1	(a)(i)	<u>Order of rxn wrt to Br₂</u> Comparing expt 1 & 3, when $[Br_2]$ triples from 0.01 to 0.03 moldm ⁻³ , the rate of rxn also triples. Hence, $[Br_2]$ is directly proportional to the rate of rxn		
		Order of rxn wrt $Br_2 = 1$		
		Order of rxn wrt to HCOOH		
		Comparing expt 1 & 2,		
		$\frac{8.0 \times 10^{-6}}{2.0 \times 10^{-6}} = \frac{(0.02)^{1} (0.04)^{x}}{(0.01)^{1} (0.02)^{x}}$		
		x = 1		
		Order of rxn wrt HCOOH = 1		
		* can used any 2 sets of expts to compare too.		
		Rate = k[Br ₂][HCOOH]		
	(a)(ii)	$6.0 \times 10^{-6} = k (0.03) (0.02)$		
		k = 0.01 mol ⁻¹ dm ³ s ⁻¹		
	(a)(iii)	The reaction involves 1 mole of Br ₂ and 1 mole of HCOOH in the rate determining step. Overall, this is a one-step reaction.		
	(a)(iv)	After mixing, $[Br_2] = 0.005 \text{ mol dm}^{-3}$ $[HCOOH] = 0.01 \text{ mol dm}^{-3}$		
		Rate = $(0.01)(0.005)(0.01)$ = 5.0 x 10 ⁻⁷ mol dm ⁻³ s ⁻¹		
1	(b)(i)	Methanal, methanol and methanoic acid are all polar molecules and exist as simple molecular structure .		
		Methanal has permanent dipole-permanent dipole interaction between molecules.		
		Methanol and methanoic acid have hydrogen bonds between molecules.		
		Since permanent dipole-permanent dipole is weaker than hydrogen bonds , less energy is needed to over the attractions between methanal. Hence, methanal has the lowest boiling point.		
		Methanoic acid forms more extensive hydrogen bonds than methanol.		

	$ _ methanoic acid ⇒ silver mirror _ ethanoic acid ⇒ no silver mirror $
	HCOOH + $2[Ag(NH_3)_2]^+$ + 2 OH ⁻ \rightarrow (NH ₄) ₂ CO ₃ + 2 Ag + 2 NH ₃ + H ₂ O
	*Reagent and conditions [1] *Observations(+ve and –ve) [1] *Balanced equations [1]

2	(a)(i)	Standard electrode potential is defined as the potential difference between a		
		standard hydrogen electrode and an electrode immersed in a solution		
		containing ions at <u>1 mol dm⁻³</u> concentration at <u>25°C</u> and <u>1 atmospheric</u>		
		pressure		
	(a)(ii)	E ^θ _{cell} = +0.77 – 0.34 = +0.43 V		
	(a)(iii)	$Cu \rightarrow Cu^{2+} + 2e$		
		$Fe^{3+} + e \rightarrow Fe^{2+}$		
		$Cu + 2Fe^{3+} \rightarrow Cu^{2+} + 2Fe^{2+}$ (reversible arrow-no marks)		
	(a)(iv)	[Fe ³⁺] decreases		
		[Fe ²⁺] increases		
	(a)(v)	$Cu \rightarrow Cu^{2+} + 2e$		
		Q = I x t = 30 X 1 = 30 C		
		Q =nFe		
		30 x 1 = mass/Mr x 96500 x 2		
		mass of Cu dissolves = 9.87 x 10 ⁻³ g		
	(a)(vi)	Either : The direction of electron flow will be reversed or the direction of		
		current flow will be reversed or voltage increase		
	(b)	Equilibrium considerations for mention of shift of POE (Using Le Chatelier's		
		principle to predict)		
		suggest the use of a low temperature as the forward exothermic reaction		
		liberates energy for the synthesis of ammonia		
		Whereas a high temperature is favoured for the endothermic reaction in the		
		synthesis of nitrogen monoxide.		
		A <u>catalyst is used to speed up the reaction</u> in the synthesis of ammonia as		
		too high temperature is not favoured		
2	(c)(i)	Step II : KCN in ethanol, reflux		
-		Step II : dilute acid or H ⁺ (ag) boil under reflux		
	(c)(ii)	Fe in the presence of excess CL gives FeCL and CL (not pecessary)		
	(•)(•)	FeCl ₀ + Cl ₀ \rightarrow Cl ⁺ (FeCl ₀) ⁻ (not necessary)		
		$(10013 + 012 \rightarrow 01 (1 + 014))$		
		Electrophilic substitution of methyl benzene with CI ⁺		

