2023 H2MA Prelim Paper 1

1	Solution [6] Inequality P1 Q1
(i)	$\frac{4x^2 - 4x + 1}{1 + x - 2x^2} < 0$
	$\frac{(2x-1)^2}{(1-x)(2x+1)} < 0$
	$\frac{1}{(1-x)(2x+1)} < 0$
	Method 1:
	$\frac{(2x-1)^2}{(1-x)(2x+1)} < 0$
	(1-x)(2x+1)
	Since $(2x-1)^2 \ge 0$ for all real values of x,
	(1-x)(2x+1)<0
	$\therefore x < -\frac{1}{2} \text{ or } x > 1$
	Method 2:
	$\frac{(2x-1)^2}{(1-x)(2x+1)} < 0$
	(1-x)(2x+1)
	$x = -\frac{1}{2} \qquad x = \frac{1}{2} \qquad x = 1$
	$\therefore x < -\frac{1}{2} \text{ or } x > 1$
(ii)	$\frac{\left(2^{x+1}-1\right)^2}{1+2^x-2^{2x+1}} \le 0$
	$(2(2^{x})-1)^{2}$
	$\frac{\left(2(2^{x})-1\right)^{2}}{1+\left(2^{x}\right)-2\left(2^{x}\right)^{2}} \le 0$
	Replace x with 2^x ,

OR	$2^{x} > 1$	OR $2^{x} = \frac{1}{2}$	
	x > 0	x = -1	
	OR	$ \begin{array}{ccc} OR & 2^x > 1 \\ & x > 0 \end{array} $	2

2	Solution [6] Complex Numbers P1 Q2	
(i)		
	$\left \frac{z-1}{z*(1+i)} \right = \frac{1}{2}$	
	$\begin{vmatrix} (a+i)-1 & 1 \end{vmatrix}$	
	$\left \frac{(a+i)-1}{(a+i)*(1+i)} \right = \frac{1}{2}$	
	$\left \frac{(a-1)+i}{(a-i)(1+i)} \right = \frac{1}{2}$	
	$\frac{ (a-1)+i }{ (a-i) (1+i) } = \frac{1}{2}$	
	$\frac{\sqrt{(a-1)^2+1^2}}{\sqrt{a^2+1^2}\sqrt{1^2+1^2}} = \frac{1}{2}$	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	$2\sqrt{a^2 - 2a + 1 + 1} = \sqrt{2}\sqrt{a^2 + 1}$	
	$4(a^2-2a+2)=2(a^2+1)$	
	$2a^2 - 4a + 4 = a^2 + 1$	
	$a^2 - 4a + 3 = 0$	
	a = 1 or 3 (rejected since $a < 2$)	
(ii)	Consider $\arg\left(\frac{z-1}{z*w}\right)^n$	
	$= n \arg\left(\frac{z-1}{z*w}\right)$	
	$= n \Big[\arg(z-1) - \arg z * - \arg w \Big]$	
	$= n \left[\arg(i) - \arg(1-i) - \frac{\pi}{4} \right]$	
	$= n \left[\frac{\pi}{2} - \left(-\frac{\pi}{4} \right) - \frac{\pi}{4} \right]$	
	$=\frac{n\pi}{2}$	
	$\int_{\mathbb{R}^{2}} \left(z-1\right)^{n} \cdot dz$	
	If $\left(\frac{z-1}{z^*w}\right)^n$ is purely imaginary and negative,	
	then:	

$$\arg\left(\frac{z-1}{z*w}\right)^{n} = \frac{3\pi}{2}, \frac{7\pi}{2}, \frac{11\pi}{2}, \dots$$
or $\frac{3\pi}{2} + 2k\pi$, $k \in \mathbb{Z}^{+}$

