

TANJONG KATONG GIRLS' SCHOOL PRELIMINARY EXAMINATION SECONDARY FOUR EXPRESS

CANDIDATE NAME				
CLASS	E		INDEX NUMBER	
MATHEMAT	rics			4048/01
Paper 1			31 /	August 2022
Candidates answ	er on the Question Paper			2 hours
READ THESE IN	STRUCTIONS FIRST			
Write in dark blue You may use an Do not use staple DO NOT WRITE Answer all questi If working is need Omission of esse The use of an applif the degree of a three significant fif For π , use either The number of may be a significant of the number	HB pencil for any diagrams or g s, paper clips, glue or correctio ON ANY BARCODES.	graphs. In fluid. Shown with the answer. If marks. It pected, where appropriate. It question, and if the answer is so one decimal place. It will be a stoon the stoon requires the	e answer in term	
			For Exami	nor's use
			FUI EXAMI	HELS USE
Setters: Mdm N Markers: Mr Ang	Ng g, Mdm Lim, Mdm Murni, Mdm	Ng and Mrs Pang		

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4 \pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Answer all the questions.

1	Write the following numbers in order of size, starting with the largest.	
	$1\frac{1}{9}, -\frac{22}{7}, \left(\frac{\sqrt{2}}{2}\right)^4, -\pi$	
	Answer	[1]
2	Simplify $16(a^{-2}b^4)^{-\frac{3}{4}}$ and leave your answer in positive index form.	
	Answer	[2]
3	Show and explain that $(5n-1)^2 + 4$ is a multiple of 5 for all integers of n.	
	Answer	

A	Facto	ntice

(a)
$$36y^2 - 25(x-1)^2$$

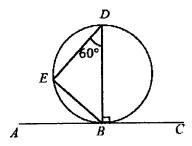
(b)
$$12x^2 - 2y^2 + 5xy$$

Answer [1]

5 Rearrange the formula to make x the subject.

$$y = \sqrt{\frac{x^2 + 1}{x^2 - 4}} \text{ where } y > 0.$$

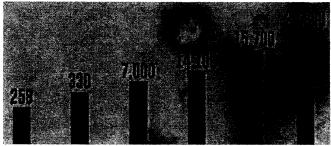
5


- 6 One solution of the equation $5x^2 + (k-23)x + k = 0$ is x = 3.
 - (a) Find the value of k.

Answer
$$k = \dots$$
 [1]

(b) Find the second solution of the equation.

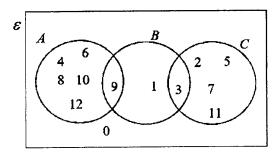
Answer
$$x = \dots$$
 [2


Given ABC is a straight line, B, D and E lie on the circumference of the circle, $\angle DBC = 90^{\circ}$ and $\angle EDB = 60^{\circ}$. Find $\angle DEB$, giving reason(s) for your answer.

Answer
$$\angle DEB = \dots$$
 [2]

[2]

Number of Covid-19 Tests per million people



Brazil Argentina US Italy Germany Norway

After this bar graph was shown on Argentinian TV channel C5N, some statisticians claimed that the TV channel was misrepresenting the terrible number of COVID-19 tests in Argentina. Explain which feature of this bar graph is misleading and how it leads to the misrepresentation. Justify your answer with reference to the bar graphs.

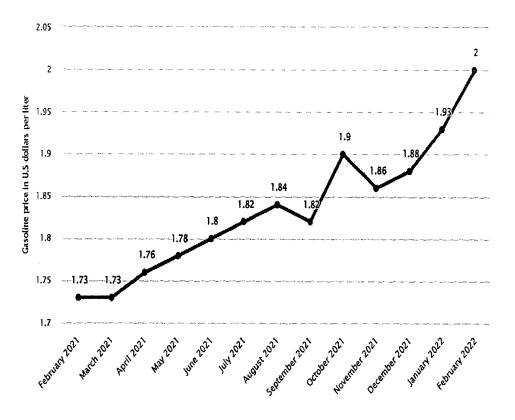
Answer			• • • • • • • • • • • • • • • • • • • •		•••••	•••••	*********
		• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	
	• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
				•••••		•••••	
						•••••	

9 $\mathcal{E} = \{\text{non-negative integers}, x: 0 \le x \le 12\}.$ The Venn diagram shows the elements of \mathcal{E} and the three sets A, B and C. A is the set of composite numbers and C is the set of prime numbers.

(a) Describe the elements of set B.

Answer	 [1]

(b) List the elements contained in the set $(A \cup B')'$.


Answer
$$(A \cup B')' = \dots [1]$$

(c) Underline the correct statements from the list below.

$$A' \cap B' \neq \emptyset$$
 $n[(A \cup B)'] = 5$ $\{3\} \subset A \cup B$ $\{9\} \notin A \cap C$ [2]

The line graph shows the average monthly prices of gasoline in Singapore from February 2021 to February 2022 (in U.S. dollars per litre).

Average Monthly Prices of Gasoline in Singapore from Feb 2021 to Feb 2022

(a) Find the percentage increase in gasoline price from February 2021 to February 2022.

Answer% [1]

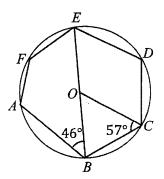
(b) Jane claimed that the current gasoline price of US\$2.34 per litre is 30% more expensive than before. Which month and year is she comparing the current gasoline price with?

Answer[1]

(c)	If the gasoline price increases by 1.5% every month starting February 2022,
` '	calculate the gasoline price 1 year later, in February 2023. Give your answer
	rounded to the nearest cent.

Answer US\$....../litre. [2]

11	A The table shows the mass of a fruit, m g, with a diameter of x cm. Determine whether
	m is directly proportional to x^3 .


Diameter, x cm	7	8	9	10
Mass, m g	61.74	92.16	131.22	180

Answer	[2]

12 y is inversely proportional to $\sqrt[3]{x}$. When y is increased by 10%, calculate the percentage decrease in x.

Answer% [2]

13 The diagram shows a circle with centre O. BOE is a straight line. Given that $\angle ABO = 46^{\circ}$ and $\angle BCO = 57^{\circ}$, find, stating your reason(s) clearly,

(a) $\angle ADE$

Answer	 [1]

(b) $\angle AFE$

(c) $\angle BEC$.

Answer° [1]

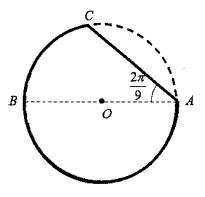
A shop sells Beauty Bath Soap that comes in two geometrically similar bottles of size 125 ml and 1000 ml as shown.

(a) Find the ratio of the height of the smaller bottle to that of the larger bottle in the form 1:n.

Answer	• • • • • • • • • • • • • • • • • • • •	[1]
Answer	• • • • • • • • • • • • • • • • • • • •	[1]

(b) At a sales, the price of the bottle with the content of 125 ml and 1000 ml are priced at \$1.90 and \$9.90 respectively. Explain which bottle provides better value for money. Support your answer with calculations.

Answer	[1]


(c)	Vouchers and posters were used to advertise this product. The ratio of the lengths
` '	of the vouchers to that of the posters were 1:4. If the size of each voucher is
	24.75 cm^2 , find the size of the posters in \mathbf{m}^2 , written in standard form.

