RV 2012 Yr 6 H2 MA Prelim Paper 2

Ques	tion 1 [7 Marks]	
	$x\frac{dy}{dx} + (1 - x^3)y - x^2 = 0 (1)$	
	Let $u = xy \implies \frac{\mathrm{d}u}{\mathrm{d}x} = x\frac{\mathrm{d}y}{\mathrm{d}x} + y$	
	Subs. into (1):	
	$\frac{\mathrm{d}u}{\mathrm{d}x} - y + y - x^3 y - x^2 = 0$	
	$\frac{\mathrm{d}u}{\mathrm{d}x} = ux^2 + x^2 = (u+1)x^2 \text{(shown)}$	
	$\int \frac{1}{u+1} \mathrm{d}u = \int x^2 \mathrm{d}x$	
	$\ln u+1 = \frac{x^3}{3} + C$	
	$u+1 = Ae^{x^3/3}$ where $A = \pm e^C$	
	$u = A e^{\frac{x^3}{3}} - 1$	
	$\therefore y = \frac{Ae^{\frac{x^3}{3}} - 1}{x} \text{(shown) and } f(x) = \frac{1}{3}x^3$	
(i)		
(ii)	A < -1	

Ques	tion 2 [10 Marks]	
(a)	$\tan y = e^x \implies \sec^2 y \frac{dy}{dx} = e^x$	
	$\therefore \int \frac{1}{\mathrm{e}^x (1 + \mathrm{e}^{2x})} \mathrm{d}x$	
	$= \int \cot y \cdot \frac{1}{1 + \tan^2 y} \cdot \cot y \sec^2 y dy$	
	$= \int \cot^2 y dy$	
	$= \int (\cos ec^2 y - 1) \mathrm{d}y$	
	$=-\cot y - y + C$	
(b)	$=-e^{-x}-\tan^{-1}(e^{x})+C$	
(b)	$y = e^{x^{2}+1}$ When $x = 0$, $y = e$ and when $x = 1$, $y = e^{2}$. $y = e^{x^{2}+1} \Rightarrow x^{2} = \ln y - 1$ Required volume $= \pi(1)^{2}e^{2} - J$ where $J = \pi \int_{e}^{e^{2}} (\ln y - 1)dy$ J $= \pi \left\{ \left[y(\ln y) \right]_{e}^{e^{2}} - \int_{e}^{e^{2}} 1dy - \left[y \right]_{e}^{e^{2}} \right\}$ $= \pi \left[y(\ln y) - 2y \right]_{e}^{e^{2}}$ $= \pi \left[e^{2} \ln e^{2} - e \ln e - 2e^{2} + 2e \right]$ $= \pi e$	
	Required volume	
	$=\pi(1)^2e^2-J$	
	$=\pi e^2 - \pi e$	
	$=\pi e(e-1)$	
	Note that $\int \ln y dy = y \ln y - \int 1 dy = y \ln y - y + c$	

$x^2 - (y - 1)^2 = 1.$	
A: Translation of 2 units in the positive direction of the	
y-axis.	
B: Scaling parallel to the y-axis with a scale factor of $\frac{1}{2}$.	
Note: Scale factors must be positive numbers.	

$$v = \left(2\sqrt{3} - 2\right)\left(\frac{1}{2}\right) + i\left(2\sqrt{3} - 2\right)\left(\frac{\sqrt{3}}{2}\right)$$

$$\therefore v = (-1 + \sqrt{3}) + i(-\sqrt{3} + 3)$$

Question 5 [4 Marks]			
i	The age group may be classified as $21 - 30$, $31 - 40$, $41 - 50$ and last group with age more than 50.		
	For each age group, interview 25 people which add up to 100.		
ii	The sample selected is biased and not representative of the district.		
iii	Stratified random sampling		

Question 6 [7 Marks]		
No. of combinations = $2 \cdot 3 \cdot 3 \cdot 4 = 72$		
No. of ways		
$= [72 \times (1 \cdot 2 \cdot 2 \cdot 3)] \div 2^4$		
= 54		
Alternatively		
No. of ways = $\binom{2}{2} \times \binom{3}{2} \times \binom{3}{2} \times \binom{4}{2} = 54$		
No. of ways = $2^8 - 1 = 255$		
Alternatively, number. of ways = $\sum_{r=1}^{8} \binom{8}{r} = 255$ Note: $\binom{8}{0}$ is not counted as the customer must choose at		
least 1 ingradient.		

