Section A: Pure Mathematics (40 marks)

(ii)	Substitute $x = 0$ into $y = \frac{x}{2} - \frac{1}{4}$			
	$y = -\frac{1}{4}$			
	$P\left(0,-\frac{1}{4}\right)$			
	For $4y = mx - 1$,			
	$LHS = 4\left(\frac{-1}{4}\right)$			
	= -1			
	= RHS			
	when $x = 0$			
	Therefore, <i>P</i> lies on $4y = mx - 1$ for all real values of <i>m</i> .			
(iii)	$4x^2 + 8 = (mx - 1)(2x + 1)$			
	$x^2 + 2$ m 1			
	$\frac{1}{2x+1} = \frac{1}{4}x - \frac{1}{4}$			
	Since $0 < m < 2$, $0 < \frac{m}{4} < \frac{1}{2}$,			
	$y = \frac{m}{4}x - \frac{1}{4}$ will not intersect with the graph of $y = \frac{x^2 + 2}{2x + 1}$. Hence,			
	there is no real root for the equation $4x^2 + 8 = (mx-1)(2x+1)$.			
(iv)	Since there are no real roots for the equation,			
	$4x^2 + 8 = (mx-1)(2x+1)$, the two roots are complex roots. Since			
	all the coefficients in the equation are real, the roots must occur in			
	complex conjugate pairs, i.e.			
	$x = a + b$ or $x = a - b$, $a, b \in \mathbb{R}$.			

2(a)	Equation of the line : $\mathbf{r} = \mathbf{a} + \lambda \mathbf{u}, \ \lambda \in \mathbb{R}$
	$\mathbf{r}-\mathbf{a}=\lambda\mathbf{u},\lambda\in\mathbb{R}$
	\Rightarrow r – a is parallel to u
	$(\mathbf{r}-\mathbf{a})\times\mathbf{u}=0$
(b)	$ \mathbf{b}-\mathbf{a} ^2 = (\mathbf{b}-\mathbf{a})\cdot(\mathbf{b}-\mathbf{a})$
	$= \mathbf{b} \cdot \mathbf{b} - 2\mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{a}$
	$ \mathbf{b}-\mathbf{a} ^2 = \mathbf{b} ^2 - 2\mathbf{a}\cdot\mathbf{b} + \mathbf{a} ^2$
	$\left(\sqrt{7} \mathbf{a} \right)^2 = \left(\sqrt{3} \mathbf{a} \right)^2 - 2\mathbf{a} \cdot \mathbf{b} + \mathbf{a} ^2$
	$7\left \mathbf{a}\right ^2 = 4\left \mathbf{a}\right ^2 - 2\mathbf{a}\cdot\mathbf{b}$
	$2\mathbf{a} \cdot \mathbf{b} = -3\left \mathbf{a}\right ^2$
	$\mathbf{a} \cdot \mathbf{b} = -\frac{3}{2} \left \mathbf{a} \right ^2 \neq 0$
	$\Rightarrow \overrightarrow{OA}$ is not perpendicular to \overrightarrow{OB}
	Hence, $\angle AOB$ is not a right angle. Therefore, points <i>O</i> , <i>A</i> and <i>B</i> are not points that lie on the circumference of a circle with diameter <i>AB</i> .
3(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x-y}{x-y+1} (1)$
	Let $u = x - y + 1$
	Differentiating with respect to <i>x</i> :
	$\frac{\mathrm{d}u}{\mathrm{d}u} = 1 - \frac{\mathrm{d}y}{\mathrm{d}u}$
	dx dx
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 1 - \frac{\mathrm{d}u}{\mathrm{d}x}$

From equation (1):
$1 - \frac{\mathrm{d}u}{\mathrm{d}u} = \frac{u - 1}{\mathrm{d}u}$
dx u
$\frac{du}{dt} = \frac{1}{2} - $
dx u
$\int u \mathrm{d}u = \int \mathrm{d}x$
$\frac{u^2}{2} = x + A$
$\frac{\left(x-y+1\right)^2}{2} = x+A$
$\left(x-y+1\right)^2 = 2x+2A$
$y = (x+1) \pm \sqrt{2x+C}$, where $C=2A$
A and C are arbitrary constants.

