

Lecture Notes 14 Hydroxy Compounds

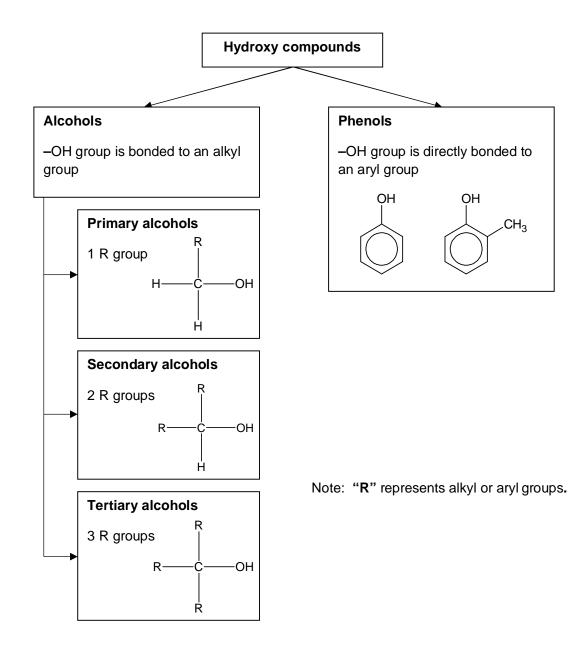
JC2/2025

Content

- Alcohols (exemplified by ethanol)
 - (i) formation of halogenoalkanes
 - (ii) reaction with sodium; oxidation; dehydration
 - (iii) the tri-iodomethane test
- Phenol
 - (i) its acidity; reaction with bases and sodium
 - (ii) nitration of, and bromination of, the aromatic ring

Learning Outcomes

Candidates should be able to:


- (a) recall the chemistry of alcohols, exemplified by ethanol:
 - (i) combustion
 - (ii) nucleophilic substitution to give halogenoalkanes
 - (iii) reaction with sodium
 - (iv) oxidation to carbonyl compounds and carboxylic acids
 - (v) dehydration to alkenes
- (b) suggest characteristic distinguishing reactions for the different classes of alcohols (primary, secondary and tertiary alcohols), e.g. mild oxidation
- (c) deduce the presence of a CH₃CH(OH)– group in an alcohol from its reaction with alkaline aqueous iodine to form tri-iodomethane
- (d) recall the chemistry of phenol, as exemplified by the following reactions:
 - (i) with bases
 - (ii) with sodium
 - (iii) nitration of, and bromination of, the benzene ring
- (e) explain the relative acidities of water, phenol and ethanol in aqueous medium (interpret as Brønsted-Lowry acids)

Textbooks and References

- 1. Chemistry for advanced level; Peter Cann, Peter Hughes, John Murray (Publishers) Ltd Page 477-493
- Chemistry in Focus; John Andrew, Paul Rispoli; 2nd edition Hodder & Stoughton Page 276-299
- 3. Organic Chemistry; John McMurry; 5th edition Brooks/Cole

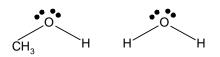
1. INTRODUCTION

- Hydroxy compounds contain the –OH functional group.
- They can be classified as aliphatic compounds called alcohols or aromatic compounds, phenols.

2. ALCOHOLS

- > General formula for alcohols: $C_nH_{2n+1}OH$ or $C_nH_{2n+2}O$ where n = 1, 2, 3, ...
- > All alcohols (except methanol) are constitutional isomers (functional group isomers) of ethers.

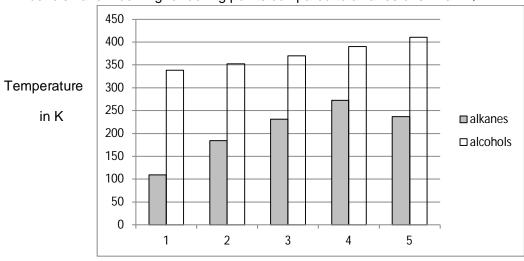
Ethers (C–O–C), have the same general formula as alcohols but its reactions are not required in the H2 syllabus.


2.1 Nomenclature and Classification of Alcohols

- Alcohols have names ending with –ol e.g. Methanol, Ethanol, Propanol
- > Examples:

IUPAC Name	Molecular Formula	Structural Formula	Displayed formula (<u>Full</u> Structural Formula)	Classification
propan-1-ol	C₃H7OH	CH₃CH₂CH₂OH	Н Н Н H—С—С—С—О—Н H Н Н	primary
propan-2-ol	C₃H7OH	CH₃CH(OH)CH₃		secondary
2-methylpropan-2-ol	C₄H₃OH	(CH₃)₃COH		tertiary
cyclopentanol	C₅H₃OH	OH	H H H H H H H H H H	secondary
phenylmethanol	C ₇ H ₇ OH	CH ₂ OH	H H C H	primary

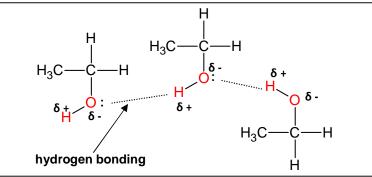
<u>3 Physical Properties</u>


Alcohols have the same geometry as water. There are 2 lone pairs and 2 bond pairs of electrons with respect to the O atom.

Bent wrt O atom

3.1 Boiling Point

3.1.1 Alcohols vs Alkanes



Alcohols have much higher boiling points compared to alkanes of similar M_r .

Reason:

Both alcohols and alkanes have simple molecular structure. Alcohols are able to form **stronger** intermolecular **hydrogen bonds**, which require **more energy** to overcome than the **weaker** intermolecular **instantaneous dipole-induced dipole interactions** found between alkanes of similar M_r .

3.1.2 Length of Alkyl Chain

compound	Mr	b.p. / °C
CH ₃ OH	32.0	65
CH ₃ CH ₂ OH	46.0	78
CH ₃ CH ₂ CH ₂ OH	60.0	97

Boiling point increases with increasing molecular mass in the alcohol homologous series.

Reason:

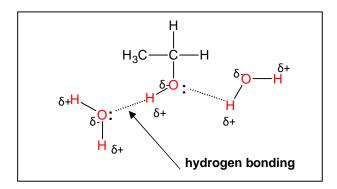
Alcohols have simple molecular structure. As M_r increases with increasing length of alkyl chain, the size of electron cloud increases and becomes more polarisable. Hence more energy is required to overcome the stronger instantaneous dipole-induced dipole interactions between the alcohol molecules.

3.1.3 Straight-chain vs Branched-chain

Branched alcohols have lower boiling points than their straight-chain isomers.

compound	Mr	b.p. / °C
(CH ₃) ₃ COH	74.0	82
CH ₃ CH ₂ CH ₂ CH ₂ OH	74.0	117

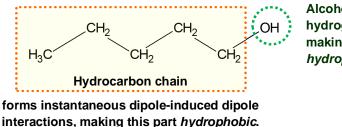
Reason:


Alcohols have simple molecular structure. The branched isomers are more **spherical** in shape, with **smaller surface area** of contact between molecules. Hence, the strength of intermolecular **instantaneous dipole-induced dipole interactions** is **weaker**, and **less energy** is required to overcome them.