Angwar	 m ²	[2
Answer	 111	1

15	In an	an n -sided polygon, the sum of interior angles is 1080° .		
	(a)	Find the value of n .		
		Answer $n = \dots$		[1]
	(b)	The interior angles are $x, x + 10^{\circ}, x + 20^{\circ},, [x + smallest exterior angle.]$	$(n-1)10^{\circ}$]. Find the	
		Answer	°	[2]

		15	
16	Two	numbers 528 and 756 written as product of their prime factors are $528 = 2^4 \times 3 \times 11$ $756 = 2^2 \times 3^3 \times 7$	
	Find		
	(a)	the smallest positive integer x for which $528x$ is a multiple of 756.	
		Answer	[2]
	(b)	the smallest positive integer y for which $\frac{528}{y}$ is a factor of 756.	
		Answer	[2]
		21154707	(~)

17 The figure below shows a major segment of a circle ABC where radius OA = 6 cm and $\angle OAC = \frac{2\pi}{9}$ radians.

(a) Show that the length of the arc BC is $\frac{8\pi}{3}$ cm.

[1]

Calculate

(b) the perimeter of the major segment ABC,

	$\overline{}$
п	

(c) the area of the minor segment that was cut off.

18	Given A is the point $(2, -3)$	and B is the point $(5, m)$, \overrightarrow{CD}	=	$\binom{8}{6}$
----	----------------------------------	---	---	----------------

(a) Express \overrightarrow{AB} as a column vector in terms of m.

Answer[1]

(b) If \overrightarrow{AB} is parallel to \overrightarrow{CD} , find the value of m.

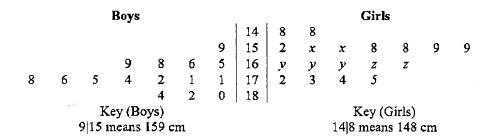
 $Answer m = \dots [2]$

(c) If $|\overrightarrow{AB}| = \frac{1}{2} |\overrightarrow{CD}|$, find $|\overrightarrow{AB}|$.

Answer $|\overrightarrow{AB}|$ =units [1]

19 Part of the graph of $y = 8 - x - \frac{4}{x}$ is drawn on the grid.

Solve each equation below for x in the range 0 < x < 8, by drawing another straight line on the graph. Leave your answer(s) in 1 decimal place.

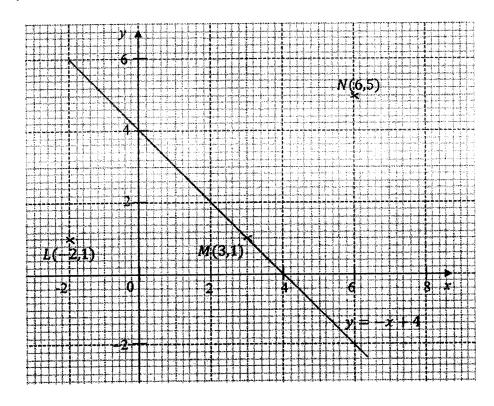

(a)
$$x + \frac{4}{x} = 5$$

Answer
$$x =$$
 or [2]

(b)
$$7 - \frac{4}{x} = \frac{x}{2}$$

Answer
$$x = \dots$$
 [3]

20 The heights, in cm, of 15 boys and 18 girls were recorded in the Back-to-back Stemand-Leaf diagram below.



(a) If the median height of the girls is 161 cm, write down the value of y.

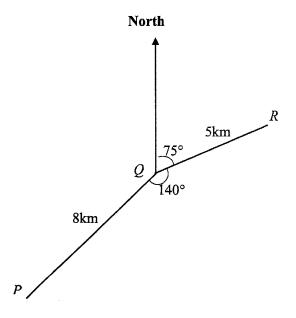
Answer
$$y = \dots$$
 [2]

(b) Find the interquartile range of the boys' heights.

The diagram shows three points L(-2,1), M(3,1) and N(6,5) and the line y = -x + 4.

(a) Calculate the exact value of $\cos \angle LMN$.

Answer [2]


(b) P is the point (3, k) and the area of triangle LMP is 15 square units. Find the possible value(s) of k.

Answer k = [3]

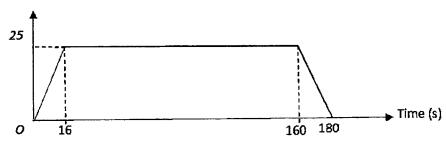
(c) Given that y = -x + 4 is the line of symmetry of triangle LMQ, write down the coordinates of Q.

Answer Q(.....) [1]

A ship sails 8 km from port P to port Q. It then sails 5 km from port Q to port R on a bearing of 075°.

- (a) Given that $\angle PQR = 140^{\circ}$, calculate
 - (i) the bearing of Q from P,

Answer	 0	[1]
Answei		ΙIJ


(ii) how far Q is east of P.

Answer	• • • • • • • • • • • • • • • • • • • •	km [2]
11113 WC1	• • • • • • • • • • • •	 $\mathbf{n} \mathbf{n} \mathbf{z} $

(b)	An is	land X is located at a	bearing of 085° from P a	and 160° from Q .	
	(i)	Find $\angle PQX$.			
				4	r13
				Answer°	[1]
	(ii)	If a boat travels from inutes, that the bo	om P to X at a speed of 4 pat takes to reach X .	0km/h, calculate the time, in	
		4 - 4			
				Answer minutes	[3]
iong K	Catong (Firls' School	4048/S4Prelim/01/2022	(Turn	over

23 The diagram shows the speed-time graph of a car as it travelled from point A to B.

Speed (m/s)

(a) Find the speed of the car at 165 seconds.

<i>Answer</i> m/s	Γ2
21/10/1/07	L~.

(b) A stationary motorcycle started travelling at the same time as the car, taking the same route in opposite direction from point B to A. Given that the motorcycle travelled at a constant acceleration of 3 m/s² and it passed by the car at T seconds where 16 < T < 160, show that

$$1.5T^2 + 25T - 4250 = 0.$$

[3]

End of Paper

Sec 4 Prelim Math Paper 2

1 (a) Exp	ress as a single fraction in its simplest form	
(i)	$\frac{24q^2}{63p^3} \div \frac{9q^5}{21p},$	[1]

(ii)
$$\frac{1}{m-4} + \frac{2m}{m^2 - 16}.$$
 [2]

(b) Simplify
$$\frac{3x-9}{2x-xy+3y-6}$$
. [3]

(c) Solve the equation
$$(x+2)(x-5) = (x-5)(4x-7)$$
. [3]

Bal	2019, Alan and Bala decided to start a business together. Alan invested \$210 000 and a invested \$140 000. They agreed that all profit should be divided in the same ratio he sums of the money they invested.	
(a)	In 2019, the profit was \$20 000. Calculate Alan's share of the profit.	[2]
(b)	Due to the pandemic, the total profit in 2020 dropped to \$12 500. Calculate the percentage decrease in profit from 2019 to 2020.	[1]
(c)	To expand their business, they decided to borrow \$100 000 from a bank. The bank charged an interest rate of 2.4% per annum compounded half yearly. Calculate how much interest they need to pay after 5 years. Give your answer correct to the	
	nearest dollars.	131

Alan and Bala can choose to import their raw materials which cost RM40 000 in Malaysia or NT\$265 000 in Taiwan. The exchange rate between Singapore and Malaysia is S\$1 = RM\$3.20 and the exchange rate between Taiwan and Singapore is NT\$100 = S\$4.60. There is a freight charge of 2% for the raw materials from Taiwan only. Determine which country they should import their raw materials from.