Thus,

$$\frac{n\pi}{2} = \frac{3\pi}{2}, \frac{7\pi}{2}, \frac{11\pi}{2}, \dots$$

 $n = 3, 7, 11, \dots$

3 smallest positive values of n = 3, 7, 11

3	Solution [7] Summation P1 Q3			
(i)	$u_{n-1} - 2u_n + u_{n+1}$ where $n \ge 2$			
	$=\frac{1}{n-1}-\frac{2}{n}+\frac{1}{n+1}$			
	n(n+1)-2(n-1)(n+1)+(n-1)n			
	$=\frac{n(n+1)-2(n-1)(n+1)+(n-1)n}{(n-1)n(n+1)}$			
	$=\frac{n^2+n-2n^2+2+n^2-n}{n\lceil (n-1)(n+1)\rceil}$			
	2			
	$=\frac{2}{n(n^2-1)}$			
	$=\frac{2}{n^3-n}$			
	A=2			
(ii)	N 1			
(ii)	$\sum_{n=2}^{N} \frac{1}{n^3 - n}$			
	n-2			
	$=\frac{1}{2}\sum_{n=2}^{N}\frac{2}{n^3-n}$			
	- n=2 ··			
	$=\frac{1}{2}\sum_{n=2}^{N}\left(u_{n-1}-2u_{n}+u_{n+1}\right)$			
	11-2			
	$= \frac{1}{2} \begin{bmatrix} u_1 & -2u_2 & +u_3 \\ +u_2 & -2u_3 & +u_4 \\ +u_3 & -2u_4 & +u_5 \\ & \dots & \dots & \dots \end{bmatrix}$			
	$\begin{vmatrix} +u_2 & -2u_3 & +u_4 \end{vmatrix}$			
	$\frac{1}{1} + u_3 -2u_4 + u_5$			
	$=\frac{1}{2}$			
	$\begin{vmatrix} 2 \\ + u_{N-3} \\ \end{vmatrix} + u_{N-2} + u_{N-1} \begin{vmatrix} 1 \\ 1 \\ \end{vmatrix}$			
	$\begin{vmatrix} +u_N & -2u_N & +u_N \end{vmatrix}$			
	$\begin{bmatrix} + u_{N-3} & -2u_{N-2} & +u_{N-1} \\ + u_{N-2} & -2u_{N-1} & +u_{N} \\ + u_{N-1} & -2u_{N} & +u_{N+1} \end{bmatrix}$			
	$=\frac{1}{2}(u_1-u_2-u_N+u_{N+1})$			
	$\begin{bmatrix} -1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $			
	$= \frac{1}{2} \left(1 - \frac{1}{2} - \frac{1}{N} + \frac{1}{N+1} \right)$			
	1(1 1 1)			
	$= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{N} + \frac{1}{N+1} \right)$			

(iii)	$\sum_{i=1}^{\infty} 1 \dots 1(1 \ 1 \ 1 \)$
	$\sum_{n=2}^{\infty} \frac{1}{n^3 - n} = \lim_{N \to \infty} \frac{1}{2} \left(\frac{1}{2} - \frac{1}{N} + \frac{1}{N+1} \right)$
	Since $\frac{1}{N} \to 0$ as $N \to \infty$, $\frac{1}{N+1} \to 0$ as $N \to \infty$
	$\therefore \text{ It converges.}$
(iv)	$\sum_{n=3}^{N} \frac{1}{(n-2)(n-1)(n)}$
	$\sum_{n=3}^{2} (n-2)(n-1)(n)$
	$= \sum_{n+1=3}^{n+1=N} \frac{1}{(n+1-2)(n+1-1)(n+1)}$ (Replace <i>n</i> with <i>n</i> + 1.)
	$=\sum_{n=2}^{N-1}\frac{1}{(n-1)(n)(n+1)}$
	" () () ()
	$=\sum_{n=2}^{N-1} \frac{1}{n^3 - n}$
	$=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{N-1}+\frac{1}{N}\right)$
	(Alternative, but not recommended)
	$\sum_{n=2}^{N} \frac{1}{n^3 - n} = \sum_{n=2}^{N} \frac{1}{n(n-1)(n+1)}$
	$= \sum_{n-1=2}^{n-1=N} \frac{1}{(n-1)(n-2)(n)}$ (<i>n</i> replaced by <i>n</i> -1)
	$=\sum_{n=3}^{N+1}\frac{1}{(n-1)(n-2)(n)}$
	From (ii),
	$\sum_{n=2}^{N} \frac{1}{n^3 - n} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{N} + \frac{1}{N+1} \right)$
	Thus,
	$\sum_{n=3}^{N+1} \frac{1}{(n-1)(n-2)(n)} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{N} + \frac{1}{N+1} \right)$
	$\therefore \sum_{n=3}^{N} \frac{1}{(n-1)(n-2)(n)}$
	$= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{N-1} + \frac{1}{N-1+1} \right)$