3.2 Solubility

- > All alcohols are soluble in organic solvents.
- > The first three alcohols (C_1 to C_3) are completely **miscible** with water.

Reason:


This is due to the hydrogen bonding between the alcohol and the water molecules.

> Alcohols with more than 4 carbons are partially miscible or **immiscible** with water.

Reason:

As the **length of the carbon chain increases**, **the instantaneous dipole-induced dipole** (id-id) interactions between the hydrocarbon chains in the alcohol become more significant. Amount of energy evolved during formation of id-id interactions between water and alcohol molecules is **insufficient** to overcome the id-id interactions between alcohol molecules and hydrogen bonding between water molecules.

Alcohols forms hydrogen bonding, making this part *hydrophilic*.

3.2.1 Solubility of alcohol and its applications

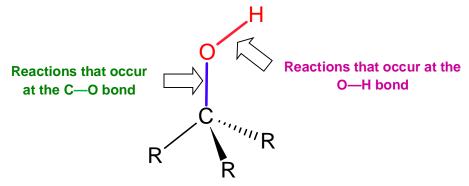
Alcohols are good solvents and are used in perfumes and flavourings to dissolve fats and oils. Heavier alcohols with long chains of hydrocarbons act as emulsifiers and surfactants, bringing oil and water together.

Applications:

- Ethanol is used as a fast-drying (due to its low b.p.) solvent in cosmetics and hairsprays.
- Stearyl alcohol (1-octadecanol) is a non-ionic surfactant used as a hair coating in shampoos and conditioners. As water and oil do not dissolve in each other, a surfactant has to be added to the mixture to keep it from separating into layers. Stearyl alcohol can be used as a surfactant as it has both hydrophobic and hydrophilic ends.

НаС ОН

Stearyl alcohol C₁₈H₃₈O (1-octadecanol)

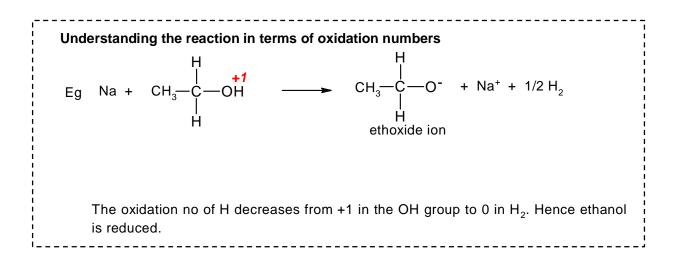

4 Chemical Reactions of Alcohols

4.1 Combustion

Alcohols burn to give carbon dioxide and water. e.g. ethanol burns with a pale-blue flame $CH_3CH_2OH + 3 O_2 \rightarrow 2 CO_2 + 3 H_2O$

4.2 Other reactions of alcohols

Other reactions of alcohols can be divided into two groups: those that occur at the C–O bond and those that occur at the O–H bond.

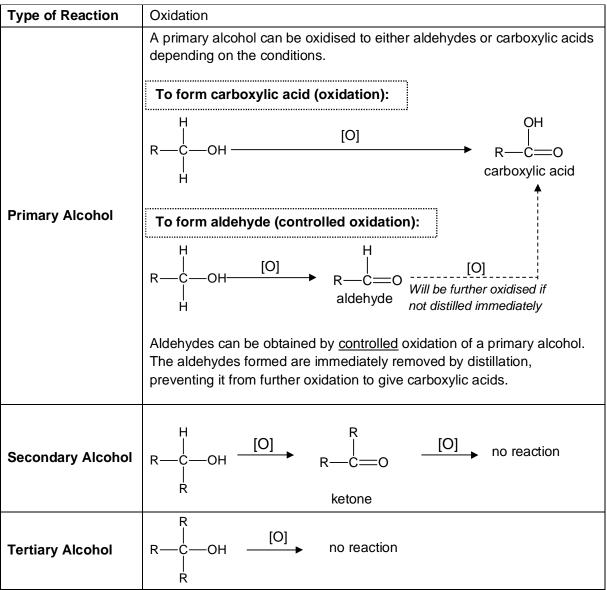


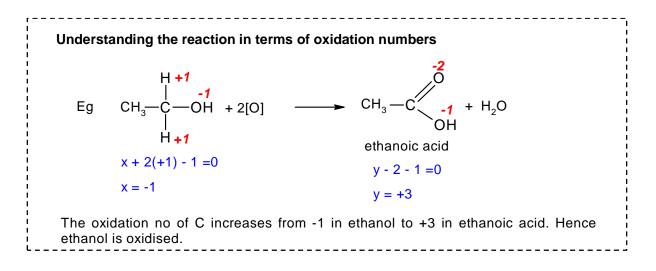
> Overview of the reactions of alcohols

		Type of reaction	Conversion
	Reaction with Na	reduction	$ROH + Na \rightarrow RO^{-}Na^{+} + \frac{1}{2}H_{2}$
Reaction at O-H bond	Esterification	condensation (nucleophilic acyl substitution)	ROH + R'COOH \rightleftharpoons R'COOR + H ₂ O ROH + R'COX → R'COOR + HX
action	Oxidation	oxidation $ROH \rightarrow aldehyde / carboxylic acid / ketone (depending on the classification of alcohol)$	
Re	Reaction with <u>very</u> strong bases (e.g. NaH, NaNH ₂ , CH ₃ MgBr)	**Refer to Appendiz	x
Reaction at C-O bond	Dehydration	elimination	$ROH \rightarrow alkene + H_2O$
React C-O h	Halogenation	nucleophilic substitution	$ROH \rightarrow RX + HX$

4.2.1 Reaction with sodium

Type of Reaction	Reduction	
Reagents & Conditions	Na(s), room temperature	
Equation	$CH_3CH_2OH + Na \rightarrow 2 CH_3CH_2O^-Na^+ + \frac{1}{2} H_2$	
Observation	Effervescence. $H_2(g)$ evolved gives a 'pop' sound with a lighted splint.	
Remarks	 <u>Purpose</u> Reaction can be used to generate a stronger nucleophile RO⁻ (than ROH) for subsequent reactions. (Refer to appendix Pg 30) <u>Distinguishing test</u> To test for the presence of –OH group (in alcohols, phenols and carboxylic acids). Test: Add a small piece of Na(s) Observation: Strong effervescence, gas evolved gives a 'pop' sound with lighted splint. H₂(g) is formed. Therefore, –OH group is present. 	




