a protective <u>layer of aluminium oxide around the aluminium metal</u> . Very slow reaction is observed initially as the reaction is between the acid and the oxide layer. Once the oxide layer has reacted away, the <u>acid</u> is able to <u>react with the underneath aluminium metal</u> , resulting in the sudden rapid and violent reaction.	2
	*(c)	The charge of the metal X ion formed is +3. For the same number of moles of metal used, X <u>produced the same total</u> <u>volume of hydrogen gas as aluminium</u> . Hence X ion must have the same charge as aluminium ion.	2
	(di)	$Zn + 2HCl \rightarrow ZnCl_2 + H_2$	1
	(dii)	Zn is oxidised as the oxidation state of Zn increases from 0 in Zn to +2 in $ZnCl_2 / Zn^{2+}$ ions. HCl / H ⁺ ions is reduced as the oxidation state of H decreases from +1 in HCl / H ⁺ ions to 0 in H ₂ . Hence, the reaction is a redox reaction.	2
	(diii)	No. of moles of Zn = No. of moles of H ₂ = 96 / 24 000 = 0.00400 mol Mass of Zn = 0.00400 x 65 = 0.260 g	1