1/1 1 1)	
$2 \setminus 2 N-1 N$	
- (- 10 1 10)	1

4	Solution [13] Complex Numbers P1 Q4	
(i)	From: $x^4 - 4x^3 + 6x^2 - ax + b = 0$	
	Given that $x = x_0$ is a root, then:	
	$x_0^4 - 4x_0^3 + 6x_0^2 - ax_0 + b = 0$ eqn (1)	
	Consider applying conjugate on both sides:	
	$\left(x_0^4 - 4x_0^3 + 6x_0^2 - ax_0 + b\right)^* = (0)^*$	
	$\left(x_0^4\right) * - \left(4x_0^3\right) * + \left(6x_0^2\right) * - \left(ax_0\right) * + \left(b\right) * = 0$	
	Since coefficients are all real, then	
	$(a)^* = a \text{ and } (b)^* = b$	
	$(x_0^*)^4 - 4(x_0^*)^3 + 6(x_0^*)^2 - a(x_0^*) + b = 0$	
	Therefore, x_0^* is a root as well.	
	Alternatively,	
	Substitute $x = x_0^*$ into LHS of eqn (1):	
	$\left(x_0^*\right)^4 - 4(x_0^*)^3 + 6(x_0^*)^2 - a(x_0^*) + b$	
	$= (x_0^4) * -4(x_0^3) * +6(x_0^2) * -a(x_0) * +b$	
	$= (x_0^4 - 4x_0^3 + 6x_0^2 - ax_0 + b) * \text{ since } a, b \text{ are real}$	
	=(0)*=0	
	Thus x_0^* is also a root.	
(ii)	Using Remainder Theorem:	
	Since $x = 2 - i$ is a root of the equation,	
	$(2-i)^4 - 4(2-i)^3 + 6(2-i)^2 - a(2-i) + b = 0$	
	-7 - 24i - 4(2 - 11i) + 6(3 - 4i) - 2a + ai + b = 0	
	3 - 4i - 2a + ai + b = 0	
	Comparing the real and imaginary parts, 3-2a+b=0 and $-4+a=0$	
	a=4 and $b=5$	
	$x^4 - 4x^3 + 6x^2 - 4x + 5 = 0$	

	Using Factor Theorem:	•
	$x^4 - 4x^3 + 6x^2 - 4x + 5$	
	$ = \left[x - (2 - i) \right] \left[x - (2 + i) \right] \left(x^2 + Ax + B \right) $	
	$\begin{bmatrix} -\lfloor x & (2 & 1) \rfloor \lfloor x & (2 + 1) \rfloor (x + 1)x + B \end{bmatrix}$	
	Comparing constant term:	
	$5 = B(2+i)(2-i) \Rightarrow B = 1$	
	Substitute $x = 2$:	
	16 - 32 + 24 - 8 + 5	
	$\equiv \left\lceil 2 - (2 - i) \right\rceil \left\lceil 2 - (2 + i) \right\rceil (4 + 2A + B)$	
	$5 = 4 + 2A + 1 \Rightarrow A = 0$	
	For $x^2 + Ax + B = 0 \Rightarrow x^2 + 1 = 0$	
	x = i or $-i$	
	The roots are:	
	x = 2 - i, 2 + i, -i, i	
(iii)	$by^4 - ay^3 + 6y^2 - 4y + 1 = 0$	
	$1 - 4y + 6y^2 - ay^3 + by^4 = 0$	
	Divide throughout by y^4 ,	
	$\left(\left(\frac{1}{v} \right)^4 - 4 \left(\frac{1}{v} \right)^3 + 6 \left(\frac{1}{v} \right)^2 - a \left(\frac{1}{v} \right) + b = 0$	
	1	
	Replace x with $\frac{1}{y}$,	
	Then	
	$\frac{1}{-} = 2 - i, 2 + i, -i, i$	
	y	
	$y = \frac{2}{5} + i\frac{1}{5}, \frac{2}{5} - i\frac{1}{5}, i, -i$	
	5 5 5 5 5 7	
1		