4.2.2 Ester Formation

	alcohol + carboxylic acid ≓ ester + H₂O	alcohol + acyl chloride \rightarrow ester + HCl	
Equation	$CH_{3}CH_{2}COOH + CH_{3}OH \rightleftharpoons CH_{3}CH_{2}COOCH_{3} + H_{2}O$ $H - C - C - C - O - H + H_{1}O - C - H$ $H - C - C - C - O - H + H_{2}O - H$ $H - H - C - C - O - H + H_{2}O$ $H - C - C - O - C - H + H_{2}O$ $H - C - C - C - O - C - H + H_{2}O$ $H - H - H$ $H - H - H$ $H - H$ $H - H$ $H - H$ $H - H$	$CH_{3}CH_{2}COCl + CH_{3}OH \rightarrow CH_{3}CH_{2}COOCH_{3} + HCl$ $H - C - C - C - C - C - C - H + H - C - C - H + H - C - C - H + H - H - H + H - H - H - H - H - H$	
Type of Reaction	Condensation (nucleophilic acyl substitution)	Condensation (nucleophilic acyl substitution)	
Reagents and Conditions	 Carboxylic acid, conc. H₂SO₄, heat under reflux <u>Role of conc. H₂SO₄</u> 1. Catalyst – catalyses the reaction 2. Dehydrating agent – removes the H₂O formed in the reaction, causing the POE to shift to the right to form more products. 	Anhydrous acyl chloride at room temperature	
Observation	Sweet smell of ester detected, immiscible layer with water (ester is immiscible with water).Sweet smell of ester detected, Steamy white fumes of HCl formed		
Remarks	 <u>Comparing the two reactions</u> The reaction between alcohol and carboxylic acid is slow and reversible. Reaction reaches equilibrium in a few hours. Acyl chlorides are more reactive than carboxylic acids. Hence, using acyl chloride to form the ester is the preferred method since the reaction is <u>complete</u> and takes place rapidly at <u>room temperature</u>. 		

4.2.3 Oxidation

Overview:

Type of Reaction	Oxidation
Reagents &	(a) K ₂ Cr ₂ O ₇ , H ₂ SO ₄ (aq), heat under reflux OR
Conditions	(b) KMnO ₄ , H ₂ SO ₄ (aq), heat under reflux
	• 1° alcohol e.g. ethanol H $CH_3 - C - OH + 2[O] \rightarrow CH_3 - C + H_2O$ H ethanoic acid
Equation	• 2° alcohol e.g. propan-2-ol H $CH_3 - C - CH_3 + [O] \longrightarrow CH_3 - C - CH_3 + H_2O$ OH
	propanone
	• 3° alcohol e.g. 2-methylpropan-2-ol CH_3 $CH_3 = C = OH = OH$ CH_3 no reaction CH_3
Observation	For 1° & 2° alcohols Orange dichromate(VI) turns green, OR purple KMnO4 decolourises. For 3° alcohols Orange dichromate(VI) remains, OR purple KMnO4 remains.
	Distinguishing test This reaction can be used to distinguish between 1°, 2° and 3° alcohols.
Remarks	Test: Add K ₂ Cr ₂ O ₇ , H ₂ SO ₄ (aq), heat Observation: <i>Case 1</i> : Orange K ₂ Cr ₂ O ₇ turns green \rightarrow 1° or 2° alcohol is present <i>Case 2</i> : Orange K ₂ Cr ₂ O ₇ remains \rightarrow 1° and 2° alcohol is absent; 3° alcohol is present
	 Similarly, acidified KMnO₄ can be used to distinguish 1° and 2° alcohols from 3° alcohols.

Type of Reaction	Oxidation	
Reagents & Conditions	K ₂ Cr ₂ O ₇ , H ₂ SO ₄ (aq), heat with <i>immediate distillation</i>	
	$CH_3CH_2OH + [O] \rightarrow CH_3CHO + H_2O$	
Equation	$\begin{array}{c} H \\ CH_{3} - C - OH + [O] \longrightarrow CH_{3} - C = O + H_{2}O \\ H \\ H \\ Ethanal \end{array}$	
Observation	orange dichromate(VI) turns green	
Remarks	 If the reaction involves heating with potassium dichromate(VI), K₂Cr₂O₇, H₂SO₄ (aq), under reflux (ie no distillation), the 1° alcohol is oxidised to carboxylic acid <u>directly</u>. The aldehyde will not be obtained. Acidified KMnO₄ <u>cannot</u> be used because it is a much stronger oxidising agent. The primary alcohol will be oxidised to a carboxylic acid directly. The aldehyde will not be obtained is obtained. 	

What is the difference between "heat under reflux" and "heat with distillation"?

heat under reflux	heat with distillation
Water Out Water In	K ₂ Cr ₂ O ₇ (aq) and alcohol dropped in slowly
Heat Water III	water or oil bath at temperature higher than b.p. of aldehyde heat H ₂ SO ₄ (aq) heat
Many organic reactions are slow and require prolonged heating to increase the rate of reaction. However, many organic compounds have low boiling points and will	In the case of controlled oxidation to form aldehydes from primary alcohols, the aldehyde formed is immediately removed by <u>distillation</u> as it is formed, preventing it from further oxidation to give carboxylic acids.
vapourise upon exposure to high heat, preventing the reaction from proceeding. To address this, heating under reflux is used. This refers to heating a solution with an attached condenser to prevent reagents from evaporating away. Any vapour will condense on the cool surface of the	This method makes use of the higher volatility of the aldehyde (lack of hydrogen bonding). The reaction mixture is warmed to a temperature above the boiling point of the aldehyde, but below that of the alcohol. The aldehyde distils as soon as it is formed, avoiding any further contact with the oxidation agent.
attached condenser and flow back into the flask.	

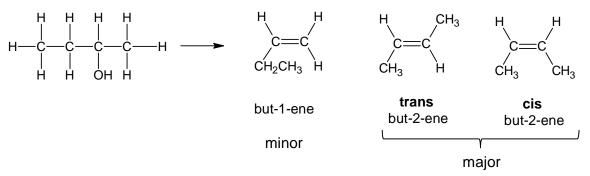
Worked example 1

Give the structural formulae of the organic products for each of the following oxidation reactions.

Reactant	Reagents and Conditions	Organic product
	$K_2Cr_2O_7$, H_2SO_4 (aq), heat with immediate distillation	(CH ₃) ₂ CHCHO
(CH ₃) ₂ CHCH ₂ OH	K₂Cr₂O⁊, H₂SO₄ (aq), heat under reflux	(CH₃)₂CHCOOH
OH cyclohexanol	KMnO4, H2SO4 (aq), heat under reflux	Cyclohexanone
CH ₃ CH ₂ OH	KMnO4, H2SO4 (aq), heat under reflux	соон но

Putting it together i

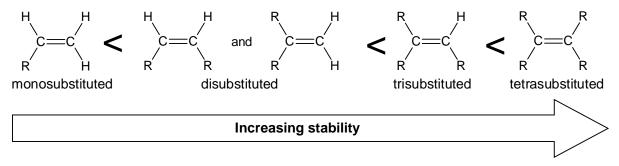
We can deduce the type of alcohols from the change in molecular formula (useful for deductive qns)



Oxidation reaction	Change in molecular formula	Example
Primary alcohol \rightarrow carboxylic acid	Gain of 1 O atom, loss of 2 H atoms	$RCH_2OH \rightarrow RCOOH$
Aldehyde \rightarrow carboxylic acid	Gain of 1 O atom	$RCHO \rightarrow RCOOH$
Primary alcohol \rightarrow aldehyde	No change in number of O atoms, loss of 2 H atoms	$RCH_2OH \rightarrow RCHO$
Secondary alcohol \rightarrow ketone	No change in number of O atoms, loss of 2 H atoms	$R_2 CHOH \rightarrow R_2 CO$
Oxidation of carbon containing side chain of benzene	Loss of C atoms	CH ₂ CH ₂ OH COOH

4.2.4 Dehydration (Alcohol → Alkenes + Water)

Type of Reaction	Elimination	
Reagents & Conditions	 (a) Excess conc. H₂SO₄ at 170°C, OR (b) Heat with Al₂O₃ to 350°C. 	
Equation	$\begin{array}{cccccccccc} CH_{3}CH_{2}OH & \longrightarrow & CH_{2}=CH_{2} & + & H_{2}O \\ H & H & H & H & H \\ H & -C & -C & -H & \longrightarrow & H \\ H & OH & H & H \\ ethanol & ethene \end{array}$	
Remarks	Primary alcohols give a single product. Secondary and tertiary alcohols may give a mixture of products.	


