

EUNOIA JUNIOR COLLEGE JC2 MID YEAR EXAMINATION 2021 General Certificate of Education Advanced Level Higher 1

PHYSICS

MARK SCHEME

8867/02

July 2021

Section A

Qı	uesti	on	Solution	Marks
1	(a)		Rate of change of velocity (with time)	B1
	(b)		Constant acceleration OR Motion in a straight line	B1
	(c)	(i)	$s_{x} = u_{x}t$ $25 = (50\cos 20^{\circ})t$ t = 0.53 s	C1 A1
		(ii)	$v_y = u_y + a_y t$ $v_y = 50 \sin 20^\circ + (9.81)(0.53)$ $v_y = 22.3 \text{ m s}^{-1}$	C1
			$\tan \theta = \frac{v_y}{v_x} = \frac{22.3}{50 \cos 20^\circ}$ $\theta = 25^\circ$	C1 A1
		(iii)	$s_{y} = u_{y}t + \frac{1}{2}a_{y}t^{2}$ $s_{y} = (50 \sin 20^{\circ})(0.53) + \frac{1}{2}(9.81)(0.53)^{2}$ $s_{y} = 10.4 \text{ m}$ $s = \sqrt{s_{x}^{2} + s_{y}^{2}}$ $s = \sqrt{25^{2} + 10.4^{2}}$	C1
			$s = \sqrt{25} + 10.4^{-1}$ s = 27 m	C1 A1

Qu	Question		Solution	Marks
2	(a)		Total momentum of a system remains constant	B1
			provided no external resultant force acts on the system.	
	(b)	(i)	$\Delta P = P_f - P_i$	
			$= 25 \times 10^3 - 50 \times 10^3$	
			$= -25 \times 10^3 \text{ kg m s}^{-1}$	A1
		(11)	momentum / 10^3 kg m s ⁻¹	
			20 20 0 0 0 0 0 0 0 0 0	B1 B1
		(iii)	$u_x = 25 \text{ m s}^{-1}, u_y = 10 \text{ m s}^{-1}, v_x = 12.5 \text{ m s}^{-1}, v_y = 18.3 \text{ m s}^{-1}$	
		. ,	total kinetic energy before collision = 775 kJ total kinetic energy after collision = 660 kJ	M1
			Since the total kinetic energy before collision (775 kJ) is not equal to the total kinetic energy after collision (660 kJ), the collision in not elastic.	A1
			OR relative speed of approach = 15 m s ⁻¹ relative speed of separation = 5.83 m s ⁻¹	(M1)
			Since relative speed of approach (15 m s ⁻¹) is not equal to relative speed of separation (5.83 m s ⁻¹), the collision is not elastic.	
		(iv)	$E_{K} = \frac{1}{2}mv^{2} = \frac{1}{2}(1240)(22.2)^{2} = 3.055608 \times 10^{5} \text{ J}$	C1

	$\frac{\Delta E_{K}}{E_{K}} = \frac{\Delta m}{m} + 2\frac{\Delta v}{v}$	
	$\frac{\Delta E_{K}}{3.055608 \times 10^{5}} = \frac{20}{1240} + 2\frac{0.8}{22.2}$	C1
	$\Delta E_{\rm K} = 0.3 \times 10^5 \rm J$ $E_{\rm K} = (310 \pm 30) \rm k.l$	A1
Examine	's Comments	L

Question		n	Solution	Marks
3	(a)		F = ma Driving force – mgsin9.0° = ma Driving force – (2500)(9.81)sin9.0° = (2500)(2.0) Driving force = 8837 N	C1
			Power = Fv Power = (8837)(8.5) Power = 7.5×10^4 W	C1 A1
	(b)		loss in KE = gain in GPE + work done against friction $\left(\frac{1}{2}mu^{2} - \frac{1}{2}mv^{2}\right) = mgh + (friction)(s)$ $\left(\frac{1}{2}(2500)(12)^{2} - \frac{1}{2}(2500)(8.0)^{2}\right) = (2500)(9.81)(s \sin 9.0) + (500)(s)$	C1
	Exa	mi	s = 23 m iner's Comments	A1

Question		า	Solution	Marks
4	(a)		gravitational force provides centripetal force	B1
			$GMm/r^2 = mr\omega^2$	
			$\omega = 2\pi/T$	B1
			Showing algebra clearly to reach answer	
	(b)		Any two of the followings: appears to remain above the same point on the Earth	
			has a period of 24 hours.	B1
			equatorial orbit/orbits (directly) above the equator	B1
			from west to east	
	(c)		$(24 \times 3600)^2 = 4 \pi r^3 \div (6.67 \times 10^{-11} \times 6.0 \times 10^{24})$ r = 4.2 × 10 ⁷ m	M1
			$\omega = 2\pi \div (24 \times 60 \times 60) = 7.27 \times 10^{-5} \text{ rad s}^{-1}$	M1
			$v = r \omega = (4.2 \times 10^7)(7.27 \times 10^{-5}) = 3.1 \times 10^3 \text{ m s}^{-1}$	A1
	(d)		gravitational force is just sufficient to provide the centripetal force	B1
			'weight'/sensation of weight/contact force/reaction force is difference between F_G and F_C which is zero	B1
	Exar	niner	's Comments	