	C. 1. C. FELLI
5	Solution [7] Abstract Vectors P1 Q5
(i)	B C N
	O a A T
	By Ratio Theorem, $\overrightarrow{OS} = \frac{\overrightarrow{OC} + 3\overrightarrow{OA}}{1+3}$
	$\overrightarrow{OS} = \frac{1}{4}\overrightarrow{OC} + \frac{3}{4}\overrightarrow{OA}$
	$\overrightarrow{OS} = \frac{1}{4}(\mathbf{a} + \mathbf{b}) + \frac{3}{4}\mathbf{a}$ Since $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC}$
	$\overrightarrow{AC} = \overrightarrow{OB} = \mathbf{b}$
	$\overrightarrow{OS} = \mathbf{a} + \frac{1}{4}\mathbf{b}$
(ii)	$\overrightarrow{MS} = \overrightarrow{OS} - \overrightarrow{OM}$
	$= \left(\mathbf{a} + \frac{1}{4}\mathbf{b}\right) - \frac{1}{2}\mathbf{b} = \mathbf{a} - \frac{1}{4}\mathbf{b}$
	$l_{MS}: \mathbf{r} = \overrightarrow{OM} + \lambda \overrightarrow{MS}$
	$\mathbf{r} = \frac{1}{2}\mathbf{b} + \lambda \left(\mathbf{a} - \frac{1}{4}\mathbf{b}\right), \ \lambda \in \mathbb{R}$
	$\overrightarrow{BN} = \overrightarrow{ON} - \overrightarrow{OB}$
	$= \frac{1}{2} \left[\mathbf{a} + (\mathbf{a} + \mathbf{b}) \right] - \mathbf{b} = \mathbf{a} - \frac{1}{2} \mathbf{b}$
	$l_{BN}: \mathbf{r} = \overrightarrow{OB} + \mu \overrightarrow{BN}$
	$\mathbf{r} = \mathbf{b} + \mu \left(\mathbf{a} - \frac{1}{2} \mathbf{b} \right), \ \mu \in \mathbb{R}$
(iii)	At T , $\frac{1}{2}\mathbf{b} + \lambda \left(\mathbf{a} - \frac{1}{4}\mathbf{b}\right) = \mathbf{b} + \mu \left(\mathbf{a} - \frac{1}{2}\mathbf{b}\right)$

Since **a** and **b** are non parallel and non zero, comparing coefficients of **a**,

$$\lambda = \mu$$

Comparing coefficients of b,

$$\frac{1}{2} - \frac{\lambda}{4} = 1 - \frac{\mu}{2}$$

Solving,

$$\mu = 2 = \lambda$$

$$\therefore \overrightarrow{OT} = \frac{1}{2}\mathbf{b} + 2\left(\mathbf{a} - \frac{1}{4}\mathbf{b}\right) = 2\mathbf{a}$$

Since $\overrightarrow{OT} = 2\overrightarrow{OA}$,

then O, T and A are colliear points with O (or A or T) as the common point.

