

Q2	2008(9740)/II/4	F	1
(i),	v A	Sketch based on the domain given.	
(iii)	$y = f(x)$ $y = x$ $y = f^{-1}(x)$ $y = f^{-1}(x)$ $y = f^{-1}(x)$	Use open circle for exclusion of points. Graphs should be symmetrical about the line $y = x$ (Use same scale for <i>x</i> - and <i>y</i> -axis) Graphs must pass vertical and horizontal line test. Be careful with the curvature, ensure that the graph of $f^{-1}(x)$ does not curve downwards!	

0

(ii)	Let $y = (x - 4)^2 + 1$		
	$y - 1 = (x - 4)^2$		
	$(x-4) = \pm \sqrt{y-1}$		
	$x = 4 \pm \sqrt{y - 1}$ Use the domain of f to decide		
	Since $x > 4$, $\therefore x = 4 + \sqrt{y-1}$ which expression to pick.		
	$\therefore f^{-1}(x) = 4 + \sqrt{x-1}$	Find \mathbf{R}_{f} by sketching graph of f and	
	$\mathbf{D}_{\mathbf{f}^{-1}} = \mathbf{R}_{\mathbf{f}} = (1, \infty)$	find range of possible y values. (i.e.	
	$\therefore f^{-1}: x \mapsto 4 + \sqrt{x-1}, x \in \mathbb{R}, x > 1$	minimum and maximum y values)	
(iv)	Reflect graph of $y = f(x)$ in the line $y = x$ to obtain graph of $y = f^{-1}(x)$.		
	At intersection, $y = f(x) = f^{-1}(x) = x$,	
	Equating $y = x$ and $y = f(x)$ we have	2:	
	$x = (x-4)^2 + 1$		
	$x^2 - 9x + 17 = 0$		
	$9\pm\sqrt{9^2-4(17)}$ $9\pm\sqrt{13}$		
	$x = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$		
	Since $x > 4$, $\therefore x = \frac{9 + \sqrt{13}}{3}$.		
	2		
02	2000/77010/7/0		
())	2009/12.10./1/9		
(i)	2009/1PJC/1/9		
(i)	2009/1PJC/I/9		
(i)	y = f(x)	,	
(i)	y = f(x)		
(i)	$\begin{array}{c c} 2009/1PJC/1/9 \\ \hline \\ y \\ \hline \\ (-1,0) \\ \hline \\ (1,0) \\ \hline \\ \end{array} x = 0 \\ y = f(x) \\ x \\ (1,0) \\ \hline \\ x \\ \end{array}$		
(i)	$\begin{array}{c c} 2009/1PJC/1/9 \\ \hline \\ y \\ \hline \\ (-1,0) \\ \hline \\ (1,0) \\ \hline \\ \end{array} x = 0 \\ y = f(x) \\ x \\ (1,0) \\ \hline \\ \end{array}$		
(i)	$\begin{array}{c c} 2009/1PJC/1/9 \\ \hline \\ y \\ \hline \\ (-1,0) \\ \hline \\ (1,0) \\ \hline \\ \end{array} x = 0 \\ y = f(x) \\ x \\ (1,0) \\ \hline \\ x \\ \end{array}$		
(i)	$y = f(x)$ $(-1,0)$ $(1,0)$ $x = 0$ $y = f(x)$ $(1,0)$ x From graph, $R_f = \mathbb{R}$		
(i) (i)	$2009/1PJC/1/9$ $y = f(x)$ $(-1,0) \qquad (1,0) \qquad x$ From graph, $R_f = \mathbb{R}$ $R_g = [2,\infty), D_f = \mathbb{R} \setminus \{0\}$		
(i) (ii)	$y = f(x)$ $x = 0$ $y = f(x)$ $(-1,0)$ $(1,0)$ x From graph, $R_f = \mathbb{R}$ $R_g = [2,\infty), D_f = \mathbb{R} \setminus \{0\}$ Since $R_g \subseteq D_f$, fg exists.		
(i) (i) (ii) (iii)	$y = f(x)$ $x = 0$ $y = f(x)$ $(-1,0)$ $(1,0)$ x From graph, $R_f = \mathbb{R}$ $R_g = [2,\infty), D_f = \mathbb{R} \setminus \{0\}$ Since $R_g \subseteq D_f$, fg exists. Since the horizontal line $y = 1$ cuts the	e graph of $y = f(x)$ at 2 different points, f is not	