Example:

Saytzeff's rule

In an elimination reaction, the products with the **most highly substituted double bond** (more alkyl groups) will predominate (major product).

(Note that this is unlike the Markovnikov's Rule where only the most stable product forms.)

If any of the major and minor products possesses *cis-trans* isomerism, both the *cis* and *trans* isomers will be formed. (Refer to Halogen derivatives Lecture Notes)

Worked example 2

Give the structural formulae of all the possible organic products of following reactions.

Reactant	Reagents and Conditions	Organic product		
CH ₃ CH ₂ CH ₂ OH	Al₂O₃, 350°C	$ \begin{array}{c} H \\ C = C \\ C H_3 \\ H \end{array} $		
H ₃ C OH	Excess conc. H₂SO₄, 170 °C	major minor		
OH	Excess conc. H₂SO₄, 170 °C	$\begin{array}{c} \begin{array}{c} CH_{3} \\ \downarrow \\ CH_{2}CH_{3} \\ CH_{2}CH_{3} \\ H \\ \end{array} \begin{array}{c} CH_{2}CH_{3} \\ H \\ CH_{2}CH_{3} \\ CH_{2}CH_{3} \\ CH_{2}CH_{3} \\ CH_{2}CH_{3} \\ CH_{2}CH_{3} \\ H \\ \end{array} \begin{array}{c} H \\ CH_{2}CH_{3} \\ H \\ CH_{2}CH_{3} \\ minor \\ \end{array}$ $\begin{array}{c} H \\ H \\ CH_{2}CH_{3} \\ minor \\ \end{array}$ $\begin{array}{c} H \\ H \\ CH_{2}CH_{3} \\ minor \\ \end{array}$ $\begin{array}{c} CH_{2}CH_{3} \\ H \\ CH_{2}CH_{3} \\ minor \\ \end{array}$ $\begin{array}{c} CH_{2}CH_{3} \\ H \\ CH_{2}CH_{3} \\ minor \\ \end{array}$ $\begin{array}{c} CH_{2}CH_{3} \\ H \\ CH_{2}CH_{3} \\ minor \\ \end{array}$ $\begin{array}{c} CH_{2}CH_{3} \\ H \\ CH_{2}CH_{3} \\ minor \\ \end{array}$ $\begin{array}{c} CH_{3} \\ minor \\ \end{array}$		

4.2.5 Halogenation

$ROH \rightarrow RX$

Alcohols can be converted to halogenoalkanes via the following reactions:

- Reactions involving hydrogen halides, HX
- Reacting alcohols with phosphorus halides, PCl₅, PBr₃, PI₃
- Reacting alcohols with thionyl chloride, SOCl₂
- (i) Chlorination (to form RC*l*):

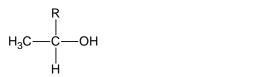
Type of Reaction	Nucleophilic substitution	
Reagents & Conditions	 (a) SOCl₂ (thionyl chloride) at room temperature OR (b) PCl₃ or PCl₅ at room temperature OR (c) HCl(g) 	
$ \begin{array}{c} (c) \ \mbox{HC}l(g) \\ \hline \\ \mbox{Equation} \end{array} \begin{array}{c} (a) \ \ \mbox{CH}_3\mbox{CH}_2\mbox{OH} + \mbox{SOC}l_2 \rightarrow \mbox{CH}_3\mbox{CH}_2\mbox{C}l \ + \mbox{SOC}l_2 \rightarrow \mbox{CH}_3\mbox{CH}_2\mbox{C}l \ + \mbox{SOC}l_2 \rightarrow \mbox{CH}_3\mbox{CH}_2\mbox{C}l \ + \mbox{H}_3\mbox{PO}_3 \\ \hline \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
Observation	For reaction with SOCl ₂ and PCl ₅ : Steamy white fumes of HC <i>l</i> observed.	
Remarks	 <u>Distinguishing test</u> PC<i>l</i>₅ or SOC<i>l</i>₂ can be used as a test for the presence of –OH group in alcohols and carboxylic acids. Test: Add PC<i>l</i>₅ at room temp OR SOC<i>l</i>₂ at room temp Observation: Steamy white fumes observed. HC<i>l</i> is formed Therefore, –OH group is present. SOC<i>l</i>₂ is a preferred reagent for chlorination as the products, SO₂ and HC<i>l</i> are gases. Hence, it gives a very clean reaction. The halogenoalkane formed can be easily isolated from the other gaseous products. 	

(ii) Bromination (to form RBr):

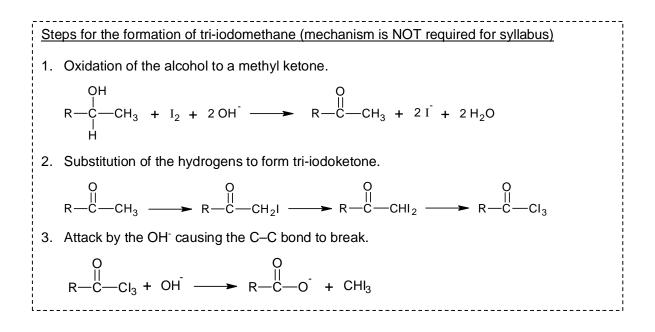
Type of Reaction	Nucleophilic substitution		
Reagents & Conditions	 (a) PBr₃ at room temperature OR (b) HBr(g) 		
Equation	(a) $3 \text{ CH}_3\text{CH}_2\text{OH} + \text{PBr}_3 \rightarrow 3 \text{ CH}_3\text{CH}_2\text{Br} + \text{H}_3\text{PO}_3$ (b) $\text{CH}_3\text{CH}(\text{OH})\text{CH}_3 + \text{HBr} \rightarrow \text{CH}_3\text{CH}(\text{Br})\text{CH}_3 + \text{H}_2\text{O}$		

(iii) Iodination (to form RI):

Type of Reaction	Nucleophilic substitution		
Reagents & Conditions	(a) PI ₃ OR (b) HI(g)		
Equation	(a) 3 CH ₃ CH ₂ OH + PI ₃ \rightarrow 3 CH ₃ CH ₂ I + H ₃ PO ₃ (b) CH ₃ CH(OH)CH ₃ + HI \rightarrow CH ₃ CHICH ₃ + H ₂ O		


Worked example 3

Give the structural formulae of all the possible organic products of following reactions.