[4]

3	A wholesaler supplies snacks and delivers to two stalls. The matrix, S, shows the
	number of each type of snacks per delivery made to Stalls A and B. In a week, the
	wholesaler delivers 5 times to Stall A and 7 times to stall B.

sandwich	cake	pie	
(25	20	13	Stall A
$\mathbf{S} = \begin{pmatrix} 25 \\ 40 \end{pmatrix}$	18		Stall B

- (a) The wholesaler charges the stalls \$2.00, \$0.70 and \$1.50 each for sandwich, cake and pie respectively. Represent these prices in column matrix **P**. [1]
- (b) Evaluate the matrix C = SP. [2]

- (c) State what each of the elements of C represents. [1]
- (d) The amount collected by the wholesaler in a week from Stall A and Stall B respectively is represented by a 2×1 matrix, W. Using only matrix [2] multiplication, find W.

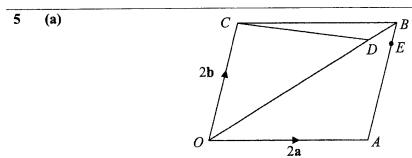
(e) Hence, find the total amount collected by the wholesaler in a week. [1]

4	(a)	These are the first four terms in a sequence.	
		-2 1 4 7	
		Find an expression, in terms of n, for the nth term of the sequence.	[1]

(b) Study the following number pattern of the Pythagorean Triples.

Row	Pythagorean Triples
1	$5^2 = 3^2 + 4^2$
2	$13^2 = 5^2 + 12^2$
3	$25^2 = 7^2 + 24^2$
4	$41^2 = 9^2 + 40^2$
5	$p^2 = q^2 + 60^2$
:	:
N	$P_N^2 = Q_N^2 + R_N^2$

(i) Write down the value of p and of q in Row 5. [2]


(ii) Write down the Pythagorean Triples in Row 10 when $P_{10} = 221$. [1]

[2]

(iii) When
$$Q_N = 111$$
, find N .

(iv)	Given that $R_N = aN^2$	+bN, find the value of a and of b.	[4]

(v) Explain with reason why it is not possible for 2021 to be a number of R_N . [2]

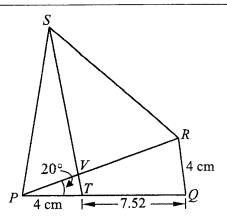
The diagram shows a parallelogram OABC. The point D on OB is such that OD = 5DB. The point E on AB is such that AB : EB = 5:1. Given that $\overrightarrow{OA} = 2a$ and $\overrightarrow{OC} = 2b$.

(i)	Expre form.		in terms	of a	a and	b,	giving	each	of y	your	answers	in its	simplest	
	(a)	Ōŀ	; 3,											[1]

$$| (b) | \overrightarrow{CD}.$$
 [2]

(111)	T. 1.1	Area of Δ <i>ODC</i>	
(iii)	Find the numerical value of	Area of parallelogram OABC	[1]

(b) It is given that $\overrightarrow{PQ} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$ and the coordinates of R are (4,0). Find the coordinates of the point S such that PQRS is a parallelogram. [2]


[1]

- An aircraft flew from Town A to Town B and made a return trip to Town A from Town B. The total distance covered was 1200 km. The speed of the aircraft in still air is 200 km/h. The aircraft flew against the wind when flying from Town A to Town B, and flew wind assisted when flying back to Town A from Town B.
 - (a) The speed of the wind, which is constant throughout, is x km/h. The time taken by the aircraft, in hours, to fly from Town A to Town B is $\frac{600}{200-x}$. Write down an expression, in terms of x, the time taken by the aircraft, in hours, to fly from Town B to Town A.
 - (b) The time taken to fly against the wind is 10 minutes longer than when it took to fly wind assisted. Write down an equation in terms of x and show that it reduces to $x^2 + 7200x 40\ 000 = 0$.

(c) Showing your working clearly, solve the equation $x^2 + 7200x - 40\,000 = 0$, giving your solutions correct to 2 significant figures. [4]

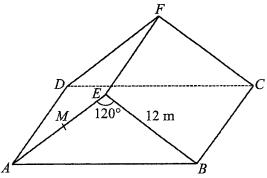
(d) Find the time taken for the whole trip.

7

 $\triangle PQR$ is an isosceles triangle with $\angle QPR = 20^{\circ}$. S is a point outside $\triangle PQR$ such that $\triangle PRS$ is an equilateral triangle and SVT is a straight line that meets PR and PQ at V and T respectively. It is given that QR = TP = 4 cm and TQ = 7.52 cm.

(a) Show that $\triangle PQR$ is congruent to $\triangle STP$. Give a reason for each statement you make.

[3]


(b) Show that $\triangle STR$ is an isosceles triangle.

[2]

(c) | Find $\angle STR$.

[2]

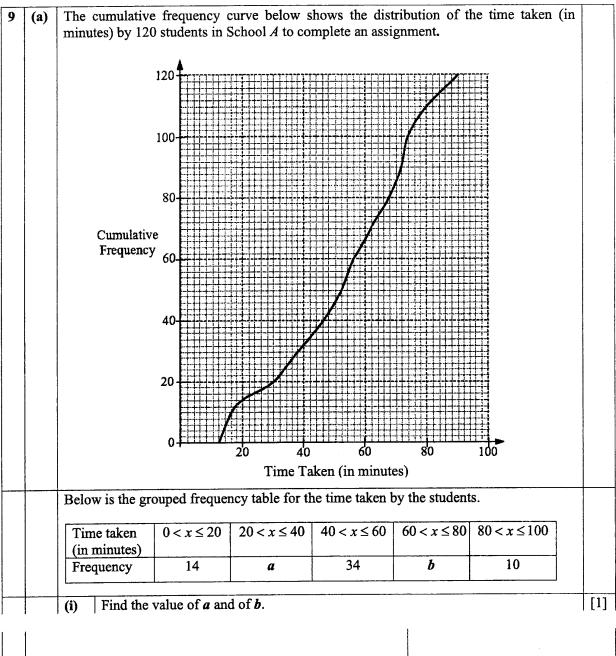
A roof in the shape of a triangular right prism is constructed as shown below such that ABCD is a rectangle, ADFE and BCFE are squares. AE = BE = 12 m, $\angle AEB = 120^{\circ}$ and M is the midpoint of AE.

Find

(a) the area of triangle ABE,

[2]

(b) AB^2 ,


[2]

(c) AC,

[2]

(d) $\angle AEC$,

[3]

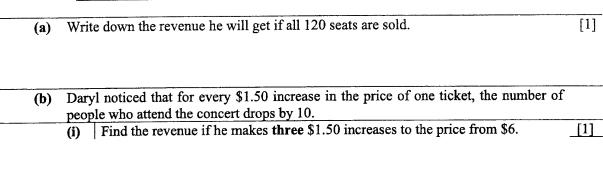
(ii) Estimate the mean time taken by the students.	[1]

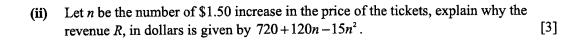
[1]

(iii) Estimate the standard deviation of the time taken by the students.