(i) (i) (ii) (iii) (iv)	2009/1PJC/1/9 y = f(x) (-1,0) (1,0) From graph, $R_f = \mathbb{R}$ $R_g = [2,\infty), D_f = \mathbb{R} \setminus \{0\}$ Since $R_g \subseteq D_f$, fg exists. Since the horizontal line $y = 1$ cuts the one-one. Thus f^{-1} does not exist. Greatest value of $a = 0$	e graph of $y = f(x)$ at 2 different points, f is not	
(i) (i) (ii) (iii) (iv)	2009/1PJC/1/9 y = f(x) (-1,0) (1,0) (1,0) x x $rom graph, R_f = \mathbb{R}$ $R_g = [2,\infty), D_f = \mathbb{R} \setminus \{0\}$ Since $R_g \subseteq D_f$, fg exists. Since the horizontal line $y = 1$ cuts the one-one. Thus f^{-1} does not exist. Greatest value of $a = 0$. $y = \ln(x^2), x < 0$	e graph of $y = f(x)$ at 2 different points, f is not	
(i) (i) (ii) (iii) (iv)	2009/1PJC/I/9 y = f(x) (-1,0) (1,0) From graph, $R_f = \mathbb{R}$ $R_g = [2,\infty), D_f = \mathbb{R} \setminus \{0\}$ Since $R_g \subseteq D_f$, fg exists. Since the horizontal line $y = 1$ cuts the one-one. Thus f^{-1} does not exist. Greatest value of $a = 0$. $y = \ln(x^2), x < 0$ $x^2 = e^y$	e graph of $y = f(x)$ at 2 different points, f is not	
(i) (ii) (iii) (iv)	2009/1PJC/I/9 y = f(x) (-1,0) (1,0) From graph, $R_f = \mathbb{R}$ $R_g = [2,\infty), D_f = \mathbb{R} \setminus \{0\}$ Since $R_g \subseteq D_f$, fg exists. Since the horizontal line $y = 1$ cuts the one-one. Thus f^{-1} does not exist. Greatest value of $a = 0$. $y = \ln(x^2), x < 0$ $x^2 = e^y$ $x = \pm \sqrt{e^y}$	e graph of $y = f(x)$ at 2 different points, f is not	
(i) (i) (ii) (iii) (iv)	2009/1PJC/1/9 y = 0 x = 0 y = f(x) x = 0 y = f(x) x (1,0) x From graph, $R_f = \mathbb{R}$ $R_g = [2, \infty), D_f = \mathbb{R} \setminus \{0\}$ Since $R_g \subseteq D_f$, fg exists. Since the horizontal line $y = 1$ cuts the one-one. Thus f^{-1} does not exist. Greatest value of $a = 0$. $y = \ln(x^2), x < 0$ $x^2 = e^y$ $x = \pm \sqrt{e^y}$ $x = -e^{\frac{y}{2}}$ since $x < 0$	e graph of $y = f(x)$ at 2 different points, f is not	
(i) (ii) (iii) (iv)	2009/1PJC/1/9 y = 0 x = 0 y = f(x) x = 0 y = f(x) x (1,0) x From graph, $R_f = \mathbb{R}$ $R_g = [2, \infty), D_f = \mathbb{R} \setminus \{0\}$ Since $R_g \subseteq D_f$, fg exists. Since the horizontal line $y = 1$ cuts the one-one. Thus f^{-1} does not exist. Greatest value of $a = 0$. $y = \ln(x^2), x < 0$ $x^2 = e^y$ $x = \pm \sqrt{e^y}$ $x = -e^{\frac{y}{2}}$ since $x < 0$ $D_{r^1} = \mathbb{R}$	e graph of $y = f(x)$ at 2 different points, f is not	
(i) (ii) (iii) (iv)	2009/1PJC/1/9 y = 0 x = 0 y = f(x) x = 0 y = f(x) x (1,0) x From graph, $R_f = \mathbb{R}$ $R_g = [2,\infty), D_f = \mathbb{R} \setminus \{0\}$ Since $R_g \subseteq D_f$, fg exists. Since the horizontal line $y = 1$ cuts the one-one. Thus f^{-1} does not exist. Greatest value of $a = 0$. $y = \ln(x^2)$, $x < 0$ $x^2 = e^y$ $x = \pm \sqrt{e^y}$ $x = -e^{\frac{y}{2}}$ since $x < 0$ $D_{f^{-1}} = \mathbb{R}$ f^{-1} is $x > e^{\frac{x}{2}}$ $= \mathbb{D}$	e graph of $y = f(x)$ at 2 different points, f is not	

