|  | <b>RVHS JC2 H2 Phy</b> | ysics Prelim | <b>Examination 3</b> | Mark Scheme |
|--|------------------------|--------------|----------------------|-------------|
|--|------------------------|--------------|----------------------|-------------|

| 1 | (a) | (i)   | time = 0.43 / 1.1                                                                               |    |
|---|-----|-------|-------------------------------------------------------------------------------------------------|----|
|   |     |       | = 0.39(1) s                                                                                     | A1 |
|   |     | (ii)  | $s = ut + \frac{1}{2}at^{2}$ $= \frac{1}{2}(9.81)(0.39)^{2}$                                    | C1 |
|   |     |       | = 0.75(0) m                                                                                     | A1 |
|   |     | (iii) | vertical velocity:                                                                              |    |
|   |     |       | v = u + at                                                                                      | M1 |
|   |     |       | = (9.81)(0.39)                                                                                  |    |
|   |     |       | = 3.8259 m s <sup>-1</sup>                                                                      |    |
|   |     |       | $\theta = tan^{-1} \frac{v_y}{v_x} = tan^{-1} \frac{3.8259}{1.1}$<br>= 74(.0)°                  | A1 |
|   |     | (iv)  | 1. Horizontal line at a non-zero value of <i>a</i> .                                            | B1 |
|   |     |       | 2. Curved line from origin with increasing gradient                                             | B1 |
|   | (b) |       | acceleration of free fall is unchanged / not dependent on mass and so no effect (on time taken) | A1 |

| 2 | (a) | $T_1$ and $T_2$ : down<br>$T_3$ : up All 3 must be correct.                                                                                                                    | B1 |
|---|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | (b) | By Principle of Moments,<br>Taking moment about the pivot at the base of wire 1,<br>sum of clockwise moments = sum of anti-clockwise moments<br>$(14.5)(m_pg) = (10.0)T_3$     | M1 |
|   |     | $T_{3} = \frac{14.5}{10.0} (m_{p}g)$ $= \frac{14.5}{10.0} (350 \times 10^{-3}) (9.81)$ $= 4.98 \text{ N}$                                                                      | A1 |
|   | (c) | P is in vertical translational equilibrium,<br>R adds additional downward force.<br>$T_3$ is only upward force and so must provide additional tension,<br>more likely to snap. | B1 |

|  | If method involves principle of moments, reference to a pivot must<br>be made known before a mark can be awarded together with the<br>reasoning. |  |
|--|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
|--|--------------------------------------------------------------------------------------------------------------------------------------------------|--|

| 3 | (a) | loss in GPE = gain in elastic PE                                                                         |    |
|---|-----|----------------------------------------------------------------------------------------------------------|----|
|   | ()  | $mgh = \frac{1}{2}kx^2$                                                                                  |    |
|   |     | $m = \frac{kx^2}{2gh} = \frac{(25)(0.050)^2}{2(9.81)(0.110)} = 0.028959 \text{ kg}$                      | M1 |
|   |     | = 0.029 kg(shown)                                                                                        |    |
|   | (b) | When the spring first compresses, the magnitude of the force from the spring is less than weight.        | B1 |
|   |     | Hence, there is still a <u>downward resultant force</u> that causes the marble to continue accelerating. | B1 |
|   | (c) | Max speed of marble happens when force from spring = weight $kx = mg$                                    |    |
|   |     | $x = \frac{mg}{k} = \frac{(0.028959)(9.81)}{25} = 0.01136 \text{ m}$                                     | M1 |
|   |     | gain in $EPE = \frac{1}{2}kx^2 = \frac{1}{2}(25)(0.01136)^2 = 0.001614 \text{ J}$                        | M1 |
|   |     | loss in $GPE = mg(0.060 + 0.01136)$                                                                      |    |
|   |     | = (0.028959)(9.81)(0.060 + 0.01136) = 0.02027 J                                                          | M1 |
|   |     | gain in $KE = loss$ in $GPE - gain$ in $EPE$                                                             |    |
|   |     | = 0.02027 - 0.001614                                                                                     |    |
|   |     | = 0.019 J (2sf)                                                                                          | A1 |