(iv) 120 students from School B completed the same assignment, and the analysis of their time taken is represented in the table below.

Mean time taken	60
Standard deviation	13.6


Make two comments comparing the time taken by the students from the 2 schools. [2]


- (b) Ali, Bryan and Chandra took part in a game of dart throwing. The probabilities that Ali, Bryan and Chandra will hit the target in a single throw are $\frac{1}{6}$, $\frac{1}{5}$ and $\frac{1}{4}$ respectively.
 - (i) For the first game, all three of them throw the dart at the target at the same time. Find the probability that all of them hit the target. [2]
 - (ii) In the second game, they each make a single throw of the dart at the target in the order of Ali, Bryan and Chandra. For this game, once the target is hit, the game will end. Find the probability the target is hit.

[3]

Daryl owns a concert hall with a full capacity of 120 seats. He conducted a survey to find out how much to charge for tickets. The detail of the survey is below:

Price of one ticket	Number of people who will attend the concert
\$6.00	120
\$7.50	110
\$9.00	100
\$10.50	90
:	

- (iii) Explain why the number of \$1.50 increase in price should be less than 12. [1]
- (iv) By drawing a suitable graph for n < 12 on the grid opposite, work out how much should Daryl charge his ticket to maximum revenue. [4]

Answer Keys

TANJONG EFFUNG

1	$1\frac{1}{9}, \left(\frac{\sqrt{2}}{2}\right)^4, -\pi, -\frac{22}{7}$					
2	$\frac{16a^{\frac{3}{2}}}{b^3}$					
3	$5(5n^2 - 2n + 1)$ is a multiple of 5	for all integ	ers of n			
4(a)	(6y+5x-5)(6y-5x+5)	4(b)	(4x-y)(3x+2y)			
5	$x = \pm \sqrt{\frac{4y^2 + 1}{y^2 - 1}}$					
6(a)	k=6	6(b)	The other solution is $x = \frac{2}{5}$			
7	Angle <i>DEB</i> = 90°					
8	Misleading feature: The heights of the bars are not proportional to the number of covid-19 tests per million people. Effect of misleading feature: The heights of the bars suggest that Argentina tests about three-quarter the number of people per million as the *USA. However, Argentina tests 330 people per million while the USA tests 7000 people per million, which is about 21 times. *Accept correct comparison with other countries (Italy approx. 4/5 vs 43 times, Germany 2/3 vs 48 times or Norway ½ vs 68 times)					
9(a)	Elements of set B are factors of 9 .	9(b)	$(A \cup B')' = A' \cap B = \{1, 3\}$			
9(c)	$\underline{A' \cap B' \neq \emptyset} \ n[(A \cup B)'] = 5 \ \{3\} \subseteq A \cup B \ \{9\} \notin A \cap C$					
10(a) 10(c)	15.6% US\$2.39	10(b)	June 2021			
11	Since $\frac{m}{x^3} = k$, where $k=0.18$ is a no	on-zero cons	tant, m is directly proportional to x^3 .			
12	24.9%					
13(a)	46°	13(b)	134°			
13(c)	33°					
14(a)	1:2	14(c)	$3.96 \times 10^{-2} \text{ m}^2$			
14(b)	1.2 1.4(c) 3.96 x 10 ° m² 1000ml bottle cost \$0.0053 less per ml than 125 ml bottle. The 1000 ml bottle provides better value for money. OR 1000ml bottle provides 35.221 more ml per \$1 than 125 ml bottle. The 1000 ml bottle provides better value for money.					

15(a)	n = 8	15(b)	10°
16(a)	smallest positive integer $x = 63$	16(b)	smallest positive integer $y = 44$
17(b)	36.4 cm	17(c)	13.7 cm ²
		10(1)	
18(a)	$\binom{3}{m+3}$	18(b)	$m = -\frac{3}{4}$
18(c)	$\frac{(m+3)}{5 \text{ units}}$		1 4
10(0)	3 umts		
19(a)	x = 1.0 or 4.0 (accept 3.9)	19(b)	x = 0.6
<u>-</u>			
20(a)	y=3	20(b)	IQR of boy's height = $178 - 168 =$
			10 cm
01(.)	3	21(b)	k = 7 or -5
21(a)	$\cos \angle LMN = -\frac{3}{5}$	21(0)	k = 7 or -5
21(c)	Q(3, 6)		
22(a)(i)	035°	22(a)(ii)	4.59km
22(b)(i)	55°	22(b)(ii)	10.2 min
02(.)	G 1 10.75/-		
23(a)	Speed = 18.75 m/s		