6	Solution [7]
	Let $y = \frac{ax+b}{x-a}$.
	xy - ay = ax + b
	x(y-a) = ay + b
	$x = \frac{ay + b}{y - a}$
	$\therefore f^{-1}(x) = \frac{ax+b}{x-a}$
	f is self-inverse.
	Symmetrical about $y = x$.
	$R_f = \mathbb{R} \setminus \{a\}$
	Since $D_g = \mathbb{R}, R_f \subseteq D_g$.
	∴ gf exists.
	$D_{gf} = D_f = \mathbb{R} \setminus \{a\}$
	$\mathbb{R}\setminus\{a\} \xrightarrow{f} \mathbb{R}\setminus\{a\} \xrightarrow{g} (0,c)\cup(c,e) \text{ or } (0,e)\setminus\{c\}$

7	Solution [8] AP GP	
(a)	Let first term be $u_1 = a$ and common difference	
	d.	
	Middle term $u_{\frac{n+1}{2}} = a + \left(\frac{n+1}{2} - 1\right)d$	
	Last term $u_n = a + (n-1)d$	
	Given $a + a + \left(\frac{n+1}{2} - 1\right)d = a + (n-1)d$	
	$a + \frac{nd}{2} + \frac{d}{2} - d = nd - d$	
	$\frac{nd}{2} = a + \frac{d}{2}$	
	$n = \frac{2a + d}{d}$	
	$n = \frac{2a}{d} + 1 \mathbf{OR} d = \frac{2a}{n-1}$	
	Sub $n = \frac{2a}{d} + 1$ into the middle term	
	$u_{\frac{n+1}{2}} = a + \left(\frac{n+1}{2} - 1\right)d:$	
	$u_{\frac{n+1}{2}}$	
	$= a + \left(\frac{\frac{2a}{d} + 1 + 1}{2} - 1\right)d$	
	$= a + \left(\frac{2 + \frac{2a}{d}}{2} - 1\right)d$	
	$= a + \left(1 + \frac{a}{d} - 1\right)d$	
	$= a + \left(\frac{a}{d}\right)d$	
	= 2 <i>a</i>	

q = 2p

$-1 < \frac{p}{\left(2p\right)^2} < 1$		
$-1 < \frac{1}{4p} < 1$		
$-4 < \frac{1}{p} < 4$		
$p < -\frac{1}{4}$	OR $p > \frac{1}{4}$	
(Rejected, since all terms		
are positive.)		

8	Solution [8] Macluarin's Series
(i)	$(1-x^2)f''(x)-xf'(x)=0$ (Given)
	Differentiating,
	$(1-x^2)f'''(x) - 2xf''(x) - xf''(x) - f'(x) = 0$
	At $x = 0$, substitute into:
	$(1-x^2)f''(x)-xf'(x)=0$
	f''(0) - 0 = 0
	f''(0) = 0
	At $x = 0$, substitute into:
	$(1-x^2)f'''(x) - 2xf''(x) - xf''(x) - f'(x) = 0$
	f'''(0) - 0 - 0 - f'(0) = 0
	f'''(0) = -1
	Thus,
	f(x)
	$= f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \dots$
	$=1+x(-1)+\frac{x^2}{2!}(0)+\frac{x^3}{3!}(-1)+\dots$
	$=1-x-\frac{x^3}{6}+\dots$
(ii)	$f(x) = 1 - x - \frac{x^3}{1 + \dots}$
	$f(x) = 1 - x - \frac{x^{3}}{6} + \dots$ $f'(x) = -1 - \frac{x^{2}}{2} + \dots$
	$\frac{1}{2}$
	$\frac{f'(x)}{x} = \frac{-1 - \frac{1}{2} + \dots}{x}$
	$\frac{f'(x)}{f(x)} = \frac{-1 - \frac{x^2}{2} + \dots}{1 - x - \frac{x^3}{6} + \dots}$
	$= \left(-1 - \frac{x^2}{2} + \dots\right) \left(1 - x - \frac{x^3}{6} + \dots\right)^{-1}$

	$=\left(-1-\frac{x^2}{2}+\right)(1-x+)^{-1}$	
	(Need not consider x^3 – term anymore.)	
	$= \left(-1 - \frac{x^2}{2} + \dots\right) \left(1 + (-1)(-x) + \frac{(-1)(-2)}{2!}(-x)^2 \dots\right)$ $= \left(-1 - \frac{x^2}{2} + \dots\right) \left(1 + x + x^2 \dots\right)$ $= \left(-1 - x - x^2 - \frac{x^2}{2} + \dots\right)$ $= -1 - x - \frac{3}{2}x^2 + \dots$	
(iii)	$\frac{f'(x)}{f(x)} = -1 - x - \frac{3}{2}x^2 + \dots$	
	Integrating both sides with respect to x , $\int \frac{f'(x)}{f(x)} dx = \int -1 - x - \frac{3}{2}x^2 + \dots dx$ $\ln f(x) = \left[-x - \frac{1}{2}x^2 + \dots\right] + C$	
	When $x = 0$, $f(0) = 1$: $\ln 1 = C \Rightarrow C = 0$ $\ln f(x) = -x - \frac{1}{2}x^2 +$	