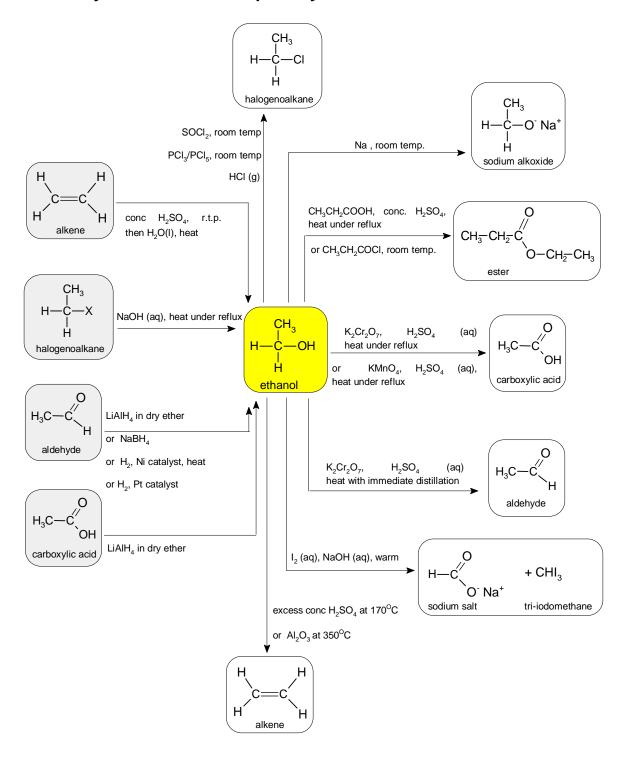

Reactant	Reagents and Conditions	Organic product	Type of reaction(s)
CH ₃ CH ₂ CH ₂ OH	HCI(g)	CH ₃ CH ₂ CH ₂ CI	Nucleophilic substitution
ОН	SOCI _{2,}	CI	Nucleophilic substitution
	HBr(g)	Br	Nucleophilic substitution <i>and</i> Electrophilic addition

4.2.6 Tri-iodomethane (lodoform) test

- The reaction of iodine and NaOH(aq) with methyl alcohols or methyl carbonyls results in the appearance of a very pale yellow precipitate of triiodomethane, CHI₃ (previously known as iodoform).
- This reaction is positive for alcohols with a <u>methyl group</u> and a <u>hydrogen atom</u> attached to the carbon with the <u>-OH group</u>.
- For carbonyl compounds, the reaction is positive for <u>methyl carbonyls</u>. (refer to Carbonyl Compounds Lecture)

(R = H atom, alkyl or aryl group)

Type of Reaction	Oxidation			
Reagents & Conditions	NaOH(aq), I ₂ (aq), warm			
Equation	$\begin{array}{c} CH_{3}CH(OH)R + 4I_{2} + 6NaOH \rightarrow CHI_{3} + RCO_{2}^{-}Na^{+} + 5NaI + 5H_{2}O \\ \\ CH_{3} - C - H + 4I_{2} + 6NaOH \longrightarrow CHI_{3} + R - C + 5NaI + 5H_{2}O \\ OH + 5NaI + 5H_{2}O + 5NaI + 5H_{2}O \end{array}$			
Observation	Yellow ppt of CHI ₃ formed (antiseptic smell)			
Remarks	Distinguishing Test Alkaline aqueous iodine is used to test for the presence of (i) methyl alcohols (ii) methyl carbonyls Test: Add NaOH(aq), I ₂ (aq), warm Observation: Yellow ppt of CHI ₃ is formed Therefore, methyl alcohol or methyl carbonyl is present			


Worked example 4

Which of the following alcohols will give a positive triiodomethane test? If there is any reaction, give the balanced equation for the reaction.

(a) Methanol	No reaction
(b) Ethanol	Yellow ppt of CHI ₃ formed. H CH ₃ $\stackrel{I}{\longrightarrow}$ C-OH + 4I ₂ + 6NaOH $\stackrel{O}{\longrightarrow}$ H H C $\stackrel{II}{\longrightarrow}$ C $\stackrel{O}{\longrightarrow}$ Na ⁺ + CHI ₃ + 5NaI+ 5H ₂ O
(c) propan-1-ol	No reaction
(d) propan-2-ol	Yellow ppt of CHI ₃ formed. CH_3 O CH_3 CH_3 $C-OH + 4I_2 + 6NaOH \longrightarrow CH_3 O^-Na^+$ + CHI ₃ + 5NaI + 5H ₂ O H $CH_3 O^-Na^+$ + CHI ₃ + 5NaI + 5H ₂ O

🔊 Self check: Tutorial Q1 – Q4

Summary of reactions for a primary alcohol

Organic Summary by Reagent (Alkanes \rightarrow Phenols)

1.	This summary gives you ar	n overview of differen	t reagents react with t	the different functional	groups you have learnt so far.

For each organic functional group, the conditions required for the reaction is stated. "Nil" indicates that the reagent does not react with the functional group.
 Expand on this summary by thinking of an example for each functional group and writing out the products formed, or any other reagent not listed here.
 Finally, recall what type of reaction occurs for each reaction.

Reagent	eagent Functional Group								
-	Alkanes	Alkenes	Arenes	Arenes with carbon containing side chain e.g. methylbenzene	Halogenoalkanes	Halogenoarenes	Primary alcohols	Secondary alcohols	Phenols
HCI (g)	NIL	✓ Electrophilic addition	NIL	NIL	NIL	NIL	 ✓ nucleophilic substitution 	 ✓ nucleophilic substitution 	NIL
PBr3 , room temp	NIL	NIL	NIL	NIL	NIL	NIL	 ✓ nucleophilic substitution 	 ✓ nucleophilic substitution 	NIL
SOCI2, room temp	NIL	NIL	NIL	NIL	NIL	NIL	 ✓ nucleophilic substitution 	 ✓ nucleophilic substitution 	NIL
K2Cr2O7 H2SO4 (aq), heat	NIL	NIL	NIL	NIL	NIL	NIL	✓ oxidation	✓ oxidation	NIL
KMnO4 H2SO4 (aq), heat	NIL	✓Oxidation * Mild oxidation takes place with cold dil KMnO₄,H2SO4 (aq)	NIL	✓ Oxidation	NIL	NIL	✓Oxidation	✓Oxidation	NIL
NaOH (aq), room temp	NIL	NIL	NIL	NIL	*NaOH (aq), <u>heat</u> nucleophilic substitution	NIL	NIL	NIL	 ✓ acid base reaction
Na (s), room temp	NIL	NIL	NIL	NIL	NIL	NIL	✓reduction	✓ reduction	✓ reduction
CH3COCI room temp	NIL	NIL	NIL	NIL	NIL	NIL	 ✓ condensation /nucleophilic acyl substitution 	 ✓ condensation /nucleophilic acyl substitution 	 ✓ condensation /nucleophilic acyl substitution
Br ₂ (aq), room temp	* Br₂ (g), UV or heat Free radical substitution	✓ Electrophilic addition	*Br ₂ , anhydrous FeBr ₃ rm temp Electrophilic substitution	<u>*Br₂, anhydrous</u> FeBr₃ rm temp Electrophilic substitution	NIL	*Br₂, anhydrous FeBr₃ rm temp Electrophilic substitution	NIL	NIL	✓Electrophilic substitution

* Indicates a variation of reagent and conditions for possible reactions

Appendix

(I) Alcohol reaction with very strong bases

Other than reacting with alkali metals like Na, alcohols react with **strong bases** such as sodium hydride (**NaH**), sodium amide (**NaNH**₂) and Grignard reagents (**RMgX**).