| 4 | (a) | When a charged particle is travelling in a magnetic field, it experiences a magnetic force that is always perpendicular to its velocity (and the magnetic field lines).                                  | B1 |
|---|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   |     | Since the charged particle is travelling perpendicular to the uniform magnetic field, and that the <u>resultant force only consists of the magnetic force</u> , the particle travels in a circular path. | B1 |
|   | (b) | centripetal force provided by magnetic force                                                                                                                                                             | M1 |
|   |     |                                                                                                                                                                                                          | M1 |

|     | $mr\omega^2 = Bqv$                                                                                      |    |
|-----|---------------------------------------------------------------------------------------------------------|----|
|     | $m\omega^2 = Bq\left(\frac{v}{r}\right)$                                                                |    |
|     | $m\omega^2 = Bq\omega$                                                                                  |    |
|     | $\omega = \frac{Bq}{m}$                                                                                 | A1 |
|     | $\frac{2\pi}{2\pi} = \frac{Bq}{2\pi}$                                                                   |    |
|     | Т т                                                                                                     |    |
|     | $T = \frac{2\pi m}{2\pi m}$                                                                             |    |
|     | Bq                                                                                                      |    |
| (b) | magnetic force provides for centripetal force                                                           |    |
|     | $Bqv = \frac{mv^2}{r}$                                                                                  |    |
|     | $q = \frac{mv}{Br} = \frac{(4.5 \times 10^{-26})(4.8 \times 10^5)}{(0.15) \left(\frac{0.60}{2}\right)}$ | M1 |
|     | $=4.8\times10^{-19}C$                                                                                   | A1 |
|     |                                                                                                         |    |

| 5 | (a) | (i)   | Hypothetical <u>gas obeys equation of state <math>pV = nRT</math></u> (perfectly at all pressures, temperature s and volume)                                                  | B1 |
|---|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   |     | (ii)  | Mean-square-speed (of atoms / molecules)                                                                                                                                      | B1 |
|   |     | (iii) | $p=\frac{1}{3}\rho\left\langle c^{2}\right\rangle$                                                                                                                            |    |
|   |     |       | $\rho = \frac{Nm}{V}$ with N explained (m = mass of a molecule)                                                                                                               |    |
|   |     |       | Or                                                                                                                                                                            | B1 |
|   |     |       | $ \rho = \frac{M}{V} (M = \text{mass of a gas}) $                                                                                                                             |    |
|   |     |       | $pV = \frac{1}{3}Nm\langle c^2 \rangle$                                                                                                                                       | B1 |
|   |     |       | pV = NkT with $p$ , $V$ , $T$ explained                                                                                                                                       | B1 |
|   |     |       | So mean kinetic energy $\langle E_k \rangle = \frac{1}{2}m\langle c^2 \rangle = \frac{3}{2}kT$                                                                                | B1 |
|   | (b) | (i)   | Internal energy <i>U</i> of a system is <u>sum of a random distribution of</u><br><u>kinetic and potential energies associated with the molecules of a</u><br><u>system.</u>  | B1 |
|   |     | (ii)  | (in ideal gas) no intermolecular forces, hence no potential energy                                                                                                            | B1 |
|   |     |       | Internal energy is (solely) kinetic energy (of particles)                                                                                                                     |    |
|   |     |       | Since <u>mean (translational) kinetic energy is proportional to</u><br><u>thermodynamic temperature of the gas</u> , the internal energy is<br>directly proportional as well. | B1 |

| 6 | (a) | (i)   | PSYV and QRXW                                                                                      | B1 |
|---|-----|-------|----------------------------------------------------------------------------------------------------|----|
|   |     | (ii)  | electrons moving in magnetic field deflected towards face QRXW / electrons accumulate on face QRXW | M1 |
|   |     |       | So face PSYV is more positive                                                                      | A1 |
|   | (b) | (i)   | Arrow point up the page                                                                            | B1 |
|   |     | (ii)  | $Eq = Bqv$ $v = \frac{E}{B} = \frac{12 \times 10^3}{930 \times 10^{-6}}$                           | C1 |
|   |     |       | $= 1.3 \times 10^7  m  s^{-1}$                                                                     | A1 |
|   |     | (iii) | $Bqv = m v^2/r$<br>$q/m = (1.3 \times 10^7)/(7.9 \times 10^{-2} \times 930 \times 10^{-6})$        | C1 |
|   |     |       | $= 1.8 \times 10^{11} C kg^{-1}$                                                                   | A1 |