Question 7 [8 Marks]			
a	Let the sample of bivariate data be (x_i, y_i) where		
	$i = 1, 2, \dots n$.		
	Let $e_i = y_i - (a + bx_i)$ be the vertical deviation between		
	the point (x_i, y_i) and the line $y = a + bx$.		
	y = a + bx $y = a + bx$		
	The line $y = a + bx$ is the least square regression line for		
	the sample of bivariate data if the sum of the squares of		
	the vertical deviation $\sum_{i=1}^{n} (e_i)^2$ is the minimum.		
b	From GC, r = 0.96953 ≈ 0.970		
1	Although the value of r is close to 1, it does not indicate that the linear model is suitable as the scatter diagram may show a curvilinear relationship between the points.		
b	Calculate the r values for both models and the model with		
ii	a higher absolute value of r closer to 1 is a better model.		
	For $y = a + b \ln x$ value of $r = 0.995 > 0.970$		
	$y = a + b \ln x$, value of $1 = 0.3355 + 0.375$		
	Thus $y = 1.46 + 4.30 \ln x$ is a better model.		
h	$From (ii) y = 1.4595375 \pm 4.2820506 \ln r$		
iii	Sub $y = 6.4$ then $x = 3.17$		
	540^{-1} , 5.1^{-1} , 5.1^{-1} .		
	Since $r = 0.995 \approx 1$, the regression line of $\ln x$ on y and		
	the regression line of y on $\ln x$, it is reasonable to use		
	the regression line of y on $\ln x$ for the estimate. $-(1)$		
	In addition, $y = 6.4$ is within the input data range of $2.2 \le y \le 0.0$, the estimate is an interval sticr. (2)		
	$2.2 \ge y \ge 9.9$, the estimate is an interpolation. –(2)		
	Hence, the estimate is reliable.		
	Note: Both (1) and (2) should be stated to justify the		
	reliability of the estimate. Simply quoting $r = 0.995 \approx 1$		
	in (1) is not acceptable.		

Question 8 [8 Marks]			
i	Let S and L be the r.v. denoting the amount of oil in a		
	Small and Regular bottle respectively.		
	$S \sim N(545, 20^2)$ and $R \sim N(1020, 50^2)$		
	$P(R \ge \alpha) \ge 0.97$		
	$1 - \mathbf{P}(R < \alpha) \ge 0.97$		
	$\mathbf{P}(R < \alpha) \le 0.03$		
	$\alpha \leq 925.96$		
	Greatest $\alpha = 925$		
ii	$S_1 + S_2 + S_3 \sim N(3 \times 545, 3 \times 20^2)$		
	$R_1 + R_2 \sim N(2 \times 1020, 2 \times 50^2)$		
	Let $T = \frac{1}{5} (S_1 + S_2 + S_3 + R_1 + R_2)$		
	$S_1 + S_2 + S_3 + R_1 + R_2$		
	~ N(3×545+2×1020, 3×20 ² +2×50 ²)		
	$T \sim N\left(\frac{1}{5} \times 3675, \ \frac{1}{5^2} \times 6200\right)$		
	$T \sim N(735, 248)$		
	P(T < 730) = 0.375		
iii	$S \sim N(545, 20^2)$		
	P(bottle with the least content holds more than 560 ml)		
	= P(all 3 bottles holds more than 548 ml of oil)		
	$= \left[P(S > 547) \right]^{3}$		
	= 0.0974 (3.s.f)		
iv	Suppose $R \sim N(1020, 50^2)$		
	P(0 > P > 1000) = 0.885 OP P(P > 1000) = 0.115		
	$F(0 < K < 1080) = 0.885 \text{ OK } F(K \ge 1080) = 0.115$		
	There is a probability of 0.115 that the Regular bottle of		
	normal distribution is not appropriate		
	normal distribution is not appropriate.		
	Alternatively,		
	Suppose $R \sim N(1020, 50^2)$, then $\mu = 1020$ and $\sigma = 50$		
	$P(\mu - 3\sigma < R < \mu - 3\sigma) = P(930 < R < 1230) = 0.997$		
	There is a probability of 0.997 that the amount of		
	cooking oil in a Regular bottle falls within the range 930		
	ml to 1230 ml. A wide range of this set of values exceeds		
	the capacity of the bottle i.e. 1080 ml, hence using a		
	normal distribution is not appropriate.		