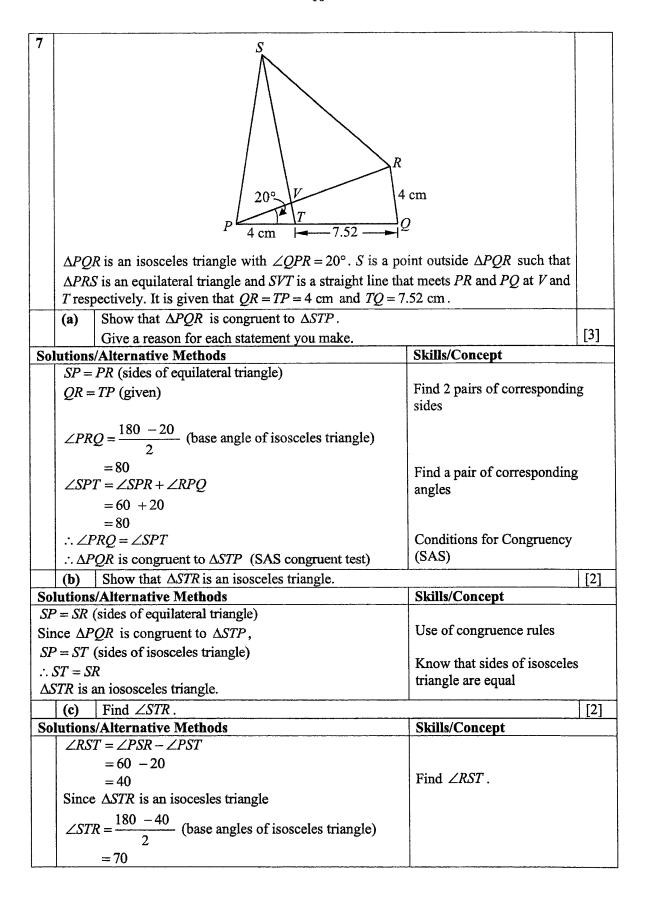
Sec 4 Prelim Math Paper 2 Solutions

(a) Express as a single fraction in its simplest form				
(i) $\frac{24q^2}{63p^3} \div \frac{9q^5}{21p}$,	[1]			
Solutions	Skills/Concept			
$= \frac{24q^2}{63p^3} \times \frac{21p}{9q^5}$	Take reciprocal: $\frac{24q^2}{63p^3} \times \frac{21p}{9q^5}$			
$=\frac{8}{9p^2q^3}$	Laws of indices: $a^{m+n} = a^m \times a^n$ $a^{m-n} = a^m \div a^n$			
(ii) $\frac{1}{m-4} + \frac{2m}{m^2-16}$.	[2]			
Solutions	Skills/Concept			
$= \frac{1}{m-4} + \frac{2m}{(m-4)(m+4)}$	Quadratic Identity: $a^2 - b^2 = (a + b)(a - b)$			
$=\frac{(m+4)+2m}{(m-4)(m+4)}$	Express as single fraction			
$=\frac{3m+4}{(m-4)(m+4)}$				
$= \frac{3m+4}{(m-4)(m+4)}$ (b) Simplify $\frac{3x-9}{2x-xy+3y-6}$.	[3]			
Solutions/Alternative Methods	Skills/Concept			
$= \frac{3x-9}{(2x-xy)+(3y-6)} = \frac{3x-9}{x(2-y)+3(2-y)$	Factorisation by grouping			
$=\frac{3(x-3y)+(3y-6)}{x(2-y)+3(2-y)-3($				
	$-\frac{3}{y-2}$ also acceptable			
$=\frac{3}{2-y}$				
(c) Solve the equation $(x+2)(x-$	5) = (x-5)(4x-7). [3]			
Solutions/Alternative Methods	Skills/Concept			
(x+2)(x-5)-(4x-7)(x-5)=0	Factorisation of quadratic function			
(x-5)[(x+2)-(4x-7)] = 0 (x-5)(9-3x) = 0	Solving quadratic equation			
x=3 or $x=5$				

2	In 2019, Alan and Bala decided to start a business together. Alan invested \$210 000 and					
-	Bala invested \$140 000. They agreed that all profit should be divided in the same ratio					
	as the sums of the money they invested.					
	(a) In 2019, the profit was \$20 000. Calculate Alan's share of the profit.					
Solu	tions/Alternative Methods	Skills/Concept				
	3 20 000	210000	3			
	Alan's share of profit = $\frac{3}{5} \times 20~000$	Ratio: $\frac{210000}{210000 + 1400}$	$\frac{1}{1000} = \frac{1}{5}$			
	= \$12 000					
	(b) Due to the pandemic, the total prof	fit in 2020 dropped to	\$12 500. Calculate the			
	percentage decrease in profit from			[1]		
Solu	tions/Alternative Methods	Skills/Concept				
	percentage decrease in profit		difference 100			
	•	Percentage decrease	= — ×100			
	$=\frac{20\ 000-12\ 500}{20\ 000}\times100\%$		original.			
	= 37.5%	- 14- 1	from a houle The houle	T		
	(c) To expand their business, they decid					
	charged an interest rate of 2.4% pe how much interest they need to pay					
	nearest dollars.	affer 3 years. Give you	ii answer correct to the	[3]		
Solv	tions/Alternative Methods	Skills/C	ancont	15		
Solu			опсерь			
	Interest = $100\ 000 \left[1 + \frac{\left(\frac{2.4}{2}\right)}{100} \right]^{3/2} - 100\ 00$	$n=5\times 2$				
	Interest $-100,000 1 + \frac{2}{2} -100,000$	$n = 3 \times 2$				
	100 00	$r = 2.4 \div 2$				
		7 - 2,7	- L			
	=\$12 669.1778					
	=\$12 669	Round	p to nearest dollars			
	(d) Alan and Bala can choose to import			T		
	Malaysia or NT\$265 000 in Taiwa					
	Malaysia is S1 = RM3.20 and the	_	_ _			
	is NT100 = S4.60 . There is a free	_		1		
	Taiwan only. Determine which cou					
	from.	may mey should imp	off their faw materials	[4]		
Salv	tions/Alternative Methods		Skills/Concept] F.7		
2010		40 000	Exchange rate for	 		
	Amount paid in S\$ for Malaysia import =	=	Malaysia Ringgit			
		3.2	Walaysia Kinggii			
	= :	\$12 500				
		100 (000 000				
	Amount paid in S\$ for Taiwan import =	$\frac{102}{265000} \times 4.6$	Exchange rate for Tai	wan		
	F	100 (100	dollars	. , ,		
	=	\$12 433.80				
			Include 2% freight ch	arge		
				50		
	They should import their raw materials	from Taiwan because	Compare with differe	nce		
	_		in values			
	the total amount paid is <u>S\$66.20</u> lower compared to Malaysia. in values					

number of each type of snacks per delivery made to	A wholesaler supplies snacks and delivers to two stalls. The matrix, S, shows the number of each type of snacks per delivery made to Stalls A and B. In a week, the wholesaler delivers 5 times to Stall A and 7 times to stall B.				
sandwich cake pie					
	tall A				
$\mathbf{S} = \begin{pmatrix} 25 & 20 & 13 \\ & & \\ 40 & 18 & 21 \end{pmatrix} \mathbf{S}$					
(40 18 21) S	tall B				
(a) The wholesaler charges the stalls \$2.00, \$0.70 at	nd \$1.50 each for sandwich, cake				
and pie respectively. Represent these prices in co					
Solutions/Alternative Methods	Skills/Concept				
$\mathbf{P} = \begin{pmatrix} 2.00 \\ 0.70 \end{pmatrix}$	Column matrices 3×1				
(1.50)					
(b) Evaluate the matrix C = SP.	[2]				
Solutions/Alternative Methods	Skills/Concept				
$\mathbf{C} = \begin{pmatrix} 25 & 20 & 13 \\ 40 & 18 & 21 \end{pmatrix} \begin{pmatrix} 2.00 \\ 0.70 \\ 1.50 \end{pmatrix}$ $= \begin{pmatrix} 83.50 \\ 124.10 \end{pmatrix}$	Multiplying matrices, Order: $(2\times3)\times(3\times1)=(2\times1)$				
$= \binom{83.50}{124.10}$	[1]				
(c) State what each of the elements of C represents. Solutions/Alternative Methods	Skills/Concept [1]				
The elements represent the amount collected by the wholesaler from the sales of snacks per delivery from Stall A and Stall B respectively.					
(d) The amount collected by the wholesaler in a	week from Stall A and Stall B				
respectively is represented by a 2×1 mat multiplication, find W.	rix, W. Using only matrix [2]				
Solutions/Alternative Methods	Skills/Concept				
$\mathbf{W} = \begin{pmatrix} 5 & 0 \\ 0 & 7 \end{pmatrix} \begin{pmatrix} 83.50 \\ 124.10 \end{pmatrix} \text{ or } = \begin{pmatrix} 83.50 & 0 \\ 0 & 124.10 \end{pmatrix} \begin{pmatrix} 5 \\ 7 \end{pmatrix}$	Matrix multiplication of 2×2 with 2×1 to get 2×1				
$= \binom{417.50}{868.7}$					
$= \begin{pmatrix} 417.50 \\ 868.7 \end{pmatrix}$					
(e) Hence, find the total amount collected by the wh	nolesaler in a week. [1]				
Solutions/Alternative Methods	Skills/Concept				
Total amount = $\begin{pmatrix} 1 & 1 \\ 868.7 \end{pmatrix}$	Unit matrix (1 1)				
868.7					