$$\begin{aligned} 1 &= (ax+b)(x^2 - 2x + 2) + (cx+d)(x^2 + 2x + 2) \\ \text{Comparing coefficients of } x^0, x^3, x^2 \text{ and } x \text{ respectively in sequence,} \\ 2b+2d &= 1 - - (1) \\ a+c &= 0 - - (2) \\ -2a+b+2c+d &= 0 - - (3) \\ 2a-2b+2c+2d &= 0 - - (4) \end{aligned}$$
Solving using GC,

$$a &= \frac{1}{8}, b = \frac{1}{4}, c = -\frac{1}{8}, d = \frac{1}{4} .$$

$$\frac{1}{x^4+4} &= \frac{1}{(x^2+2x+2)(x^2-2x+2)} = \frac{x+2}{8(x^2+2x+2)} - \frac{x-2}{8(x^2-2x+2)} \end{aligned}$$
(ii)

$$\therefore \int_{0}^{1} \left(\frac{1}{x^4+4}\right) dx &= \frac{1}{8} \int_{0}^{1} \left(\frac{x+2}{x^2+2x+2}\right) - \left(\frac{x-2}{x^2-2x+2}\right) dx \\ &= \frac{1}{8} \int_{0}^{1} \left(\frac{x+2}{x^2+2x+2}\right) dx = \frac{1}{8} \left(\frac{1}{2} \int_{0}^{1} \frac{2x+2+2}{x^2+2x+2}\right) dx \\ &= \frac{1}{16} \int_{0}^{1} \frac{2x+2}{x^2+2x+2} dx + \frac{1}{16} \int_{0}^{1} \frac{2}{(x+1)^2+1} dx \\ &= \frac{1}{16} \left[\ln(x^2+2x+2) \int_{0}^{1} dx + \frac{1}{8} \tan^{-1}(x+1) \right]_{0}^{1} \\ &= \frac{1}{16} (\ln 5 - \ln 2) + \frac{1}{8} \tan^{-1} 2 - \frac{\pi}{32} \end{aligned}$$

$$\frac{1}{8} \int_{0}^{1} \left(\frac{x-2}{x^{2}-2x+2} \right) dx = \frac{1}{8} \left(\frac{1}{2} \int_{0}^{1} \frac{2x-2-2}{x^{2}-2x+2} \right) dx$$
$$= \frac{1}{16} \int_{0}^{1} \frac{2x-2}{x^{2}-2x+2} dx - \frac{1}{16} \int_{0}^{1} \frac{2}{(x-1)^{2}+1} dx$$
$$= \frac{1}{16} \left[\ln(x^{2}-2x+2) \right]_{0}^{1} - \frac{1}{8} \left[\tan^{-1}(x-1) \right]_{0}^{1}$$
$$= \frac{1}{16} \left(-\ln 2 \right) - \frac{\pi}{32}$$
$$\frac{1}{8} \int_{0}^{1} \left(\frac{x+2}{(x+1)^{2}+1} \right) - \left(\frac{x-2}{x^{2}-2x+2} \right) dx$$
$$= \left(\frac{1}{16} \left(\ln 5 - \ln 2 \right) + \frac{1}{8} \tan^{-1} 2 - \frac{\pi}{32} \right) - \left(\frac{1}{16} \left(-\ln 2 \right) - \frac{\pi}{32} \right)$$
$$= \frac{1}{16} \ln (5) + \frac{1}{8} \tan^{-1} (2) \text{ (Ans)}$$

(iii)	Area required
	$= -\int_{4}^{5.5} \left[g(x) \right] \mathrm{d}x$
	$=-\int_{1}^{2.5}(-\ln x) dx$
	= 0.79073
	= 0.791 (to 3 sf, by GC)

Section B: Statistics (60 marks)

6	The researchers obtained the <i>sampling frame</i> from the 30 000					
(a)	atients who volunteered for the study.					
	tep 1: Number the members of the volunteers, say from 1 to					
	30,000.					
	Step 2: <u>Randomly</u> select 500 of these members by generating 500					
	<i>distinct</i> random numbers and then selecting the <i>corresponding</i>					
	members to form the required sample					
(b)	Random selection means that the subjects in the sample were					
	ssigned to a treatment at random, without bias.					
)r					
	he selection of patients to assign treatment to is free of bias.					
7(i)	1. The condition of one semi-conductor chip is independent of					
	the condition of any other semi-conductor chips.					