9	Solution [10] Curve Sketching			
(i)	Since $x = 3$, $c = -3$			
	$y = x + 5 + \frac{d}{x - 3} = \frac{x^2 + 2x - 15 + d}{x - 3} = \frac{ax^2 + bx - 14}{x - 3}$			
	Therefore $a = 1$ and $b = 2$.			
(ii)				
	Graph of $y = \frac{x^2 + 2x - 14}{x - 3}$			
	. ↑ ail			
	$y \qquad x = 3$			
	y = x + 5			
	(4,10)			
	(2, 6)			
	$(0,4\frac{2}{3})$			
	$(-1-\sqrt{15},0)$ $(-1+\sqrt{15},0)$ x			
	When rounded to 3 s.f, the axial intercepts are (0, 4.67),			
	(-4.87, 0) and (2.87, 0).			

Thus, gradient of $y = \frac{x-3}{m} + 8$ need to be between the gradient of y = x + 5 and gradient of the vertical line, x = 3.

$$1 < \frac{1}{m}$$

Therefore, $0 < m < 1$

10	Solution [10] Applications of Differentiation
(i)	$x = \sqrt{4 + t^2} \qquad y = t^2$
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{t}{\sqrt{4+t^2}} \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = 2t$
	• • • • • • • • • • • • • • • • • • • •
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$
	$=2\sqrt{4+t^2}$
	$-2\sqrt{4+t}$
	When $t = p$, $x = \sqrt{4 + p^2}$, $y = p^2$ and $\frac{dy}{dx} = 2\sqrt{4 + p^2}$.
	Equation of tangent
	$y - p^2 = 2\sqrt{4 + p^2} \left(x - \sqrt{4 + p^2} \right)$
	$y = 2\sqrt{4 + p^2}x - 8 - p^2$
	$y - 2\sqrt{\tau} + p + \lambda = 0 - p$
(ii)	$8+p^2$
	When $y = 0$, $x = \frac{8 + p^2}{2\sqrt{4 + p^2}}$
	x-coordinate of M
	$= \frac{1}{2} \left(\sqrt{4 + p^2} + \frac{8 + p^2}{2\sqrt{4 + p^2}} \right)$
	$=\frac{16+3p^2}{4\sqrt{4+p^2}}$
	Coordinates of M are
	$\begin{pmatrix} 16+3p^2 & p^2 \end{pmatrix}$
	$\left(\frac{16+3p^2}{4\sqrt{4+p^2}}, \frac{p^2}{2}\right)$
	Parametric equation of curve traced out by M
	$x = \frac{16 + 3p^2}{4\sqrt{4 + p^2}}$
	$y = \frac{p^2}{2} \tag{1}$
	From (1), $p^2 = 2y$
	Cartesian equation of line
	$x = \frac{16 + 3(2y)}{4\sqrt{4 + 2y}}$
	$2x\sqrt{4+2y} = 8+3y$