Alkoxide (**RO**⁻) ions are formed in all these reactions.

• With sodium hydride (Na⁺ H⁻),

 $CH_3OH + NaH \rightarrow CH_3O^- Na^+ + H_2$

• With sodium amide (NaNH₂),

 $CH_3CH_2OH + NaNH_2 \rightarrow CH_3CH_2O^-Na^+ + NH_3$

• With Grignard reagent,

 $CH_3CH_2OH + CH_3MgBr \rightarrow CH_3CH_2O^{-+}MgBr + CH_4$

- formation of Grignard reagent, CH_3MgBr . $CH_3Br + Mg \rightarrow CH_3MgBr$

In all these cases, the alcohol loses the hydrogen to form the RO⁻ ion.

The RO⁻ ion is a stronger nucleophile than ROH, the original alcohol.

Purpose of this reaction

The alkoxide ions that are formed are nucleophiles that are frequently used as reagents in organic reactions.

[Recall: Nucleophiles are electron-rich species that carries a negative or partial negative charge and attacks positive centres in other molecules or ions.]

Example:

Once ethoxide ion is formed from ethanol using any of the 3 strong bases above, the ethoxide ion can reaction with 1-bromopropane as follows:

 δ_+ CH₃CH₂CH₂Br + CH₃CH₂O: \rightarrow CH₃CH₂OCH₂CH₃ + Br \rightarrow --- (1) An ether (functional group not in syllabus)

Compare reaction (1) with the equation below (from *Halogen Derivatives*): $CH_3CH_2CH_2Br + OH^- \longrightarrow CH_3CH_2CH_2OH + Br^-$

You learnt that hydroxide ions are good nucleophiles. When halogenoalkane reacts with sodium hydroxide solution, the hydroxide ion replaces the halogen atom.

The ethoxide ion can behave in the same way as the hydroxide ions. The ethoxide ion is able to replace the halogen atom as well (as shown by equation (1)).

(II) Ethanol as a chemical, drug and poison

The production of ethanol by fermentation of grains and sugars is one of the oldest known organic reactions, going back at least 2500 years. Fermentation is carried out by adding yeast to an aqueous sugar solution, where enzymes break down carbohydrates (sugars and starches) into ethanol and carbon dioxide:

In Singapore, binge drinking (defined as having 4 or more alcoholic drinks in one session for women, and 5 or more for men) is more common among 18 to 29 year olds – 18.7% of men and 12.2% of women. In 2010, the Singapore Mental Health Study found that about 3.5% of our citizens suffered from alcohol abuse at some point in their lives and 0.5% from alcohol addiction (or alcoholism).

A person's brain develops until the age of about 24. During this time, alcohol abuse can result in learning difficulties and social problems. Alcohol is also a known cause of cancers of the mouth, throat (pharynx), voice box (larynx), esophagus, liver, colon and rectum, and breast. Alcohol may increase the risk of cancer of the pancreas too.

The blood alcohol concentration in drivers can be tested by the Breathalyser test. It makes use of the colour change that occurs when the expired air reduces the bright orange oxidising agent potassium dichromate ($K_2Cr_2O_7$) to green chromium(III) ion, Cr^{3+} .

(III) Alternative Form of Fuel – Bioethanol

Bioethanol is an alcohol made by fermentation, mostly from carbohydrates in the form of sugar and starch produced by crops such as corn and sugarcane.

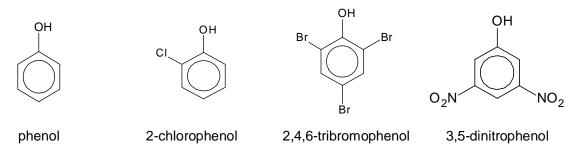
However, there are concerns about the production of bioethanol, such as the fact that it requires more energy for production than it can supply and that it directly competes for land for growing crops.

(IV) Solubility of alcohol and its application

Alcohols are good solvents and are used in perfumes and flavourings to dissolve fats and oils. Heavier alcohols with long chains of hydrocarbons act as emulsifiers and surfactants, bringing oil and water together.

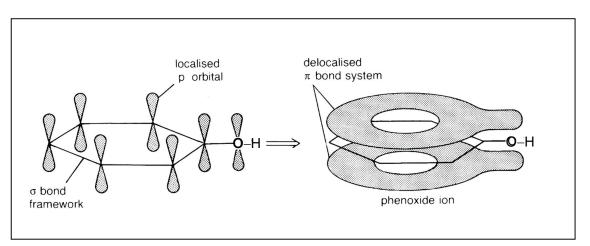
- Ethanol is used as a fast-drying (due to its low b.p.) solvent in cosmetics and hairsprays.
- Stearyl alcohol (1-octadecanol) is a non-ionic surfactant used as a hair coating in shampoos and conditioners. As water and oil do not dissolve in each other, a surfactant has to be added to the mixture to keep it from separating into layers. Stearyl alcohol can be used as a surfactant as it has both hydrophobic and hydrophilic ends.

SCAN M


ЮH H₃C

Stearyl alcohol (1-octadecanol)

PHENOLS


1 Nomenclature

• Phenols have an –OH group attached directly to the benzene ring.

2 Structure of Phenol

- Recall: Benzene ring has a delocalised cloud of π electrons due to the overlapping p-orbitals of the carbon atoms.
- In phenol, the lone pair of electrons on oxygen is delocalised into the benzene ring as the p-orbital of the oxygen atom overlaps with the π electron cloud of the benzene ring, forming a delocalised cloud.

As a result,

- The C O bond is strengthened, while the O– H bond is weakened.
- Phenol is a relatively stronger acid than alcohol. Hence phenols can react with NaOH while alcohols cannot. (Refer to acidity of Phenols)

3 Physical Properties

3.1 Appearance

Phenol is a colourless, hygroscopic, crystalline solid (m.p. 42 °C, b.p. 181 °C) with an antiseptic smell.

3.2 Boiling point

> Phenols have much higher boiling points compared to alkanes of similar M_r .

compound	Mr	b.p. / °C	
phenol C ₆ H₅OH	92.0	181	
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	100.0	98	

Reason:

Phenol is able to form stronger intermolecular **hydrogen bonds**, which require more energy to overcome than the weaker intermolecular **instantaneous dipole-induced dipole interactions** found between alkanes of similar M_r .

3.3 Solubility

Although the –OH group can form hydrogen bonds with water, the non-polar benzene ring is hydrophobic. Hence, phenols are only partially soluble in water.

3.4.1 Acidity

> Phenols are slightly acidic.

 $C_6H_5OH + H_2O \rightleftharpoons C_6H_5O^- + H_3O^+$ phenoxide ion

- o It has no effect on litmus paper.
- It does not react with carbonates. (Only carboxylic acids and strong mineral acids like HCl, HNO₃ react with carbonates)

What affects acid strength?

• A stronger acid is one that dissociates more to produce conjugate base and proton. Position of equilibrium lies further to the right.