	2. The prob	bability that a semi-conductor chip is faulty is constant				
	at $\frac{p}{1000}$ for every semi-conductor chip.					
(ii)	Let X be the	e random variable denoting the number of faulty				
	semiconduc	ctor chips out of 50 chips in a box.				
	$X \sim \mathbf{B}(50,$	$\frac{p}{1000}$)				
	$P(X \le 1) =$	0.336				
	P(X=0 or	(1) = 0.336				
	P(X=0) -	+ P(X = 1) = 0.336				
	$\left(1 - \frac{p}{1000}\right)^{50} + {}^{50}C_1\left(\frac{p}{1000}\right)\left(1 - \frac{p}{1000}\right)^{49} = 0.336$					
	$\left(1 - \frac{p}{1000}\right)^{50} + 50\left(\frac{p}{1000}\right)\left(1 - \frac{p}{1000}\right)^{49} = 0.336$					
	Using G.C table.					
	p	$\left(1 - \frac{p}{1000}\right)^{50} + 50\left(\frac{p}{1000}\right)\left(1 - \frac{p}{1000}\right)^{49}$				
	44	0.348				
	45	0.3357≈0.336				
	46	0.3238				
	<i>p</i> = 45					

	$\mathbf{P}[(A \cup B)'] \times P(C)$					
	$= \left\{ 1 - P(A \cup B) \right\} \times P(C)$					
	$= \left\{ 1 - \left[P(A) + P(B) - P(A)P(B) \right] \right\} \times P(C)$					
	$= \left\{ 1 - \left[\frac{1}{6} + \frac{1}{3} - \left(\frac{1}{6} \right) \left(\frac{1}{3} \right) \right] \right\} \times \frac{4}{9}$					
	$=\frac{20}{81} \neq \frac{1}{4} = \mathbb{P}\left[\left(A \cup B\right) \cap C\right] = \mathbb{P}\left[A \cap B \cap C\right]$					
	Hence $(A \cup B)'$ and C are not independent.					
	Angle of sector $5 = 36^{\circ}$.					
9 (i)	Angle of sector $5 = 36^{\circ}$.					
9 (i)	Angle of sector $5 = 36^{\circ}$. Let <i>d</i> be the common difference.					
9 (i)	Angle of sector $5 = 36^{\circ}$. Let <i>d</i> be the common difference. AP: 36° , $(36+d)^{\circ}$, $(36+2d)^{\circ}$, $(36+3d)^{\circ}$, $(36+4d)^{\circ}$					
9 (i)	Angle of sector $5 = 36^{\circ}$. Let <i>d</i> be the common difference. AP: 36° , $(36+d)^{\circ}$, $(36+2d)^{\circ}$, $(36+3d)^{\circ}$, $(36+4d)^{\circ}$ Since the sum of angles for a circle is 360° ,					
9 (i)	Angle of sector $5 = 36^{\circ}$. Let <i>d</i> be the common difference. AP: 36° , $(36+d)^{\circ}$, $(36+2d)^{\circ}$, $(36+3d)^{\circ}$, $(36+4d)^{\circ}$ Since the sum of angles for a circle is 360° , $\frac{5}{2}(2(36^{\circ})+(5-1)d) = 360^{\circ}$					
9 (i)	Angle of sector $5 = 36^{\circ}$. Let <i>d</i> be the common difference. AP: 36° , $(36+d)^{\circ}$, $(36+2d)^{\circ}$, $(36+3d)^{\circ}$, $(36+4d)^{\circ}$ Since the sum of angles for a circle is 360° , $\frac{5}{2}(2(36^{\circ})+(5-1)d)=360^{\circ}$ $d=18^{\circ}$					
9 (i)	Angle of sector $5 = 36^{\circ}$. Let <i>d</i> be the common difference. AP: 36° , $(36+d)^{\circ}$, $(36+2d)^{\circ}$, $(36+3d)^{\circ}$, $(36+4d)^{\circ}$ Since the sum of angles for a circle is 360° , $\frac{5}{2}(2(36^{\circ})+(5-1)d) = 360^{\circ}$ $d = 18^{\circ}$ Hence the angles of the 5 sectors are					