|     | (iii) | $P_{\text{max}} = \frac{V_{\text{max}}^{2}}{R} = \frac{5.0^{2}}{2.0} = 12.5 \text{ W}$ $P_{\text{average}} = \frac{P_{\text{max}}}{4} = \frac{12.5}{4} = 3.1 \text{ W}$                                                                      | M1<br>A1 |
|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| (b) | (i)   | When an alternating current source is connected to the primary coil, there would be a <u>changing magnetic flux</u> produced.                                                                                                                | B1       |
|     |       | The <u>iron-core strengthens and links the flux</u> through the secondary coil. In the secondary coil, since the <u>magnetic flux through it changes</u> all the time, there would be an <u>e.m.f. induced</u> (according to Faraday's Law). | B1       |
|     | (ii)  | emf induced in secondary coil = 230 / 20 = 11.5 V                                                                                                                                                                                            |          |
|     |       | current in secondary coil = $V / R = 11.5 / 7.0 = 1.6429 A$                                                                                                                                                                                  | M1       |
|     |       | current in primary coil = 1.6429 / 20 = 0.082 A                                                                                                                                                                                              | A1       |

| 8 | (a) | The cut-off wavelength corresponds to the most energetic photon that can be produced. That happens when all the kinetic energy of an accelerated electron is lost in a single collision/interaction with the target atom in producing one photon.                                                                                                                                           | A1 |
|---|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | (b) | When electrons striking the metal target interact with the crystal lattice, forces experienced by the electrons cause them to be accelerated, decelerated or deflected. When this occurs, <u>their kinetic energies are lost through the emission of <i>Bremsstrahlung</i> (or <u>"braking radiation"</u>), which are photons of a range of energies which can lie in the X-ray region.</u> | A1 |
|   |     | Since the magnitude of the 'deceleration' experienced by the incident<br>electrons is different for all and is not discrete, the wavelengths of<br>the emitted photons have a continuous distribution so the<br><i>Bremsstrahlung</i> produces a continuous spectrum of electromagnetic<br>radiation.                                                                                       | A1 |
|   |     | Bremsstrahlung radiation, which is emitted when high energy<br>external electrons coming close to the nucleus decelerate,<br>accelerate or deflect. This energy lost in terms of photons can be<br>any amount of energy less than the maximum kinetic energy of the<br>electrons, therefore forming continuous spectra.                                                                     |    |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                             |    |

| (c) | (i)  | area = 0.200 m x 0.300 m = 0.0600 m <sup>2</sup><br>Accept a range of 0.0400 m <sup>2</sup> ≤ area ≤ 0.200 m <sup>2</sup>                             | A1 |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     | (ii) | Area of a grain:                                                                                                                                      |    |
|     |      | no of grains = $\frac{0.0600}{10^{-6} \times 10^{-6}} = 6.00 \times 10^{10}$<br>no of photons = $6.00 \times 10^{10} \times 10 = 6.00 \times 10^{11}$ | M1 |
|     |      | energy = $6.00 \times 10^{11} \times 10^{-15} = 6.00 \times 10^{-4} \text{ J}$                                                                        | A1 |
|     |      | Accept a range of 4.00×10 <sup>-4</sup> J ≤ energy ≤ 2.00×10 <sup>-3</sup> J                                                                          |    |