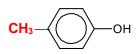
$$\mathbf{X} - \mathbf{O} - \mathbf{H} + \mathbf{H}_2\mathbf{O} \rightleftharpoons \mathbf{X} - \mathbf{O}^- + \mathbf{H}_3\mathbf{O}^+$$

- The strongest acid forms the most stable conjugate base.
- Therefore, the relative **strength** of an acid depends on the **stability of its conjugate base** formed.
 - o When a more stable conjugate base formed,
 - $\circ\,$ the POE of dissociation lies more to the right,
 - hence the respective acid is **stronger**.

Comparing the acidities of alcohol, water and phenol

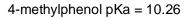
	Ethanol	Water	Phenol	
Equation for dissociation	(1) $CH_3CH_2OH + H_2O \rightleftharpoons$ $CH_3CH_2O^- + H_3O^+$	(2) 2H ₂ O ⇔ OH ⁻ + H ₃ O ⁺	(3) $C_6H_5OH + H_2O \rightleftharpoons$ $C_6H_5O^- + H_3O^+$	
K _a / mol dm ⁻³ (at 25 °C)	1.3 x 10 ⁻¹⁶	1.8 x 10 ⁻¹⁶	1.3 x 10 ⁻¹⁰	
Acid		ncreasing acidity		
strength				
Conjugate base and	CH₃CH₂O [−]	ОН⁻	C ₆ H₅O [−]	
relative stability	(least stable)		(most stable)	
Reason	Ethanol, water and phenol are Bronsted-Lowry acids as they are proton donors.			
	The ethoxide ion (CH ₃ CH ₂ O ⁻) is the least stable conjugate base. The negative charge on O atom is intensified by electron donating alkyl group, hence destabilising the conjugate base. Therefore, ethanol is the least acidic, and POE (1) lies more to the left and ethanol donates a proton less readily than water.			
	The phenoxide ion is the most stable as the p orbital of O overlaps with the π orbital of the benzene ring resulting in the delocalisation of lone pair of electrons on the O atom into the benzene ring. The negative charge on O atom is dispersed over the benzene ring and one oxygen atom, hence stabilising the conjugate base. Therefore, phenol is the most acidic and POE (3) lies more to the right and phenol donates a proton more readily than water.			

	Ethanol Water		Phenol
		alised delocalised π bond syst	em O phenoxide ion
Reaction with Na	ROH + Na → RO⁻Na⁺ + ½ H₂	H₂O + Na → NaOH+ ½ H₂	C ₆ H₅OH + Na → C ₆ H₅O ⁻ Na ⁺ + ½ H ₂
Reaction with NaOH	No reaction	NaOH dissociates in water, no reaction	C_6H_5OH + NaOH → $C_6H_5O^-Na^+$ + H ₂ O
Reaction with Na ₂ CO ₃	No reaction	No reaction	No reaction


[You should be able to compare the reactions of carboxylic acids with the above reagents after the completion of the *Carboxylic Acid* & Derivatives lecture.]

Effect of Substituents on Acidity

Phenols are more acidic when the ring is substituted with electron withdrawing groups.


The electron withdrawing groups **stabilises** the phenoxide ion by **further dispersing the negative charge on the oxygen**.

Conversely, phenols substituted with <u>electron donating groups</u> are <u>less acidic</u> than phenol.

4-bromophenol pKa = 9.35

phenol pKa = 10.00

4 Chemical Properties

4.1 Combustion

Similar to benzene, phenol is highly inflammable and burns in air with a smoky flame due to its high carbon content.

 $C_6H_5OH + 7O_2 \rightarrow 6CO_2 + 3H_2O$

4.2 Other reactions of phenol can be divided two groups: those that occur at

- > the O–H bond and
- > those that occur in the benzene ring

Overview of reactions of phenol

	Type of reaction	Equations
at d	Reduction of phenol	$C_6H_5OH + Na \rightarrow C_6H_5O^-Na^+ + \frac{1}{2}H_2$
ion	Acid base	C_6H_5OH + NaOH \rightarrow $C_6H_5O^-Na^+$ + H_2O
Reaction at O-H bond	Condensation / Nucleophilic acyl substitution	$\begin{array}{ccc} C_6H_5OH & + & \textbf{RCOX} & \rightarrow & C_6H_5O\textbf{COR} & + & HX \\ & & Acyl \ chloride & ester \end{array}$
e Benzene	Electrophilic substitution	$H_{HNO_3} \longrightarrow H_2O$
Reaction of the Ring in Phenol	Electrophilic substitution	\rightarrow $+ 3Br_2 \rightarrow$ \rightarrow $Br \rightarrow$ $Br + 3HBr + 3HBr$

4.2.1 Reaction with Sodium

Type of Reaction	Reduction of phenol	
Reagents&Conditions	Sodium metal at room temperature	
Purpose	This reaction can be used to generate a phenoxide ion that is a strong nucleophile for subsequent reactions.	
Equations	C ₆ H ₅ OH + Na → C ₆ H ₅ O ⁻ Na ⁺ + $\frac{1}{2}$ H ₂ sodium phenoxide \bigcirc −OH + Na → \bigcirc \bigcirc $-$ O ⁻ Na ⁺ + 1/2 H ₂	
Observations	 Distinguishing test This reaction is used to test for the presence of -OH groups in alcohols, phenols and carboxylic acids Test: Add a small piece of Na metal Observation: Strong effervescence, gas evolved gives a 'pop' sound with lighted splint. H₂ gas is formed. -OH group is present 	

4.2.2 Reaction with Bases

Type of Reaction	Acid-base
Reagents&Conditions	Aqueous NaOH at room temperature
Purpose	This reaction can be used to generate the phenoxide ion that is a strong nucleophile for subsequent reactions. (Refer to Phenol reaction with aromatic acyl chlorides)
Equations	C ₆ H ₅ OH + NaOH → C ₆ H ₅ O ⁻ Na ⁺ + H ₂ O sodium phenoxide \checkmark → O ⁺ Na ⁺ + H ₂ O
Observations	Phenol dissolves to form a colourless solution. The sodium phenoxide is able to form ion-dipole interactions with water, hence it is miscible with water.
Note	Distinguishing Test This reaction is useful to distinguish phenol from non-polar organic liquids that do not react with NaOH (aq) Test: • Add NaOH(aq) to phenol Observation: • Resulting mixture is a homogenous colourless solution Other organic liquids (e.g. alcohols) that do not react with NaOH will result in 2 immiscible layers being observed.

4.2.3 Formation of esters

Type of reaction	Condensation (Nucleophilic acyl substitution)	
Reagents & Conditions	Anhydrous acyl chloride, room temperature	
Equations	(i) $CH_{3}COCI + C_{6}H_{5}OH \rightarrow CH_{3}CO_{2}C_{6}H_{5} + HCI$ $ \begin{array}{c} & & & \\ & & \\ H_{3}C \end{array} \\ & & \\ H_{3}C \end{array} \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \\ & & \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array}$ (ii) \\ \begin{array}{c} & & \\ \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} (ii) \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} (ii) \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} (ii) \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} (ii) \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} (ii) \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} (ii) \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} (ii) \\ \begin{array}{c} & & \\ \end{array} \\ \end{array} (ii) \\ \begin{array}{c} & & \\ \end{array} (ii) \\	
Observations	Sweet-smelling ester produced as an immiscible layer from water, steamy white fumes of HCI produced.	