	Sector 4: 54	0					
	Sector 3: 72	0					
	Sector 2: 90	0					
	Sector 1: 10	8^{0} .					
(ii)	Let X be the	random	variable d	lenoting th	e number	obtained i	n a
~ /	spin, where	x = 1, 2,	3. 4 or 5.	C			
	1)	,,,	-) -				
	Probability	distributi	on of X				
	<i>x</i>	1	2	3	4	5	
	P(X=x)	$\frac{108}{100} =$	90	_ 72	_ 54		
		360	360	360	360	360	
		3	1	1	3	1	
		10	4	5	20	10	
(iii)	$C = \left X_1 - X \right $	2:					
	X2	1	2	3	4	5]
	X_1	-	_	C C		C	
	1	0	1	2	3	4	
	2	1	0	1	2	3	
	3	2	1	0	1	2	
	4	3	2	1	0	1	
	5	4	3	2	1	0	
	$\mathbf{P}(C=0)$						

$$=P[(x_{1},x_{2})] = P[\{(1,1), (2,2), (3,3), (4,4), (5,5)\}]$$

$$= \frac{3}{10} \times \frac{3}{10} + \frac{1}{4} \times \frac{1}{4} + \frac{1}{5} \times \frac{1}{5} + \frac{3}{20} \times \frac{3}{20} + \frac{1}{10} \times \frac{1}{10}$$

$$= 0.225$$

$$P(C = 1)$$

$$=P[(x_{1},x_{2})] =P[\{(1,2), (2,1), (2,3), (3,2), (4,3), (3,4), (4,5), (5,4)\}]$$

$$= \frac{3}{10} \times \frac{1}{4} \times 2 + \frac{1}{4} \times \frac{1}{5} \times 2 + \frac{1}{5} \times \frac{3}{20} \times 2 + \frac{3}{20} \times \frac{1}{10} \times 2$$

$$= 0.34$$

$$P(C = 2)$$

$$=P(x_{1},x_{2}) =P[\{(1,3), (3,1), (2,4), (4,2), (3,5), (5,4)\}]$$

$$= \frac{3}{10} \times \frac{1}{5} \times 2 + \frac{1}{4} \times \frac{3}{20} \times 2 + \frac{1}{5} \times \frac{1}{10} \times 2$$

$$= 0.235$$

$$P(C = 3)$$

$$=P(x_{1},x_{2}) =P[\{(1,4), (4,1), (2,5), (5,2)\}]$$

$$= \frac{3}{10} \times \frac{3}{20} \times 2 + \frac{1}{4} \times \frac{1}{10} \times 2$$