| Section B |     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
|-----------|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 9         | (a) | (i)   | 1. Diffraction refers to the <u>bending or spreading out of waves</u><br>when they travel through a small opening or when they pass<br>round a small obstacle.                                                                                                                                                                                                                                                                                          | B1       |
|           |     |       | 2. Interference refers to the <u>superposing of two or more coherent</u><br><u>waves to produce regions of maxima and minima</u> in space,<br>according to the principle of superposition                                                                                                                                                                                                                                                               | B1       |
|           |     |       | <b>3.</b> Coherence refers to having a <u>constant phase difference (and</u> same frequency) (between waves/sources/particles).                                                                                                                                                                                                                                                                                                                         | B1       |
|           |     | (ii)  | <ol> <li>Any two of the following:</li> <li>The waves must overlap to produce regions of maxima and minima.</li> <li>The sources must be coherent.</li> <li>The waves must have the same amplitude or approximately the same amplitude.</li> <li>The waves must be unpolarised or with the same plane of polarisation (for transverse waves).</li> </ol>                                                                                                | B1<br>B1 |
|           | (b) | (i)   | Since the two radio waves <u>emitters are in phase</u> , along centre-line<br>and <u>path difference is always zero</u> , hence <u>constructive interference</u><br>always occurs.                                                                                                                                                                                                                                                                      | B1       |
|           |     | (ii)  | Radio waves <u>have long wavelengths</u> , hence the anti-nodal lines will be far apart enough for the ship to differentiate                                                                                                                                                                                                                                                                                                                            | A1<br>M1 |
|           |     | (iii) | Since the intensity of each individual wave is inversely proportional<br>to the square of the distance, the intensity of each individual wave<br>will increase as the ship goes nearer, hence the resultant intensity<br>will increase.<br>OR<br>Since the amplitude of each individual wave is inversely<br>proportional to distance, the amplitude of each individual wave will<br>increase as the ship goes nearer, hence the resultant amplitude of | M1       |

|      |       | the superposed wave will increase. As <u>intensity is proportional to</u> the square of the amplitude, intensity increases.              | ۸ 1 |
|------|-------|------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      |       | Hence, the intensity of the resultant increases as the ship approached the gate.                                                         | AI  |
| (c)  |       | $\lambda_1 = \frac{c}{f_1} = \frac{3.0 \times 10^8}{23.5 \times 10^6} = 12.77 \text{ m}$                                                 | C1  |
|      |       | Path difference = $\sqrt{(895)^2 + (250 + \frac{95}{2})^2} - \sqrt{(895)^2 + (250 - \frac{95}{2})^2}$                                    | M1  |
|      |       | $= 25.527 \text{ m}$ $\approx 2\lambda_1$                                                                                                |     |
|      |       | Since the path difference is approximately $2\lambda_1$ , the ship is on an anti-nodal line.                                             | A1  |
|      |       | Note: using $x = \frac{\lambda D}{a}$ will earn no credit.                                                                               |     |
| (d)  | (i)   | If ship is <u>on the central anti-nodal line,</u><br>it should detect <u>maximum signals from both frequencies / the</u>                 | B1  |
|      |       | <u>maximum signal will be stronger</u> .<br>OR                                                                                           |     |
|      |       | If ship is <u>on wrong anti-nodal line</u> ,<br>only <u>one of the frequencies will show a strong signal</u> .                           |     |
| <br> | (ii)  | Higher orders of maxima from both frequencies may still coincide/overlap.<br>Hence the ship could still detect maximum signals from both | B1  |
|      |       | frequencies even though it is not on the central anti-nodal line.                                                                        |     |
| (e)  | (i)   | Simple harmonic motion                                                                                                                   | B1  |
|      | (ii)  | 5.0 km $h^{-1} = 1.39 \text{ m s}^{-1}$                                                                                                  |     |
|      |       | $v = \frac{2\pi r}{r}$                                                                                                                   |     |
|      |       | $T = 2\pi r$                                                                                                                             |     |
|      |       | $T = \frac{1}{V}$                                                                                                                        |     |
|      |       | $=\frac{2\pi(0.225)}{1.39}$                                                                                                              | M1  |
|      |       | = 1.02 s                                                                                                                                 | A1  |
|      | (iii) | $\boldsymbol{a}_0 = \omega^2 \boldsymbol{X}_0$                                                                                           |     |
|      |       | $=\left(\frac{2\pi}{1.02}\right)^2 (0.225)$                                                                                              | M1  |
|      |       | $= 8.57 \text{ m s}^{-2}$                                                                                                                | A1  |
|      |       | (Alternatively, use $a = \frac{v^2}{r}$ to solve.)                                                                                       |     |