(iii) Required area
$$= \int_{2}^{3} y \, dx$$

$$= \int_{0}^{\sqrt{5}} y \frac{dx}{dt} \, dt$$

$$= \int_{0}^{\sqrt{5}} (t^{2}) \left(\frac{t}{\sqrt{4 + t^{2}}} \right) dt$$

$$= \int_{0}^{\sqrt{5}} \frac{t^{3}}{\sqrt{4 + t^{2}}} \, dt \, (shown)$$
Let $u = t^{2}$ then $\frac{du}{dt} = 2t$
Let $\frac{dv}{dt} = \frac{t}{\sqrt{4 + t^{2}}}$ then $v = \frac{1}{2} \int 2t (4 + t^{2})^{\frac{1}{2}} \, dt = (4 + t^{2})^{\frac{1}{2}}$

$$\int_{0}^{\sqrt{5}} \frac{t^{3}}{\sqrt{4 + t^{2}}} \, dt$$

$$= \left[t^{2} \sqrt{4 + t^{2}} \right]_{0}^{\sqrt{5}} - \int_{0}^{\sqrt{5}} 2t \sqrt{4 + t^{2}} \, dt$$

$$= \left[5\sqrt{9} - 0 \right] - \left[\frac{2}{3} (4 + t^{2})^{\frac{3}{2}} \right]_{0}^{\sqrt{5}}$$

$$= 15 - \frac{2}{3} \left[(9)^{\frac{3}{2}} - (4)^{\frac{3}{2}} \right]$$

$$= \frac{7}{3} \text{ units}^{2}$$

11	Solution [12] Differentiation	
(i)	A is at (1,0).	
	B is at (x, y) where $y^2 = 1 - \frac{x^2}{4}$	
	$r^{2} = (x-1)^{2} + (y-0)^{2}$	
	$=(x-1)^2+1-\frac{x^2}{4}$	
	$= \frac{1}{4} (3x^2 - 8x + 8)$	
	$F = \frac{4k}{3x^2 - 8x + 8}$	
(11)		
(ii)	$F = \frac{4k}{3x^2 - 8x + 8}$	
	$\frac{dF}{dx} = -4k \left(3x^2 - 8x + 8\right)^{-2} \left(6x - 8\right)$	
	$= \frac{-8k(3x-4)}{(3x^2-8x+8)^2}$	
	$(3x^2-8x+8)$	
	At stationary point, $\frac{dF}{dx} = 0$.	
	6x-8=0	
	4	
	$x = \frac{4}{3}$	
	Method 1: Using 2 nd Derivative to verify nature	
	$\int d^2F \left(3x^2-8x+8\right)^2(-24k)+8k(3x-4)(2)(3x^2-8x+8)(6x-8)$	
	$\frac{\mathrm{d}^2 F}{\mathrm{d}x^2} = \frac{\left(3x^2 - 8x + 8\right)^2 \left(-24k\right) + 8k\left(3x - 4\right)\left(2\right)\left(3x^2 - 8x + 8\right)\left(6x - 8\right)}{\left(3x^2 - 8x + 8\right)^4}$	
	When $6x - 8 = 0$, i.e. $x = \frac{4}{3}$:	
	$\frac{\mathrm{d}^2 F}{\mathrm{d}x^2} = -3.375k < 0 \text{, therefore maximum.}$	
	Note: $\frac{d^2 F}{dx^2}\Big _{x=\frac{4}{3}}$ can be found easily using GC.	

	Mathad 2. Hai	in a 1st Danissadi	4a : C	4
	x	ing 1 st Derivativ		1.34
			$\frac{4}{3}$	
	$\mathrm{d}F$	0.00112k	0	-0.0225k
	dx			
		/	-	\
	$F_{\text{max}} = \frac{3}{3\left(\frac{4}{3}\right)^2} - \frac{3}{3\left(\frac{4}{3}\right)^2} = \frac{3}{3\left$	$\frac{4k}{-8\left(\frac{4}{3}\right)+8}$		
	$=\frac{3k}{2}$			
ii)				
v)	$(-2, \frac{k}{9})$ $x = -2$ Note that $y^2 = $ Therefore $-2 \le $ Minimum F or			(2, k) $x = 2$ x
		(-2, 0), and thu		21.
v)	By symmetry, B must be at $(0,1)$ or $(0,-1)$ with x-coordinate = 0			