$$= 0.14$$

$$P(C = 4)$$

$$=P(x_{1},x_{2}) =P[\{(1,5), (5,1)\}]$$

$$= \frac{3}{10} \times \frac{1}{10} \times 2$$

$$= 0.06$$

	С	0	1	2	3	4
	P(C = c)	0.225	0.34	0.235	0.14	0.06
	P(C = c) = 0.225 = 0.34 = 0.235 = 0.14 = 0.06 $\therefore \text{ Expectation of cash received by Shayna} = E(C) = \sum_{all c} cP(C = c) = 0 \times 0.225 + 1 \times 0.34 + 2 \times 0.235 + 3 \times 0.14 + 4 \times 0.06 = 1.47$ Variance of cash received by Shayna = $Var(C) = E(C^2) - (E(C))^2 = \sum_{all c} c^2 P(C = c) - (E(C))^2 = (0^2 \times 0.225 + 1^2 \times 0.34 + 2^2 \times 0.235 + 3^2 \times 0.14 + 4^2 \times 0.06) - (1.4) = 1.3391 \text{ (exact)} = 1.34 (2 \text{ d p })$					
Last	Shayna plays 30 games.					
part	Let the total cash Shayna received, $T = C_1 + C_2 + + C_{30}$					
	Since sample size $n = 30$ is sufficiently large, by Central Limit					
	Theorem, $T \sim N(1.47 \times 30, 1.3391 \times 30)$ approximately.					
	$T \sim N(44.1, 40.173)$					
	P(45 < T < 110) = 0.444 (3 sf) (using GC).					
10 (i)	No. of way	s in which (C and D sit	together =	5!×2!	
	No. of way	s in which A	A and B sit	together an	d C and D	also sit
	together = $4! \times 2! \times 2!$					

	No. of ways C and D sit next to each other and A and B do not sit
	next to each other
	$=5!\times2!-4!\times2!\times2!=144$
	Alternative method
	No. of ways to sit C, D, E and F such that C and D are considered
	as 1 unit = 2 k 2 l
	No. of ways to slot in A and $B = {}^{4}C_{2} \times 2!$
	Total numbers of ways required
	$={}^{4}C_{2} \times 2! \times 3! \times 2! = 144$
(ii)	Total no. of possible ways without restriction =6!=720
	Consider if students A, B and C are seated together by grouping them as 1 'unit'
	No. of ways = $3! \times 4! = 144$
	No. of ways required such that A, B and C are not all seated together = $720 - 144 = 576$
	<u>Alternative method</u> Case 1 : A, B and C are separated No. of ways to arrange D, E, F = 3! No. of ways to slot in and arrange A, B, C such that they are separated = ${}^{4}C_{3} \times 3!$
	No. of ways for Case $1 = 3 \times {}^{4}C_{3} \times 3!$

	Case 2 : Two of A, B, C are together but separated from the third						
	one (e.g. A and B together but separated from C)						
	No. of ways to choose two of A, B, C to arrange them to be						
	together = ${}^{\circ}C_2 \times 2!$						
	No. of ways to arrange D, E, $F = 3!$						
	No. of ways to slot in and arrange the unit of 2 students						
	together(e.g. 'AB') and the third student(e.g. C) = ${}^{4}C_{2} \times 2!$						
	No. of ways for Case 2 = $\binom{{}^{3}C_{2} \times 2!}{\times} \binom{{}^{4}C_{2} \times 2!}{\times} 3!$						
	Total no. of required ways =						
	$3! \times ({}^{4}C_{3} \times 3!) + ({}^{3}C_{2} \times 2!) \times ({}^{4}C_{2} \times 2!) \times 3! = 576$						
(iii)	There are 2 cases for the two pairs, A and B, and ,C and D ,to be						
	seated at the two tables:						
	Case 1:						
	A and B seated at the 6-seater and C and D at the 5-seater						
	No. of ways to arrange the people at the 6-seater						
	$={}^{7}C_{4} \times (6-1)! = {}^{7}C_{4} \times 5!$						
	No. of ways to arrange the people at the 5-seater						
	$={}^{3}C_{2} \times (5-1)! = 4!$						
	No. of ways = $C_4 \times 5! \times 4!$						
	Case 2:						
	C and D seated at the 6-seater and A and B at the 5-seater						
	No. of ways to arrange the people at the 6-seater						
	$= C_4 \times (6-1)! = C_4 \times 5!$						
	No. of ways to arrange the people at the 5-seater						
	$={}^{3}C_{3} \times (5-1)! = 4!$						
	No. of ways = ${}^{7}C_{4} \times 5! \times 4!$						

Total no. of ways = ${}^{7}C_{4} \times 5! \times 4! \times 2 = 201600$ *Alternatively* No. of ways in which A and B are seated at the same table and C and D are seated at the other table $({}^{7}C_{1} \times 5! \times 3!C_{2} \times 4!) \times 2 = 201600$

$$=({}^{7}C_{4} \times 5! \times {}^{3}C_{3} \times 4!) \times 2 = 201600$$

For A and B to be opposite each other at the same table, A and B must be seated at the 6-seater only.

