

S/N	Answer	Explanation
1	D	$[E] = \frac{ Q ^{n}}{ k }$ kg m ² s ⁻² = $\frac{A^{n} s^{n}}{A^{2} s^{4} kg^{-1} m^{-2}}$ n = 2
2	С	$a = b^{2}c$ $c = \frac{a}{b^{2}}$ $\frac{\Delta c}{c} = \frac{\Delta a}{a} + 2\frac{\Delta b}{b}$
3	С	At point A: object just reached the ground for the first time At point B: object just about the leave the ground after first bounce
		At point C: object reached the maximum height after first bounce
		At point D: object just reached the ground for the second time
4	C	$s = ut + \frac{1}{2}at^{2}$ $u = 0 \text{ since the stone falls from rest.}$ $2 = \frac{1}{2}at^{2}$ $\frac{4}{a} = t^{2}$ $t = \frac{2}{\sqrt{a}} - \dots - (1) \text{ where } t \text{ is the time taken for stone to fall on Earth}$ Acceleration of free fall of moon = $\frac{a}{6}$, where a is the acceleration of free fall on Earth. Sub $\frac{a}{6}$ into equation (1) $t_{moon} = \frac{2}{\sqrt{\frac{a}{6}}} = \frac{2}{\sqrt{a}} (\sqrt{6}) = t\sqrt{6}$
5	В	Area under the force-time graph = change in momentum = impulse Total area = $(5 \times 0.5) + (15 \times 0.5) = 10$ $\Delta p = m \Delta v = 10$ $\Delta v = v - 0 \Rightarrow v = 10 / 4 = 2.5 \text{ m s}^{-1}$ $2.5 \text{ m s}^{-1} + 2.5 \text{ m s}^{-1} = 5.0 \text{ m s}^{-1}$

H2 Physics PU3 Preliminary Examination Paper 1 Answers

6	В	A and D obviously wrong.
		Try taking moments about C,
		clockwise moment = $(3m)(1.5x) = 4.5mx$ anti-clockwise moment = $(3m)(1.5x) + (m)(0.5x) = 4.5mx + 0.5mx = 5mx$
		Therefore C is also wrong and centre of gravity is slightly to the left side of C.
7	С	Since the balloon is in equilibrium, upthrust on balloon = weight of balloon and helium + force by spring
		$\rho_{air}V_{balloon}g = \rho_{helium}V_{balloon}g + m_{balloon}g + kx$
		$\rho_{air}V_{balloon}g = \rho_{helium}V_{balloon}g + m_{balloon}g + kx$ (1.29)(5.0)g = (0.180)(5.0)g + ($\frac{3.5}{1000}$)g + (100)x
		<i>x</i> = 0.544 m
8	С	Force constant, $k = \frac{5.0}{0.1} = 50 \text{ N m}^{-1}$
		Initial extension $=\frac{F}{k}=\frac{3}{50}=0.06$ m and final extension $=\frac{F}{k}=\frac{2.5}{50}=0.05$ m
		Change in E.P.E. $=\frac{1}{2}kx_f^2 - \frac{1}{2}kx_i^2 = \frac{1}{2}(50)(0.05)^2 - \frac{1}{2}(50)(0.06)^2 = -0.028 \text{ J}$
9	D	Frictional force on the object provides the centripetal force $mr\omega^2$. Both objects have the
		same angular velocity and same mass, but the centripetal force required for Q is larger
		due to larger radius. When the centripetal force required exceeds the frictional force
		available, Q starts to slide.
10	D	Using COE:
		$E_i = E_f$
		$GPE_i = KE_f$
		$mgr = \frac{1}{2}mv^2$
		=
		$2mgr = mv^2$ (1)
		mv^2
		$T_{\text{bottom}} - mg = \frac{mv}{r}$
		$-mv^2$
		$T_{\text{bottom}} - mg = \frac{mv^2}{r}$ $T_{\text{bottom}} = \frac{mv^2}{r} + mg \qquad \text{sub (1) into eqn}$
		$=\frac{2mgr}{r}+mg$
		= 3 <i>mg</i>