Self-check : How are esters synthesised?

Reactants		Ester formed?	
Alcohol	+	Carboxylic acid	yes
Alcohol	+	Acyl Chloride	yes
Phenol	+	Carboxylic acid	no
Phenol	+	Acyl chloride	yes

5 Reactions of the Benzene Ring in Phenol

The –OH group in phenol is a strong electron-donating group, hence it activates the ring strongly towards electrophilic substitution.

The –OH group increases the electron density in the benzene ring, hence, increasing its reactivity towards electrophiles. Therefore, phenol undergoes nitration and bromination readily at room temperature, without the presence of a catalyst (as compared to benzene).

The –OH group is 2, 4-directing. The electron density on the carbons of 2- and 4- positions increases, thus makes them more vulnerable to attack by an electrophile at these positions. (Recall from Arenes notes)

5.1 Nitration

5.1.1 Formation of mono-substituted products (2-nitrophenol or 4-nitrophenol):

Type of Reaction	Electrophilic Substitution
Reagents & Conditions	Dilute HNO ₃ at room temperature
Equation	OH + HNO ₃ OH + HNO ₂ + H ₂ O *4-nitrophenol can also be formed.

5.1.2 Formation of multi-substituted product (2,4,6-trinitrophenol):

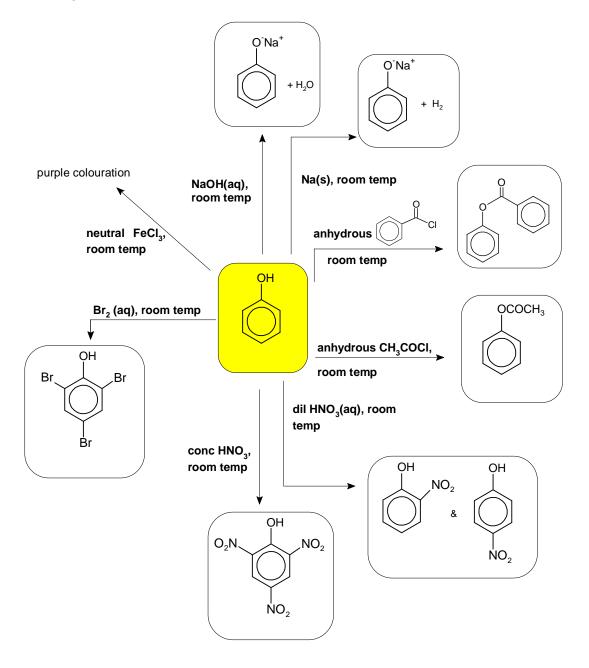
Type of Reaction	Electrophilic Substitution
Reagents & Conditions	Concentrated HNO ₃ at room temperature
Equation	$ \begin{array}{c} OH \\ + 3HNO_3 \end{array} \longrightarrow \begin{array}{c} OH \\ O_2N \\ + 3H_2O \\ NO_2 \end{array} + 3H_2O \\ \end{array} $
Remarks	 Phenol undergoes nitration much more easily than benzene. Hence concentrated H₂SO₄ is not required to generate the strong NO₂⁺ electrophile. The weak electrophile HNO₃ is sufficient to attack the benzene ring in phenol. When concentrated HNO₃ is used, multiple substitutions can take place.

5.2 Bromination

Type of Reaction	Electrophilic Substitution	
Reagents & Conditions	Br ₂ (aq) at room temperature	
Equation	H + 3Br ₂ H + 3HBr 2,4,6-tribromophenol	
Observation	Orange colour of bromine decolourised and white precipitate of 2,4,6-tribromophenol formed. Steamy white fumes of HBr(g) may also be observed.	
Remarks	 Steamy white fumes of HBr(g) may also be observed. Compare this reaction with halogenation of benzene. <u>Halogen carrier</u> is <u>not</u> required in this case. Distinguishing test Test for phenol or phenylamine group Test: Add a few drops of aqueous Br₂ at room temperature Observation: Orange aqueous Br₂ decolourised and production of white precipitate. ∴ phenol or phenylamine is present (Refer to <i>Nitrogen compounds</i> Lecture Notes that will be taught later) 	

5.2.1 Formation of multi-substituted product (2,4,6-tribromophenol):

5.2.2	Formation of mono-substituted products (2-bromophenol or 4-bromophenol):
-------	--

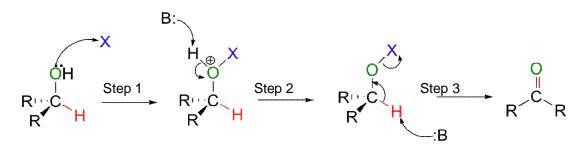

Type of Reaction	Electrophilic Substitution	
Reagents & Conditions	Br ₂ in CCl ₄ at room temperature	
Equation	$ \begin{array}{c} OH \\ \hline \\ OH \\ + Br_2 \end{array} \longrightarrow \begin{array}{c} OH \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
Observation	Orange-red colour of bromine decolourised. Steamy white fumes of HBr(g) may also be observed.	
Remarks	Recall that alkenes also react with Br_2 in CCI_4 , decolourising the orange- red bromine. However, no white fumes (HBr) will be formed.	

6 Reaction with neutral Iron(III) Chloride

Reagents & Conditions	Neutral FeCl ₃ (aq) at room temperature
Observation	Purple colouration
Remarks	Distinguishing test To test for phenol group Test: Add neutral FeCl ₃ (aq) at room temperature Observation: Purple colouration observed.
	Therefore, phenol is present

🖉 Self check: Tutorial Q5 – Q7

Summary of reactions for Phenol



Appendix

• Why tertiary alcohols and phenols cannot be oxidised

The general mechanism of oxidation is illustrated below.

(i) The hydrogen of the alcohol group is replaced by a leaving group (X in the figure below) in steps 1 and 2.

(ii) A base abstracts the proton bound to the alcohol carbon (step 3), which results in elimination of the X leaving group and formation of a new carbon-oxygen double bond.

Tertiary alcohols, phenols, and carboxylic acids cannot be oxidised as they do not have a hydrogen atom on the alcohol carbon atom.

Source: **Organic Chemistry With a Biological Emphasis** by Tim Soderberg (University of Minnesota, Morris)

- Phenol Benzene **Reagents and** Concentrated nitric acid. Dilute HNO₃ at room temperature conditions concentrated sulfuric acid, heat under reflux at 55°C ОН Equation HNO₂ NO₂ + H₂O 0V + H₂O Electrophile NO₂⁺ HNO₃ involved Remarks The phenolic group strongly activates the benzene ring towards electrophilic substitution, and phenol can react with dilute HNO₃ (a weaker electrophile than NO_2^+) while benzene only reacts in the presence of the stronger NO_2^+ electrophile. For phenol, the -OH group increases the electron density in the benzene ring, as the lone pair of electrons on the oxygen atom can be delocalised over the benzene ring, making the ring to be more electron rich, hence, increasing its reactivity towards electrophiles. The weak electrophile HNO₃ is sufficient to attack the benzene ring in phenol, and there is no need to generate a stronger electrophile, NO_2^+ .
- Comparison of electrophilic substitution of benzene and phenol