To arrange A and B at the 6-seater, we first fix A and B opposite each other, this can be done in 1 way only. Then, we arrange choose 4 others to sit at the table in 4! ways.

To arrange C, D and the 3 others left at the 5 seater, no. of ways = ${}^{3}C_{3} \times (5-1)!$

No. of ways in which A and B are opposite each other at the 6-seater and C and D are seated at the 5-seater

$$= ({}^{7}C_{4} \times 4!) \times ({}^{3}C_{3} \times (5-1)!) = 20160$$

Alternatively, we can first choose 4 others to be at the 6 seater and arrange them in 3! ways since it is a circular permutation. Then we slot in A in 4 ways and B in 1 way(since B can only be opposite A):

No. of ways in which A and B are opposite each other at the 6seater and C and D are seated at the 5-seater $= ({}^{7}C_{4} \times (3-1)!) \times 4 \times ({}^{3}C_{3} \times 4!) = 20160$

P(A and B are opposite each other |A and B are seated at the same table and C and D are seated at other table)

P A and B are opposite each other on 6-seater

 $\frac{P\left(\text{and C and D are seated on 5-seater}\right)}{P(A \text{ and B are on different tables from C and D})}$

$$= \frac{\frac{\left({}^{7}C_{4} \times 4!\right) \times \left({}^{3}C_{3} \times 4!\right)}{\left({}^{11}C_{6} \times 5! \times {}^{5}C_{5} \times 4!\right)}}{\frac{\left({}^{7}C_{4} \times 5! \times 4!\right) + \left({}^{7}C_{3} \times 4! \times 5!\right)}{\left({}^{11}C_{6} \times 5! \times {}^{5}C_{5} \times 4!\right)}}$$
$$= \frac{20160}{201600}$$
$$= \frac{1}{10}$$

=

11(i)	Let F be the random variable denoting the mass of a packet of fettucine in grams.	
	$F \sim N(450, \sigma^2)$	

$$P(F \le 437) = 0.1$$

$$P\left(\frac{F - 450}{\sigma} \le \frac{437 - 450}{\sigma}\right) = 0.1$$

$$P\left(Z \le \frac{-13}{\sigma}\right) = 0.1 \text{, where } Z \sim N(0,1)$$

$$-\frac{13}{\sigma} = -1.2816$$

$$\sigma = 10.144 = 10.1 \text{ (3 sig fig)}$$

(ii)	Let <i>S</i> be the random variable denoting the mass of a packet of spaghetti produced in g.
	$S \sim N(500, 9.2^2)$
	$F \sim N(450, 10.144^2)$
	Required probability
	$= \mathbf{P} \left(\left S_1 + S_2 + S_3 + S_4 + S_5 + S_6 - 2(F_1 + F_2) \right \ge 1250 \right)$
	Let $A = S_1 + S_2 + S_3 + S_4 + S_5 + S_6 - 2(F_1 + F_2)$
	E(A)
	$= \mathbf{E} \Big[S_1 + S_2 + S_3 + S_4 + S_5 + S_6 - 2 (F_1 + F_2) \Big]$
	$= E(S_1 + S_2 + S_3 + S_4 + S_5 + S_6) - 2E(F_1 + F_2)$
	$= 6\mathrm{E}(S) - 2(2)\mathrm{E}(F)$
	=6(500)-4(450)
	=1200

Var(A)	
$= \operatorname{Var} \left[S_1 + S_2 + S_3 + S_4 + S_5 + S_6 - 2(F_1 + F_2) \right]$	
$= \operatorname{Var}(S_1 + S_2 + S_3 + S_4 + S_5 + S_6) + 4\operatorname{Var}(F_1 + F_2)$	
$= 6 \operatorname{Var}(S) + 4(2) \operatorname{Var}(F)$	
$= 6(9.2^2) + 8(10.144^2)$	
=1331.045	
$A \sim N(1200, 1331.045)$	
$P(A \ge 1250)$	
= 1 - P(-1250 < A < 1250)	
= 0.085268	
= 0.0853 (to 3 sf)	