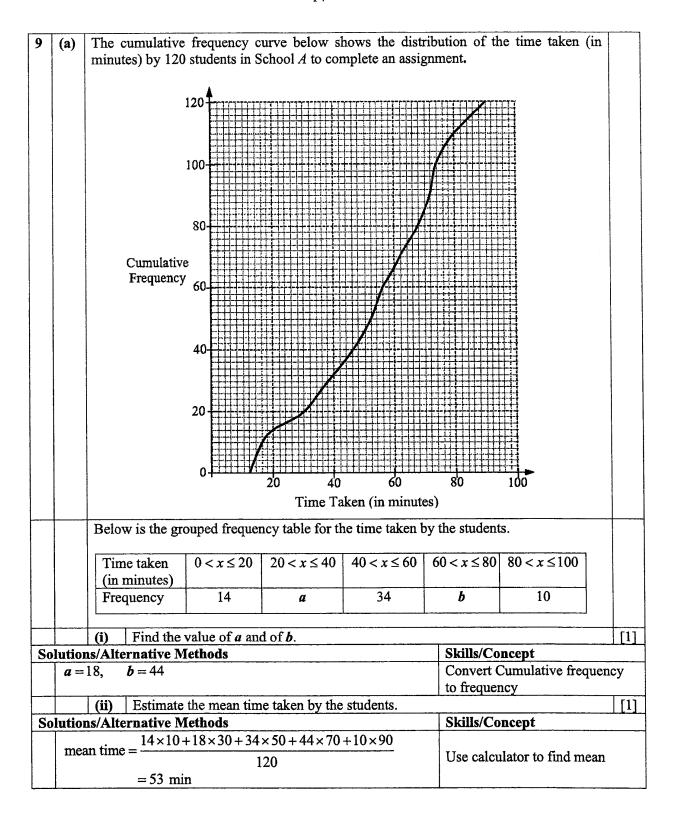
4	(a)	These are the first four terms in a sequence.						
•	1	1						
				-2 1	4 7			
				ion, in terms of n , for	or the nth			[1]
Sol			native Me				ills/Concept	
	3(n	-1)-2	2 = 3n - 3 -	2		1	neral term: $a + (n-1)d$	
			=3n-5				1st term,	
							constant difference between terr	ns
	(b)	Study	y the follov	ving number pattern	of the Py	/thag	gorean Triples.	
				Row	Pytha	agor	ean Triples	
			!	1			$3^2 + 4^2$	
				2	1	$3^2 =$	$15^2 + 12^2$	
				3	2	$5^2 =$	$7^2 + 24^2$	
				4			$9^2 + 40^2$	
				5		$p^2 =$	$=q^2+60^2$	
							-	
				N	P.	$r^{2} = 0$	$Q_N^2 + R_N^2$	
					1	<u> </u>	Z _N N	
		(i)	Write dov	vn the value of p an	d of q in l	Row	· 5.	[2]
Sol	utions		native Me				Skills/Concept	
	p =	: 61					Number patterns	
	q =	11						
	1	(ii)	Write dov	vn the Pythagorean	Triples in	Rov	w 10 when $P_{10} = 221$.	[1]
Sol	utions	s/Alter	native Me	thods			Skills/Concept	
	221	$l^2 = 21^2$	$+220^{2}$				Include P, Q & R	
		(iii)	When Q_N	=111, find <i>N</i> .				[2]
Sol	ution	s/Alter	native Me	thods			Skills/Concept	
	$Q_N = 2(N-1) + 3$						Find number pattern for Q_{N}	
	=2N+1							
	2N+1=111				Equate $2N + 1$ to 111			
		2N=1						
	N = 55							


(iv)	Given that $R_N = aN^2 + bN$, find the value	of a and of b.	[4]
Solutions/Altern	ative Methods	Skills/Concept	
$R_{N} = aN^{2} +$	bN		
When $N=1$	1,	To det	
$a(1)^2 + b(1)$	= 4	Form 1 st equation	
a+b=4 ···	·· (1)		
When $N = 1$	2,	Form 2 nd equation	
$a(2)^2 + b(2)$)=12		
4a + 2b = 12	2 (2)		
$(1)\times 2$, $2a$	$+2b=8 \qquad (3)$		
(2)-(3),		Solve simultaneous equations	
2a=4		1	
a=2	2 into (1)		
$\begin{array}{c} \text{Substitute } a \\ (2) + b = 4 \end{array}$	a=2 into (1),	Both a & b must be correct	
b=2			
	Explain with reason why it is not possible f	For 2021 to be a number of $R_{\rm M}$.	[2]
Solutions/Altern		Skills/Concept	1
$2N^2 + 2N =$		Make $R_{_N}$ a multiple of 2	
	$+2N = 2(N^2 + 1)$ is always even for all		
	it is not possible for 2021 which is odd to	Multiples of 2 are even numbers	3
be a number	•		

5	(a)	$\begin{array}{c} C \\ 2\mathbf{b} \\ O \\ \hline \\ 2\mathbf{a} \\ \end{array}$ The diagram shows a parallelogram $OABC$. The point D on OB is such that			
		OD = 5DB. The point E on AB is such that AB	EB = 5:1. Given that $OA = 2a$		
		and $OC = 2\mathbf{b}$. (i) Express in terms of \mathbf{a} and \mathbf{b} , giving each	of your answers in its simplest		
		(i) Express in terms of a and b, giving each form.	or your answers in its simplest		
		(a) OB,		[1]	
Solu	itions	Alternative Methods	Skills/Concept		
	1	$= OA + AB$ $= 2\mathbf{a} + 2\mathbf{b}$	Triangle Law of Vector Addition	n	
		(b) CD.		[2]	
Solu	itions	s/Alternative Methods	Skills/Concept		
		$= CO + OD$ $= CO + \frac{5}{6}OB$ $= -2\mathbf{b} + \frac{5}{6}(2\mathbf{a} + 2\mathbf{b})$ $= -2\mathbf{b} + \frac{5}{3}\mathbf{a} + \frac{5}{3}\mathbf{b}$ 5 1.	Vector addition with $OD = \frac{5}{6}OA$	В	
	ļ	$= \frac{5}{3}\mathbf{a} - \frac{1}{3}\mathbf{b}$ (ii) Show that C, D and E are collinear.		[3]	
Soh	ution	s/Alternative Methods	Skills/Concept	1121	
	T	=CB+BE	Find CE using vector addition		
	1	$=2\mathbf{a}+\frac{1}{5}BA$	Make CD a scalar multiple of of	CE	
		$= 2\mathbf{a} + \frac{1}{5}(-2\mathbf{b})$ $= 2\mathbf{a} - \frac{2}{5}\mathbf{b}$	Or any other scalar multiple $DE = \frac{1}{3}\mathbf{a} + \frac{1}{15}\mathbf{b}$ $= \frac{1}{15}(5\mathbf{a} - \mathbf{b})$		
	CE	$C = \frac{1}{3}(5\mathbf{a} - \mathbf{b})$ $C = \frac{2}{5}(5\mathbf{a} - \mathbf{b})$ $CD = \frac{5}{6}CE$	$= \frac{1}{5 \times 3} (5\mathbf{a} - \mathbf{b})$ $DE = \frac{1}{5} CD$		
		ce CD is a scalar multiple of CE and C is a numon point, $\therefore C$, D and E are collinear.	Conditions for collinearity	-	