Question 9 [11 Marks] $\overline{\mathrm{H}_{0}}$: $\mu = \mu_{0}$ i $H_1: \mu > \mu_0$ ii It means that there is a probability of 0.025 that the test concludes that the mean time spent by a technician of Open Network to install a fibre optic cable unit in a household unit is more than μ_0 minutes when in fact it is not true. $s^2 = \frac{n}{n-1} \times \text{sample variance} \Rightarrow s^2 = \frac{12}{11} \times 4.5^2$ iii Under H_0 , $T = \frac{\overline{X} - \mu_o}{s/\sqrt{n}} \Box t(11)$ 0.975 0.025 2.200985 Using GC, invT(0.975,11) gives 2.200985 H_0 is not rejected if $t_{cal} \le 2.200985$ $\frac{\frac{21.3 - \mu_0}{\sqrt{12}}}{\frac{\sqrt{12}}{\sqrt{11}}} \le 2.200985$ $21.3 - \mu_0 \le \frac{(2.200985)(4.5)}{\sqrt{11}}$ $\mu_0 \ge 18.31370$ $\mu_0 \ge 18.4 \ (3s.f.)$ The time spent by a technician of Open Network to install a fibre optic cable unit in a household unit, is assumed to be normally distributed. Note: In this case, X is defined in the question. Therefore the statement "X is normally distributed" is acceptable. Candidates are to ensure that X is properly defined if they are to use this statement iv Under H_0 , $Z = \frac{\overline{X} - \mu_o}{\sigma / \sqrt{n}} \Box N(0,1)$ Taking $\mu_0 = 19$, n = 12, $\overline{x} = 21.3$ and $\sigma = 5$ Using GC - Z Test, p-value = 0.0555255 Since H_0 is rejected, p-value $< \frac{\alpha}{100}$ $0.0555255 < \frac{\alpha}{100} \Longrightarrow \alpha > 5.552$ The least significance level for which H_0 is rejected is 5.56%.