Qu	Question		Solution	Marks
5	(a)	(i)	$t = s_x/v$	
			$= (40 \times 10^{-3}) \div (1.5 \times 10^{7})$	
			$= 2.7 \times 10^{-9} \mathrm{s}$	A1
		(ii)	1. change in velocity, Δv	
			= change in y-component = $v_{\rm f} \sin 20^\circ - 0$	C1
			$= 1.6 \times 10^{7} (\sin 20^{\circ})$	
			$= 5.5 \times 10^{\circ} \mathrm{ms}^{-1}$	A1
			• De Neutral Ord Leur the nets of chernes of menors the effet	
			2. By Newton's 2 rd Law, the rate of change of momentum of the body must be in the same direction as the resultant force acting	BI
			on the body	
			on the body.	
			Hence the direction of the change in velocity must be in the same	B1
			direction as the electric force which is vertically upwards.	
			······································	
		(iiii)	$\mathbf{F} = \mathbf{\alpha}\mathbf{E} = \mathbf{m}\mathbf{a}$ where $\mathbf{a} = (V_y - \mathbf{u})/t$ and $\mathbf{E} = V/d$	M1
		• •	$\overline{(1.6 \times 10^{-19})}V/(20 \times 10^{-3}) = 9.11 \times 10^{-31} \times (5.5 \times 10^{6})/(2.7 \times 10^{-9})$	
			V = 230 V	
				A1
		(iv)	For no deflection: Net force on the electron is zero	
			Electric force = magnetic force	M1
			qE = BqV	
			$2307(20 \times 10^{\circ}) - B(15.0 \times 10^{\circ})$	A1
	(b)		To find the radius of the semi-circle:	
	(~)			
			Magnetic force provides the centripetal force for the electron to	М1
			complete the circular path.	
			$Bqv = mv^2/r$	
			r = mv/Bq	
			$= 9.11 \times 10^{-51} \times 1.5 \times 10^{7} / [(7.7 \times 10^{-4})(1.6 \times 10^{-19})]$	
			= 0.11 m	
			Circumference of circle $= 2 - r = 2 \times - \times 0.11 = 0.601 \text{ m}$	
			Total distance travelled in 1 cycle $= 2 \times \pi \times 0.11 = 0.091$ m	
			= 0.771 m	C1
			Time = 0.771 / (1.5 × 10 ⁷) = 5.14 × 10 ⁻⁸ s	A1
	Exa	niner	's Comments	

Qu	Question Solution			Marks
6	(a)	assu	ming uniform deceleration,	
		v ² =	$u^{2} + 2as$	
		a =	$\frac{v^2 - u^2}{60^2} = \frac{0 - \left(\frac{185 \times 10^3}{60^2}\right)^2}{10^2}$	C1
		2s 2(80)		
		=	$= -17 \text{ m s}^{-2}$	
		dece	leration = 17 m s ⁻¹	A1
	(b)	(i)	$a = \frac{v^2}{r}$	M1
			$v_{\max} = \sqrt{ar} = \sqrt{4gr}$	
			$=\sqrt{4(9.81)(30)}$	
			$= 34 \text{ m s}^{-1}$	A1
		(ii)	From Fig. 6.1 to increase the value of contact force by increasing the	B1
			value of μ at high temperature.	
			From Fig. 6.2, when twree are bested, it becomes eafter and ean increase	D4
			the contact area with the surface by covering up the air gap	ы
	(c)	the v	the wing is shaped to deflect air upwards. By N2L, air experiences a rate of	
		<u>chan</u>	ge of momentum upwards and hence experiences an upward force	
		<u>By N</u> direc	<u>I3L, the wing experiences a force equal in magnitude and opposite in</u> tion of that experienced by air.	M1
		the f	area process down on the car and increases the apparent weight	A 0
		(no r	narks awarded if only mention about force acting down on the car)	AU
	(d)	(i)	car is in rotational equilibirum. by principle of moments, about centre of gravity, sum of clockwise moments = sum of anti-clockwise moments $N_R x_R = N_F x_F + Dh$	B1
			car is in vertical translational equilbirum, vector sum of forces along vertical is 0 $N_{\rm R} + N_{\rm F} = W$	B1
			Sub $N_{\rm F}$: $N_{\rm p} x_{\rm p} = N_{\rm p} x_{\rm p} + Dh$	
			$N_{\rm R} x_{\rm R} = (W - N_{\rm R}) x_{\rm F} + Dh$	
			$N_{\rm R}(x_{\rm R}+x_{\rm F}) = Wx_{\rm F} + Dh$	
			$M_{\rm F} + Dh$	
			$N_{\rm R} = \frac{1}{X_{\rm R} + X_{\rm F}}$	A 0