11	С	GM
		$g = \frac{GM}{r^2}$ $g \propto \frac{M}{r^2}$
		a – M
		$g \propto \frac{1}{r^2}$
		Let the quantities with subscript 'J represent that of Jupiter while those with subscript 'E
		represent that of Earth.
		$\frac{g_{\rm J}}{g_{\rm E}} = \frac{M_{\rm J}}{M_{\rm E}} \left(\frac{r_{\rm E}^2}{r_{\rm J}^2}\right)$
		$g_{\rm E} = M_{\rm E} \left(r_{\rm J}^{2} \right)$
		$\frac{g_{\rm J}}{g_{\rm E}} = (318) \left(\frac{6370 \times 10^3}{7.15 \times 10^7}\right)^2$
		$\overline{g_{\rm E}}^{-(510)}\left(\frac{7.15\times10^7}{7.15\times10^7}\right)$
		Since $g_{\rm E} = 9.81 \text{ N kg}^{-1}$, $g_{\rm J} = (318) \left(\frac{6370 \times 10^3}{7.15 \times 10^7}\right)^2 (9.81)$
		= 24.8 N kg ⁻¹
12	В	$\Delta U = m \Delta \phi \propto \Delta \phi$
		$\frac{\Delta U_{BC}}{\Delta U_{AB}} = \frac{\Delta \phi_{BC}}{\Delta \phi_{AB}} \Longrightarrow \frac{-5.0}{+20} = \frac{\phi_C + 3.0}{-3.0 + 7.0}$
		$=>\phi_{\rm C}=-4.0~{\rm J~kg^{-1}}$
13	A	When two objects A and B are placed in thermal contact, heat flows from the hotter object to the colder object B, until they reached thermal equilibrium. At thermal equilibrium, both
		objects A and B are at the same temperature.
14	В	Average K.E. = $\frac{3}{2}kT = \frac{3}{2}(1.38 \times 10^{-23})(27 + 273.15) = 6.2 \times 10^{-21} \text{ J}$
15	D	
		$mc\frac{\Delta\theta}{t} = \frac{m}{t}L$
		$\frac{L}{c} = \frac{\Delta \theta}{t}(t)$
		$\begin{array}{c} c & t \\ = 4 \times 40 \end{array}$
		$= 4 \times 40$ = 160
16	С	= 100 Amplitude, x _o = 0.36/2 = 0.18 m
		$V_{max} = \omega x_o$
		$= (2\pi/T) x_{0}$
		$= (2\pi/0.60)(0.18)$ = 1.9 m s ⁻¹
		- 1.0 11 0
17	В	Damping force opposes motion.
18	С	Since / is proportional to A ² ,
		$A_{R} = A + (2A) = 3A$
		Hence, 9 /

26	Α	
		V _a N _a
		$\frac{V_s}{V_p} = \frac{N_s}{N_p}$
		$\frac{V_s}{120} = \frac{1}{60}$
		$V_{\rm s} = 2.0 \text{ V}$
		Then $I_s = V_s/R = 2.0/3.0 = 0.667 \text{ A}$
		For ideal transformer,
		$V_{\rho}I_{\rho} = V_{s}I_{s}$
		$120 \times I_{p} = 2.0 \times 0.667$
		$I_p = 0.011 \text{A}$
		P
27	С	The range of wavelengths for visible light is 400 nm to 700 nm.
		Since $E = \frac{hc}{\lambda}$, the energies of these photons range from
		$\frac{(6.63 \times 10^{-34})(3.00 \times 10^8)}{(700 \times 10^{-9})(1.60 \times 10^{-19})} = 1.7759 \text{ eV to } \frac{(6.63 \times 10^{-34})(3.00 \times 10^8)}{(400 \times 10^{-9})(1.60 \times 10^{-19})} = 3.1078 \text{ eV}.$
		$(700 \times 10^{-9})(1.60 \times 10^{-19})$ (1.60 × 10 ⁻¹⁹) (1.60 × 10 ⁻¹⁹)
		Only 3 transitions will result in emissions of such photons:
		6.12 – 4.28 = 1.84 eV
		6.81 - 4.28 = 2.53 eV
		7.02 - 4.28 = 2.74 eV
28	D	For the cut-off wavelength,
		$eV = \frac{hc}{\lambda_{\min}}$
		Since the λ_{min} for graph 2 is halved of graph 1, that means that the accelerating potential
		for graph 2 is doubled that of graph 1.
		Since the characteristic wavelength remain the same for graph 1 and graph 2, this
		means that the target metal is the same.
29	Α	Difference in binding energies of products and reactants = Gain in kinetic energies of
		products + Energy of gamma ray
		(39.25 + 28.48 – 64.94) = 2.31 + E
		E = 0.48 MeV

30	A	A range of (kinetic) energies indicates a range of speeds for the β particles. Since beta particles are emitted with a range of speeds, the products of a beta decay process cannot just consist of the daughter nuclide (product nuclide) and the beta particle as this would imply definite speeds for both products, in order for linear momentum to be conserved.
		Option B is wrong. There is no such observation. Neutrino is chargeless. The total charge of the decay products is equal to the charge of the parent nuclide.
		Option C is wrong. It is a true observation, but the loss in mass during β decay is due to conversion to energy released, and not the existence of the neutrino.
		Option D is wrong. There is no such observation. Neutrino is chargeless so has no ionising power, and therefore cannot be observed in a cloud chamber.