Question 10 [11 Marks]		
a	Given that $P(B) = 0.4$ and $P(A B') = 0.15$,	
	P(A B') = 0.15	
	$P(A \cap B')$ or z	
	P(B') = 0.15	
	$P(A \cup B) - P(B)$	
	$\frac{\Gamma(R \otimes B) - \Gamma(B)}{1 - P(R)} = 0.15$	
	$\frac{1-1(D)}{D(A+B)} = 0.4$	
	$\frac{P(A \cup B) - 0.4}{1 - 0.4} = 0.15$	
	1 - 0.4	
1	$P(A \cup B) = 0.49$	
b	P(wins grand prize in 2 nd round) = $\frac{2}{6} \cdot \frac{1}{5} = \frac{1}{15}$ (Shown)	
bi	P(correct key in 1st round \cap wins grand prize)	
	$= P(1^{st} \text{ correct}, 2^{nd} \text{ correct}) +$	
	$P(1^{st} \text{ correct}, 2^{nd} \text{ wrong}, 3^{rd} \text{ correct})$	
	-(2,1)+(2,4,1)-2	
	$\left[-\left(\frac{-1}{6},\frac{-1}{5}\right)^{+}\left(\frac{-1}{6},\frac{-1}{5},\frac{-1}{4}\right)^{-}\right]$	
bii	P(correct key selected in first round wins grand prize)	
	P(correct key in 1st round \cap wins grand prize)	
	$= \frac{1}{P(\text{wins grand prize})}$	
	2	
	$\frac{2}{15}$	
	$=\frac{15}{(2 \ 1)} (2 \ 4 \ 1) (4 \ 2 \ 1)}$	
	$\left(\frac{-1}{6},\frac{-1}{5}\right) + \left(\frac{-1}{6},\frac{-1}{5},\frac{-1}{4}\right) + \left(\frac{-1}{6},\frac{-1}{5},\frac{-1}{4}\right)$	
	$\frac{2}{15}$	
	$=\frac{15}{3}$	
	$\int \frac{3}{15}$	
	2	
	$=\frac{2}{2}$	
	J Let X be the random variable for the no. of shows in a	
	week (out of 5 shows) for which the grand prize is won	
	in the 2 nd round.	
	$ = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$	
	Then $X \sim B\left(5, \frac{1}{15}\right)$	
	Let $p = \frac{1}{15}$, then $E(X) = 5p$, $Var(X) = 5p(1-p)$	
	For $n = 60$ weeks, since <i>n</i> is large,	
	$\frac{1}{V} = N\left(5p(1-p)\right)$ approximately by Central	
	$x \sim N(3p, -60)$ <u>approximatery by Central</u>	
	Limit Theorem.	
	$\overline{X} \sim N\left(\frac{1}{3}, \frac{7}{1350}\right)$	
	Required probability = $P(\overline{X} > 0.4)$	
	= 0.177 (correct to 3 s f)	
	Note: Application of Central Limit Theorem must be	
	clearly stated.	

Ouestion 11 [11 Marks]

Ques		
i	Let <i>X</i> and <i>Y</i> denote the number of male and female customers entering the cafe in a randomly chosen 30	
	minute period. $V \square P_{2}(2) = V \square P_{2}(4)$	
	$X \sqcup PO(2), \ I \sqcup PO(4)$ $Y \perp V \Box P_{2}(6)$	
	$A + I \square I O(0)$ Required probability	
	-P(X+Y>6)	
	$-1 \left(X + Y \ge 0 \right)$	
	$=1-P(X+Y\leq5)$	
	$= 0.5543203586 \approx 0.554 (3.s.f)$	
11	Let W denote the number of days on which more than 5 customers enter the café between 9.00 am and 9.30 am	
	out of 60 days.	
	$W \square B(60, 0.5543203586)$	
	Since $n = 60 \ge 50$ is large, $np = 33.25 > 5$ and	
	nq = 26.74 > 5	
	Therefore $W \square N(33.2592, 14.8229)$ approximately	
	$P(W \ge 30) \stackrel{cc}{=} P(W \ge 29.5)$	
	= 0.836 (3.s.f)	
iii	Let <i>A</i> and <i>B</i> denote the number of male and female	
	minute period	
	$A \square Po(1), B \square Po(2)$	
	$A + B \square Po(3)$	
	$\mathbf{P}(A \le 2 A + B \le 4)$	
	$P(A \le 2 \cap A + B \le 4)$	
	$=\frac{1}{P(A+B\leq 4)}$	
	$\left[P(A-0), P(B < 4) + P(A-1), P(B < 3) \right]$	
	$\begin{bmatrix} 1 & (1-0) & (D-1) & (D-1) & (D-2) \\ 0 & (D-1) & (D-2) \\ 0 & (D-1) & (D-2) \end{bmatrix}$	
	$=\frac{\left[+\Gamma\left(A-2\right)\cdot\Gamma\left(D\leq 2\right)\right]}{\Gamma\left(A+P<4\right)}$	
	-0.967 (3 c f)	
iv	The Poisson distribution may not be a good model for a	
	day as the mean number of customers entering the café	
	may fluctuate, with more customers during the lunch and	
	dinner period.	