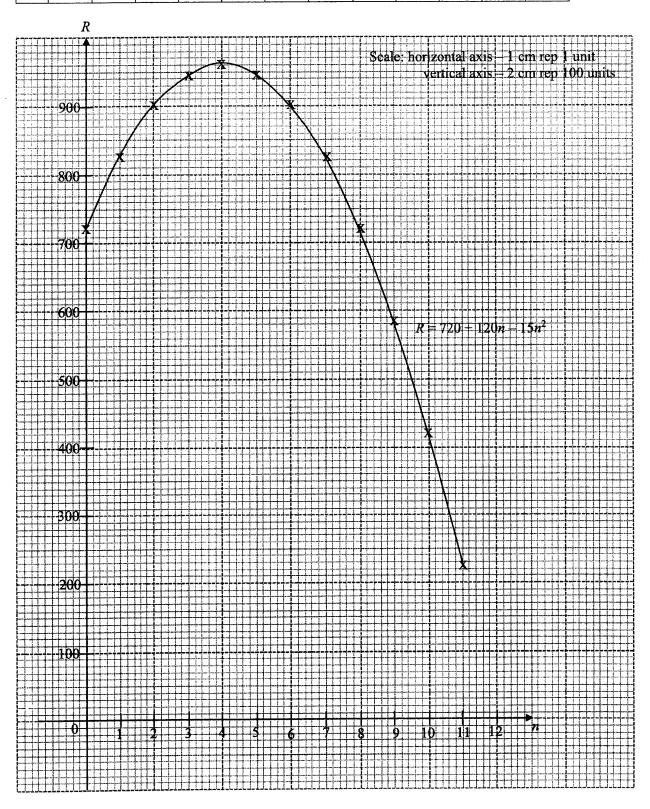
		(iii) Find the numerical value of Area of $\triangle ODC$			
		(iii)	Find the numerical value of	Area of parallelogram OABC	[1]
Solu	tions	/Alter	native Methods	Skills/Concept	
$\frac{\text{Area of } \triangle ODC}{\text{Area of } \triangle OBC} = \frac{\frac{1}{2} \times 5 \times h}{\frac{1}{2} \times 6 \times h}$ $= \frac{\frac{5}{6}}{\frac{\text{Area of } \triangle ODC}{\text{Area of parallelogram } OABC}} = \frac{5}{6} \times \frac{1}{2}$ $= \frac{5}{12}$				Use of Area of triangle = $\frac{1}{2}$ × base × height find ratio of 2 triangles with common height. Or use counting method	l
	(b) It is given that $PQ = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$ and the coordinates of the point S such that F			the coordinates of R are $(4,0)$. Find the at $PQRS$ is a parallelogram.	[2]
Solutions/Alternative Methods				Skills/Concept	
	PQ PQ $\begin{pmatrix} 5 \\ 1 \end{pmatrix}$ $\begin{pmatrix} a \\ b \end{pmatrix}$	$= SR$ $= OR$ $= \begin{pmatrix} 4 \\ 0 \end{pmatrix}$	$ \begin{pmatrix} a \\ b \end{pmatrix} \\ - \begin{pmatrix} 5 \\ 1 \end{pmatrix} $	PQ = SR for equal vectors in parallelogram R S/Q Clockwise or anti-clockwise for $PQRS$ Must be coordinates	m

	m 44 m D 1	1					
		ade a return trip to Town A from Town	1				
	B. The total distance covered was 1200 km. The speed of the aircraft in still air is 200 km/h. The aircraft flew against the wind when flying from Town A to Town B, and						
flew wind assisted	flew wind assisted when flying back to Town A from Town B.						
by the aircra	by the aircraft, in hours, to fly from Town A to Town B is $\frac{600}{200-x}$. Write down						
	an expression, in terms of x , the time taken by the aircraft, in hours, to fly from Town B to Town A .						
Solutions/Alternative		Skills/Concept					
600							
$\frac{300}{200+x}$							
	en to fly against the wind is	10 minutes longer than when it took to					
fly wind assi	isted. Write down an equatio	n in terms of x and show that it reduces	3]				
	$x - 40\ 000 = 0.$		2]				
Solutions/Alternative		Skills/Concept					
$\frac{600}{200-x} - \frac{600}{200+x}$: 60	Forming quadratic equations					
$\frac{600(200+x)-60}{(200^2-x)^2}$	$\frac{00(200-x)}{(x^2)} = \frac{1}{6}$	$(200+x)(200-x)=(200^2-x^2)$					
		as denominator					
:	$00(200-x) = \frac{1}{6}(200^2 - x^2)$						
$1200x = \frac{1}{6}(200^2 - $	$-x^2$)						
$7200x = 200^2 - x^2$	2	Simplify equation to required one					
$x^2 + 7200x - 400$	000 = 0 (shown)						
(c) Showing you							
	ns correct to 2 significant fig		4]				
Solutions/Alternative		Skills/Concept					
$x^2 + 7200x - 400$		Solving of quadratic equation using					
$-7200 \pm \sqrt{720}$	$00^2 - 4(1)(-40000)$	formula or completing square only					
$x = \frac{1}{1 + 1}$	$\frac{00^2 - 4(1)(-40000)}{2(1)}$						
=5.55113 or $=-$		Leave answers in 2 sig fig					
= 5.6 or = -7200	0 (2 s.f.)	Louis and the significant					
Solutions/Alternative	Methods						
$x^2 + 7200x - 400$	000 = 0						
$(x+3600)^2-(360)^2$	$(00)^2 - 40 \ 000 = 0$	Solve by completing the square					
$(x+3600)^2=130$	00000	·					
$ x = -3600 \pm \sqrt{1}$							
= 5.55113 or = -							
= 5.6 or = -720	0 (2 s.f.)	Leave answers in 2 sig fig					
(d) Find the tim	e taken for the whole trip.		[2]				
Solutions/Alternative	e Methods	Skills/Concept					
Time teles = 2	600 10						
Time taken = $2 \times$	$\frac{200 + 5.55113}{60} + \frac{1}{60}$	Use $x = 5.55113$ to find time taken to	the				
= 6.0		nearest hour					
=6 h	ours						
Solutions/Alternative	e Methods						


Time taken = $2 \times \frac{600}{200 - 5.55113} - \frac{10}{60}$ = 6.0046	
= 6 hours	
Solutions/Alternative Methods	
Time taken = $\frac{600}{100} + \frac{600}{100}$	
1111000000000000000000000000000000000	
= 6.0046	
= 6 hours	

(d)	(d) Show that QR is parallel to ST , hence find the area of ΔPVT if area of triangle $\Delta PQR = 22.7 \text{ cm}^2$.						
Solutions	/Alternative Methods	Skills/Concept	.4				
Since	ΔPQR is congruent to ΔSTP ,						
∠PQ	$R = \angle STP$ (corresponding \angle s of congruent triangles)	Use of congruent rule					
	= 80°	Corr. angles, parallel lines					
By co	onverse of corresponding angles, QR is parallel to ST.	Corr. angres, paramer mies					
OR							
	R = 40°						
1 -	$Q = 60^{\circ} + 80^{\circ} = 140^{\circ}$						
1	$R + \angle SRQ = 40^{\circ} + 140^{\circ} = 180^{\circ}$. By converse of interior						
angle	s, QR is parallel to ST .						
OR							
$ $ $\angle VR$	$Q = 180^{\circ} - 40^{\circ} - 60^{\circ} = 80^{\circ}$ (angle sum in a triangle)						
	$R = \angle VRQ = 80^{\circ}$. By converse of alternate angles, QR						
l l	allel to \overline{ST} .						
l l	V is similar to ΔPQR						
Area	of $\Delta PTV = \left(\frac{4}{11.52}\right)^2 \times 22.7$	Areas of similar triangles					
	= 2.7368 cm ²						
	$= 2.74 \text{ cm}^2$						