	(ii)	$N = \frac{W X_{\rm F} + Dh}{M}$	
		$X_{\rm R} = X_{\rm R} + X_{\rm F}$	
		$W - N_{\rm E} = \frac{W x_{\rm E} + D h}{M}$	
		$X_{R} + X_{F}$	
		$N_{\rm F} = W - \frac{W x_{\rm F} + D h}{X_{\rm F} + X_{\rm F}}$	
		$A_{R} + A_{F}$	
		$=\frac{VVX_{\rm R}+VVX_{\rm F}-VVX_{\rm F}-DH}{VVX_{\rm F}-VVX_{\rm F}-DH}$	
		$X_{\rm R} + X_{\rm F}$	
		$=\frac{Wx_{R}-Dh}{H}$	
		$X_{\rm R} + X_{\rm F}$	A1
	(iii)	as nagnitude of <i>D</i> increases as the car accelerates	B1
		magnitude of $N_{\rm R}$ increases and magnitude of $N_{\rm F}$ decreases	B1
		since by vertical translational equilibirum $N_{\rm R} + N_{\rm F} = W$	
		a greater share of the weight is supported by the rear wheel as driving force increases	
Exar	niner	's Comments	

Section B

Qu	Question		Solution	Marks
7	(a)	(i)	Magnetic flux density is defined as the force per unit length	
			per unit current acting on a conductor carrying a current,	B1
			placed perpendicularly to the magnetic field.	B1
		(ii)	kg s ⁻² A ⁻¹	A1
		/:::)	Clearly labelled diagram:	
		(111)		
			nivotal	
			copper frame axis	
			rider m	
			L B field	
			F G mg	
			xy	
			Diagram Presence of Pivots, Coil and Current	R1
			Diagram – Tresence of Twols, Con and Current	51
			Magnetic Force must be acting downwards	B1
			Rider/Mass acting downwards	B1
			Application of principle of moment: Showing the full equation.	B1
			By measuring the current <i>I</i> , the mass m of the rider, the distances L, x	B1
			and y, the magnetic flux density B can be determined.	
	(b)		When switch is opened: PD across the 4.0 O resistor = $12/(0.5 \pm 4) \times 4 = 10.667$ V	01
			Power across the 4.0 Ω resistor = V ² /R = 28.45 W	C1
			When switch is closed:	C1
			$4//3 = 1.714 \Omega$	
			PD across the 4.0 Ω resistor = 12/ (0.5 + 1.714) x 1.714 = 9.2899 V	C1
			(Since 4 Ω and 3 Ω resistors are parallel, they have the same PD)	
			Power across the 4.0 Ω resistor = V ² /R = 21.58 W	
			Decrease in power = $28.45 - 21.58$	M1
			= 6.87 W	
			= 6.9 W (2 SF)	A1

(C)	(i)	a <u>spontaneous</u> and <u>random</u> process in which	B1
		an unstable nucleus emits particles or radiation to acquire a more stable state.	B1
	(ii)	A spontaneous process is one which is <u>not triggered or affected by</u> <u>external factors</u> such as temperature and pressure.	B1
	(iii)	A random process is one with a <u>constant probability of decay</u> (of a nucleus) per unit time and hence unable to predict which nucleus will decay.	B1
(d)	(i)	0 = -(A - 4)v + 4V or equivilent	A1
	(ii)	$\frac{\text{initial kinetic energy of } \alpha \text{-particle}}{\text{initial kinetic energy of daughter-particle}} = \frac{\frac{1}{4}(4u)V^2}{\frac{1}{2}(A-4)uv^2}$	M1
		= shows substitution of (i)	M1
		$=(\frac{1}{4}A - 1)$	A0
Exa	miner	's Comments	

Qu	Question		Solution	Marks
8	(a)	(i)	R = pl / A	M1
			120 <u>0 =</u> 15.0 × 10 ⁻⁵ (0.25) / (1 × 10 ⁻³ × t)	
			t = <mark>3.13</mark> × 10 ⁻⁵ m	A1
			1. Light dependent resistor	A1
		(ii)	2. Correctly drawn LDR	B1
		()	Output Potential should be on the graphite resistor	B1
		/:::)	1. Current in the graphite resistor does not change because the PD	A1
		(111)	2 Connect the resortat in series with other resistors	۸1
	(b)		External load resistance = $20/60 = 15.0$	
	(u)		= 20/700 - 15.02	U1
			PD across the 20 Ω resistor = 12 / (15 + 5) x 15 = 9 V	C1
				U1
			PD across the 50 Ω resistor = 9 / (50 + 10) x 50	C1
			= 7.5 V	
	(a)	(:)		
	(C)	(1)		BI
				D4
			per nucleon	DI
				D1
				ы
			$ \longrightarrow $	
		(!!)	nucleon number	D 4
		(11)	the minimum work done to separate the individual constituent nucleons	B 1
			or a nucleus	D 4
			to infinity	B 1
		(iii)	the fission products have higher binding energy per nucleons	B1
			hinding onergy - hinding onergy per nucleon x number of nucleone	
			binding energy – binding energy per hucleon × humber of hucleons	B1
			leading to higher total binding energy than the original nucleus	
				B1
			product is more stable than original	B1
			V Hones hast is released	
	Eva	minor	rence neal is released	
		miel	o commento	