	H ₃ C H_3 C H
(c)(iii)	$P = C_6H_5CH_2COOH$
(c)(iv)	Step III : acidic hydrolysis Step IV : reduction

3	(a)				
		Hydrogen Halides	HC <i>l</i>	HBr	HI
		Observations	No observable reactions. White fumes of HC <i>I</i> remains.	Reddish brown fumes of bromine observed. OR Reddish brown liquid of bromine observed.	Violet or purple fumes of iodine observed. OR Black deposits of iodine observed.
		** [1/2] for 1-2 correct	observations of 3		
		Equations	No applicable	See below	See below
		$\frac{HBr}{2HBr(g)} + H_2SO_4(I) \rightarrow \frac{HI}{2HI(g)} + H_2SO_4(I) \rightarrow 2$	· 2H ₂ O(I) + SO ₂ (g) 2H ₂ O(I) + SO ₂ (g) +	+ Br ₂ (g)	
		$8HI(g) + H_2SO_4(I) \rightarrow 4$	$H_2(g) + H_2S(g) + 4$	$H_2O(I)$ Any 1 accep	equation is table.
		$6HI(g) + H_2SO_4(I) \rightarrow 3$	$31_2(g) + S(s) + 4H_2(g)$		
		**[1] for 1 correct equ **[1/2] for missing state **[0] for equations that	ations of 2 symbols it are not balanced		
3	(b)(i) 8 (ii)	The breakdown of ma	irks are as follows:		
	α (II)	 Max of 1m for 	description		
		 Max of 1m for 	balanced equation	ı	

		If state symbols are missing or wrong, $[\frac{1}{2}]$ for each balanced equation.		
3	(b)(i)	$Cl_2(g) + 2l^{-}(aq) \rightarrow 2Cl^{-}(aq) + I_2(s)$		
		I_2 (s) + I ⁻ (aq) \Rightarrow I_3^- (aq) if not given, it is still acceptable.		
		The iodine that is precipitated gives dark blue colouration with starch solution.		
		If equation is not provided, observations like chlorine displaces iodide are acceptable.		
3 (b)(ii) If descriptions are missing, award [2m] for the balanced dis equations.		If descriptions are missing, award [2m] for the balanced disproportionation equations.		
		If equations are not provided, award max of 1 m for description like		
		Disproportionation reactions occur at different temperatures		
		Disappearance of chlorine smell		
	(b)(ii) With cold aqueous alkali, $Cl_2(g) + 2OH(aq) \rightarrow Cl(aq) + ClO(aq) + H_2O(l)$			
		With hot aqueous alkali , $3Cl_2(g) + 6OH^-(aq) \rightarrow 5Cl^-(aq) + ClO_3^-(aq) + 3H_2O(I)$		
		$3ClO^{-}(aq) \rightarrow 2Cl^{-}(aq) + ClO_{3}^{-}(aq)$		
		Identification+deductions=Max 3 m		
	(c)(i)	Element X : Magnesium		
	Element Y : Sulphur			
		Formula of the oxide of Element Y : SO ₃		
		6.99g of white ppt correspond to the mass of 0.03 mol of BaSO ₄		
		Upon addition of $BaCl_2$, white ppt formed is $BaSO_4$		
		 MgCl₂ hydrolyses slightly to form a weakly acidic solution of pH ~ 6.5 		
		Balanced chemical equations MAX: 4 × 1m = 4 m)		
		[1] for each of any 4 correct equations from equations (i)-(vi)		
		$MgO(s) + H_2O(I) \rightarrow Mg(OH)_2(aq)(i)$		
		$MgCl_{2}(s) + 6H_{2}O \rightarrow [Mg(H_{2}O)_{6}]^{2+} (aq) + 2Cl^{-} (aq)(ii)$		
		$[Mg(H_2O)_6]^{2+} (aq) \Rightarrow [Mg(H_2O)_5(OH)]^+ (aq) + H^+(aq)(iii)$		
		OR		
		$\left[[Mg(H_2O)_6]^{2^+} (aq) + H_2O(I) \Rightarrow [Mg(H_2O)_5(OH)]^+ (aq) + H_3O^+(aq) - \dots - (iii) \right]$		

5	(a)(i)	val-leu-glu-asp-thr-leu-ala-glu-leu-glu-ala	
	(a)(ii)	Basically to test whether students remember to subtract 3 H ₂ O	

Mark Scheme

U

- End of Marking Scheme -

9746/03/Prelim/08