With $x = 0$, $F = \frac{4k}{0+8} = \frac{k}{2}$	
0+8 2	

12	Solution [13] Differential Equations
(i)	$\frac{\mathrm{d}Q_{in}}{\mathrm{d}t} = k$
	$rac{\mathrm{d}Q_{out}}{\mathrm{d}t} \propto \sqrt{Q}$
	$\frac{\mathrm{d}t}{\mathrm{d}t} = c\sqrt{Q}, \ c \in \mathbb{R}$
	$\frac{\mathrm{d}Q}{\mathrm{d}t} = \frac{\mathrm{d}Q_{in}}{\mathrm{d}t} - \frac{\mathrm{d}Q_{out}}{\mathrm{d}t} = k - c\sqrt{Q}$
	Starting with a new clean tank:
	When $t = 0$, $Q = 0$, $\frac{dQ}{dt} = 5$ (*)
	$\frac{\mathrm{d}Q}{\mathrm{d}t} = k - c\sqrt{Q}$
	$5 = k - c\sqrt{0}$ $k = 5$
	With filter in a new clean tank, level of pollution stabilizes at 75 units:
	As $t \to \infty$, $Q \to 75$, $\frac{dQ}{dt} \to 0$,(**)
	$\frac{\mathrm{d}Q}{\mathrm{d}t} = 5 - c\sqrt{Q}$
	$0 = 5 - c\sqrt{75}$
	$c = \frac{1}{\sqrt{3}}$
	$\therefore \frac{dQ}{dt} = 5 - \sqrt{\frac{Q}{3}} \text{ (shown)}$

(ii)	$\frac{\mathrm{d}Q}{\mathrm{d}t} = 5 - \sqrt{\frac{Q}{3}} (1)$
	$x = \sqrt{\frac{Q}{3}}$
	$Q = 3x^2$ (2)
	$Q = 3x^2 (2)$ $\frac{dQ}{dt} = 6x \frac{dx}{dt} (3)$
	Sub (2) and (3) into (1):
	$6x\frac{\mathrm{d}x}{\mathrm{d}t} = 5 - x$

(iii)
$$6x \frac{dx}{dt} = 5 - x$$

$$\int \frac{6x}{5 - x} dx = \int dt$$

$$6 \int -1 + \frac{5}{5 - x} dx = \int dt$$

$$-x - 5 \ln|5 - x| = \frac{1}{6}t + c$$

$$x + \ln|5 - x|^5 = \frac{-t}{6} - c$$

$$\ln|5 - x|^5 = e^{-x \cdot \frac{t}{6} - c}$$

$$|5 - x|^5 = e^{-x \cdot \frac{t}{6} - c}$$

$$(5 - x)^5 e^x = A e^{-\frac{t}{6}} \text{ where } A = \pm e^{-c} - ----(*)$$

$$\left(5 - \sqrt{\frac{Q}{3}}\right)^5 e^{\sqrt{\frac{Q}{3}}} = A e^{-\frac{t}{6}}$$
When $t = 0$, $Q = 0$:
$$\left(5 - \sqrt{\frac{Q}{3}}\right)^5 e^{\sqrt{\frac{Q}{3}}} = A e^{-\frac{t}{6}}$$

$$\left(5 - \sqrt{\frac{Q}{3}}\right)^5 e^{\sqrt{\frac{Q}{3}}} = A e^{-\frac{t}{6}}$$

$$\left(5 - \sqrt{\frac{Q}{3}}\right)^5 e^{\sqrt{\frac{Q}{3}}} = A e^0$$

$$A = 5^5 = 3125$$

$$\left(5 - \sqrt{\frac{Q}{3}}\right)^5 e^{\sqrt{\frac{Q}{3}}} = 3125 e^{-\frac{t}{6}}$$
Therefore, $a = 5$, $b = 5$, $m = 3125$, and $p = -\frac{1}{6}$.

(iv) When
$$Q = 48$$
,
$$\left(5 - \sqrt{\frac{48}{3}}\right)^5 e^{\sqrt{\frac{48}{3}}} = 3125 e^{\frac{-t}{6}}$$

$$t = -6 \ln\left(\frac{e^4}{3125}\right) = 24.3 \text{ days (3 s.f.)}$$
Without a filter, the pollutant level would reach 48 units in $t = 48 / 5 = 9.6 \text{ days.}$
Therefore the filter is effective.