(iii)	The mass of each packet of pasta (for both spaghetti and	
	fettuccine) must be independent of each other.	
	[Reject if did not consider intermingling or within the	
	pasta group]	

(iv)	P(495 < S < 505) = 0.41320	

packets of spaghe between 495 g ar	etti out of n purchased that has a mas ad 505 g each.	55
$X \sim B(n, 0.41320)$))	
Given $P(X > 7) \ge 1 - P(X \le 7) \ge 0.3$	$\geq 0.85 \Longrightarrow P(X \ge 8) \ge 0.85$ 85	
$P(X \le 7) \le 0.15$		
Using GC		
n	$P(X \le 7)$	
24	0.1582>0.15	
25	0.1241<0.15	
	0.00(2 -0.15	

(v)	From (iv), <i>X</i> ~ B(25, 0.41320)	
	E(X) = np	
	= 25(0.41320)	
	=10.33	
	Var(X) = np(1-p)	
	= 25(0.41320)(1 - 0.41320)	
	= 6.0616	

Since the sample size = 24 is sufficiently large, by Central Limit Theorem,	
$\overline{X} \sim N\left(10.33, \frac{6.0616}{24}\right)$ approximately	
$P(\overline{X} \le 11) = 0.90876 = 0.909$ (to 3 sf)	

12(i)	No, this sample is not a random sample because employees who do
	not travel by bus do not have a chance of being chosen as part of the
	sample, hence not all employees have an equal probability of being
	selected.

(ii)	Let <i>T</i> be the random variable denoting the number of hours	
	in a week an employee works and μ be the population	
	mean hours.	
	Let $y = t - 30$	
	t = y + 30	

(iii)	Test H_0 : $\mu = 42.5$	
	against H ₁ : $\mu \neq 42.5$ at 5% level of significance.	

Under H ₀ , since sample size 80 is sufficiently large, by	
Central Limit Theorem,	
$\overline{T} \sim N\left(42.5, \frac{8.6810}{80}\right)$ approximately	
Using a 2-tailed z-test,	
Test statistic value, $\bar{t} = 41.8$ gives rise to	
$z_{calc} = -2.1250$ and $p - value = 0.0336 \le 0.05$	
We reject H_0 and conclude that at the 5% level of	
significance, there is sufficient evidence that the mean	
number of hours in a week each employee works is not	
42.5 hours.	

(iv)	5% level of significance is the probability of 0.05 of	
	concluding that the mean number of hours in a week an	
	employee works is not 42.5 hours when the mean number	
	of hours in a week an employee works is actually 42.5	
	hours.	

(v)	Unbiased estimate of population variance, s^2	

$$= \frac{n}{n-1} [\text{sample variance}]$$

$$= \frac{50}{49} (k^2)$$
Test H₀: $\mu = 42.5$
against H₁: $\mu < 42.5$ at 5% level of significance.
Under H₀, since sample size 50 is sufficiently large, by
Central Limit Theorem,
 $\overline{T} \sim N\left(42.5, \frac{50}{49}k^2\right)$ approximately
 $\Rightarrow \overline{T} \sim N\left(42.5, \frac{k^2}{49}\right)$ approximately
Using a 1-tailed z-test,
To reject H₀, $z_{calc} \le -1.6449$
 $\Rightarrow z_{calc} = \frac{41.2 - 42.5}{\sqrt{\frac{k}{49}}} \le -1.6449$, $Z \sim N(0,1)$
Since we do not reject H₀,

$\frac{41.2 - 42.5}{\sqrt{\frac{k^2}{49}}} > -1.6449$	
$\sqrt{\frac{k^2}{49}} > 0.79032$	
$\frac{k}{7} > 0.79032$	
<i>k</i> > 5.53224	
k > 5.53 (to 3 sf)	
$\left\{k \in \mathbb{R} : k > 5.53\right\}$	