| 10 | (a) | (i)          | S shown on the peak                                                                            | B1  |
|----|-----|--------------|------------------------------------------------------------------------------------------------|-----|
|    |     | (ii)         | Kr and U are right of peak in correct relative positions (Kr on left of U; both on right of S) | B1  |
|    |     | (iii)        | Energy released = Binding energy of products – binding energy of                               |     |
|    |     |              | reactants                                                                                      | C1  |
|    |     |              | $= (144 \times 1.3341 \times 10^{-12} + 90 \times 1.3864 \times 10^{-12})$                     | •   |
|    |     |              | $-(235 \times 1.2191 \times 10^{-12})$                                                         | ۸1  |
|    |     | (iv)         | $F = mc^2$                                                                                     |     |
|    |     | ()           | $3.0398 \times 10^{-11}$                                                                       | C1  |
|    |     |              | m = 1000000000000000000000000000000000000                                                      | 0.  |
|    |     |              | $= 3.38 (3.3776) \times 10^{-28}$                                                              | A1  |
|    |     | (v)          | The products have greater stability and therefore greater binding                              |     |
|    |     |              | energy.                                                                                        |     |
|    |     |              |                                                                                                | B1  |
|    |     |              | OR                                                                                             |     |
|    |     |              | With a increase in binding energy, the mass of the products will be                            |     |
|    |     |              | less than that of the reactants, by the mass-energy equivalence /                              |     |
|    |     |              | mass loss, there must be a release of energy.                                                  |     |
|    |     | / N          |                                                                                                |     |
|    |     | (vi)         | Neutrons are single particles, they have no binding energy per nucleon.                        | B1  |
|    | (b) | (i)          | Isotope is one or more forms of the same element, with the same                                | _   |
|    |     |              | atomic/proton number but with different number of neutrons in their                            | B1  |
|    |     | /::)         | N - 0                                                                                          |     |
|    |     | (11)         | Y = 0<br>X = -1                                                                                | B1  |
|    |     |              | D = electron / beta-particle                                                                   | B1  |
|    |     | (iii)        | Radioactive decay is a random process                                                          | N/1 |
|    |     |              |                                                                                                |     |
|    |     |              | thus the time taken to decay by half will fluctuate. / should consider                         | A 4 |
|    |     |              | average time taken.                                                                            | AT  |
|    |     |              | Or                                                                                             |     |
|    |     |              | Carbon-14 will decay into Nitrogen-14                                                          | M1  |
|    |     |              | Wrong, to state that the number of nuclei will decay be half / therefore                       |     |
|    |     |              | the total number of nuclei in the box remains the same / Should state                          | A1  |
|    |     |              | "number of carbon-14 nuclei"                                                                   |     |
|    | (c) | (i)          | Since carbon-14 will decay into nitrogen 14, the sample from site will                         |     |
|    | (-) | (-)          | have lower concentration as more time has passed for it.                                       |     |
|    |     |              |                                                                                                | B1  |
|    |     |              | Sample from site has <u>undergone more decay</u> as more time.                                 |     |
|    |     | <i>(</i> ii) | Calculating of concentrations or number of nuclei                                              |     |
|    |     | (")          |                                                                                                | C1  |
|    |     |              | $\lambda = \frac{ln2}{5700}$                                                                   | N/1 |
|    |     |              | 5700                                                                                           |     |
|    |     |              | 1 1 $\frac{ln^2}{-ln^2}t$                                                                      |     |
|    |     |              | $\frac{1}{8.6 \times 10^{-10}} = \frac{1}{3.3 \times 10^{-10}} e^{-5700^{\circ}}$              | M1  |
|    |     |              |                                                                                                |     |
|    |     | (:::)        | $t = 7900 \ years (7880)$                                                                      | A1  |
|    |     | (III)        | it cannot de used for very old samples.                                                        | ВΊ  |

|  | As the activity will be very low after a long period of time and the results of the calculation will not be accurate/reliable. | B1 |
|--|--------------------------------------------------------------------------------------------------------------------------------|----|
|  | It cannot be used for things that are still living                                                                             | B1 |
|  | Carbon-14 could have been gained/ lost via other means.                                                                        | B1 |
|  | Activities from other samples.                                                                                                 | B1 |
|  | Assumes that the wood will have the same concentration of Carbon-<br>14 to Carbon-12.                                          | B1 |
|  | Any two of the above, provided explanations are sound.                                                                         |    |