8	A roof in the shape of a triangular right prism is constructed as shown below such that $ABCD$ is a rectangle, $ADFE$ and $BCFE$ are squares. $AE = BE = 12$ m, $\angle AEB = 120^{\circ}$ and M is the midpoint of AE .					
	(a) the area of triangle ABE,		[2]			
Sol	utions/Alternative Methods	Skills/Concept				
	area of triangle $ABE = \frac{1}{2} \times 12 \times 12 \times \sin 120$ = 62.354	Area of triangle involving sir	ne			
	$= 62.4 \text{ m}^2$					
	(b) AB^2 ,		[2]			
Sol	utions/Alternative Methods	Skills/Concept				
	$AB^{2} = 12^{2} + 12^{2} - 2(12)(12)\cos 120$ $= 432$	Cosine rule				
	(c) AC,		[2]			
Sol	utions/Alternative Methods	Skills/Concept				
	$AC = \sqrt{432 + 12^2}$ (Pythagoras' Theorem) = 24 m	Pythagoras' Theorem				
'	(d) ∠AEC,	,	[3]			
Sol	utions/Alternative Methods	Skills/Concept				
	$EC = \sqrt{12^2 + 12^2}$ (Pythagoras' Theorem) = $\sqrt{288}$ m	Pythagoras' Theorem				
	$\cos \angle AEC = \frac{12^2 + \left(\sqrt{288}\right)^2 - 24^2}{2(12)(\sqrt{288})}$ $= \frac{-144}{407.293506}$ $\angle AEC = 110.7048$ $= 110.7 (1 \text{ d.p.})$	Cosine rule				


(e) the largest angle of elevation of M viewed from	n a point along <i>CD</i> . [3]
Solutions/Alternative Methods	Skills/Concept
Let the point directly below M at AB be P and let the be Q on CD . $AM = 6$ m	point
$\angle PAM = 30^{\circ}$ (base angle of isocesles triangle) $PM = 6 \sin 30^{\circ}$ $= 3 \text{ m}$ $PQ = 12 \text{ m}$ $\tan \angle PQM = \frac{3}{12}$	Sine Trigo Ratio
$\angle PQM = \tan^{-1} \left(\frac{1}{4}\right)$ = 14.036 = 14.0 (1 d.p.)	Tangent Trigo Ratio

		(iii)	Estimate the standard deviation of the time taken by	the students.						
Sol	lutior		ernative Methods	Skills/Concept						
	SD	$=\sqrt{\frac{14}{14}}$	$\frac{\times 10^2 + 18 \times 30^2 + 34 \times 50^2 + 44 \times 70^2 + 10 \times 90^2}{120} - 53^2$	Use calculator to find S.D						
	. =	= 1395	$\frac{2200}{20} - 2809$							
	i	= 22.75								
	=	= 22.8	min (3 s.f.)							
	(iv) 120 students from School B completed the same assignment, and the analysis of their time taken is represented in the table below.									
			Mean time taken 60							
			Standard deviation 13.6							
		 -	Make two comments comparing the time taken by the	ne students from the 2 schools. [2]						
Sol	lutior	s/Alte	ernative Methods	Skills/Concept						
			e, students from school B took longer to complete the	Comparing of data in context						
		_	mment as their mean time taken of 60 minutes is 7	using mean by stating the						
	min	utes lo	onger than the mean time taken of 53 minutes by	difference						
	stud	ents fr	om school A.							
			d of the time taken to complete the assignment for	Comparing of data in context						
			rom school A is wider compared to students from	using S.D. by stating the						
			as their standard deviation of 22.8 minutes is 9.2	difference						
			gher than School B's 13.6 minutes. The time taken							
	by tl	he stuc	lents from School B is more homogeneous.							
	(b)	,	Bryan and Chandra took part in a game of dart throwing							
		Brya	n and Chandra will hit the target in a single throw are							
		(i)	For the first game, all three of them throw the dart a							
<u> </u>			Find the probability that all of them hit the target.	[2]						
Sol			ernative Methods	Skills/Concept						
	P(al	l of th	em missed) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}$	Probability of independent events						
			$=\frac{1}{120}$							
			120							
		(ii)	In the second game, they each make a single throw							
			order of Ali, Bryan and Chandra. For this game, or							
			will end. Find the probability the target is hit.	[3]						
So			ernative Methods	Skills/Concept						
	P(hit the target) = $\frac{1}{6} + \left(\frac{5}{6} \times \frac{1}{5}\right) + \left(\frac{5}{6} \times \frac{4}{5} \times \frac{1}{4}\right)$ Probability of independent ever & mutually exclusive events									
			$=\frac{1}{2}$							

10	Daryl owns a concert hall with a full capacity of 120 seats. He conducted a survey to find out how much to charge for tickets. The detail of the survey is below:								
	11011								
		Price of one ticket	Number of people w		attend the concert				
		\$6.00		120 110					
		\$7.50 \$9.00		100					
		\$10.50		90					
		\$10.50							
	(a)	Write down the revenue he	will get if all 120 seat	s are so	ld.	[1]			
Solu		Alternative Methods			Skills/Concept				
	Rev	enue = 120×6							
		= \$720	<u> </u>						
	(b)	people who attend the cond	cert drops by 10.		of one ticket, the number of				
			e makes three \$1.50 ii	ncreases		[1]			
Solu		Alternative Methods			Skills/Concept				
	Pric	e after increase $= 6.00 + 3(1$.50)						
		= \$10.50							
		the table when ticket at \$1	0.50, 90 people will at	tend		İ			
	Reve	enue = 90×10.50							
		= \$945	of \$1 50 in one again the		of the tickets, explain why the				
		· · ·	is given by $720 + 120$			[3]			
Solu	tions	/Alternative Methods	18 given by 720 + 120	1311	Skills/Concept	1[2]			
Solu		ount increase = $1.50n + 6$			Find amount increase				
		aber of people who will atter	nd = 120 - 10n		The drop in number who atte	end			
		enue = $(1.50n + 6)(120 - 10n)$			Form expression for revenue				
		$= 180n - 15n^2 + 720 - 6$			-				
		$= 720 + 120n - 15n^2 $ (s							
		(iii) Explain why the num		in price	should be less than 12	[1]			
Solu	tions	Alternative Methods	1001 01 0110 111010000	p	Skills/Concept	<u> - </u>			
		n > 12,							
	1	ber of people who will atte	nd is $120 - 10n < 0$						
		e number of increase of \$1.							
		(iv) By drawing a suitabl	e graph for $n < 12$ on the	he grid o	opposite, work out how much				
			his ticket to maximum			[4]			
Solu	ıtions	/Alternative Methods		Skills/	Concept				
	Graph below: must include table of values & scales Sufficient points (at least 6) to draw								
	as they are not given in the question. smooth curve								
	Smooth curve passing through all points								
	From	n the graph, since revenue is	s maximum at $n = 4$,	Know	max revenue is at $n = 4$				
	Hes	should charge = $4(1.50) + 6$	=\$12						

n	0	1	2	3	4	5	6	7	8	9	10	11
R	720	825	900	945	960	945	900	825	720	585	420	225