Q4	2018/SAJC Promo/6
(i)	Let $y = \frac{1}{(1-y)^2}$
	(1+x)(3-x)
	$3+2x-x^2=\frac{1}{y}$
	$(x-1)^2 - 1 - 3 = -\frac{1}{y}$
	$x - 1 = \pm \sqrt{4 - \frac{1}{y}}$
	$x = 1 \pm \sqrt{4 - \frac{1}{y}}$
	$x - 1 = -\sqrt{4 - \frac{1}{y}} \text{since} x < 1$
	$\therefore x = 1 - \sqrt{4 - \frac{1}{y}}$
	$\therefore f^{-1}(x) = 1 - \sqrt{4 - \frac{1}{x}}$
(ii)	$R_g = (-\infty, \infty)$ and $D_h = (\ln 2, \infty)$
	Since $R_g \not\subseteq D_h$, \therefore hg does not exist.
	x = 2
(iii)	gh(x) = g(h(x))
	$=g(4e^{-x})$
	$=\ln\left(2-4e^{-x}\right)$
	$y = h(x)$ with $y \neq y = g(x)$ with $y \neq y \neq y = g(x)$
	domain $domain (0,2)$ $(ln 2, 2)$ $(0, ln 2)$
	(m2, 0) (0, m2)
	O y = 0 x $O x = 2$ x
	$D_{h} = (\ln 2, \infty) \rightarrow R_{h} = (0, 2) \rightarrow R_{gh} = (-\infty, \ln 2)$
(iv)	Let $(gh)^{-1}(ln\frac{4}{2}) = a$
	\Rightarrow gh(a) = ln $\frac{4}{3}$

$$\ln\left(2-4e^{-a}\right) = \ln\frac{4}{3}$$

$$2-4e^{-a} = \frac{4}{3}$$

$$e^{-a} = \frac{1}{6}$$

$$e^{a} = 6$$

$$a = \ln 6 \quad \left(\operatorname{accept} -\ln\frac{1}{6}\right)$$

Q5	2009(9740)/II/3		
(i)	Let $f(x) = y$,		
	$y = \frac{ax}{bx - a}$ bxy - ay = ax \Rightarrow bxy - ax = ay	Note: $\mathbf{R}_{\mathrm{f}} = \mathbb{R} \setminus \left\{ \frac{a}{b} \right\} = \mathbf{D}_{\mathrm{f}},$	
	$\therefore x = \frac{ay}{by - a}$	that's why f^2 exists.	
	$f^{-1}: x \mapsto \frac{ax}{bx-a}, x \in \mathbb{R}, x \neq \frac{a}{b}$		
	Since $f(x) = f^{-1}(x)$, $f^{2}(x) = ff(x) = f^{-1}f(x) = x$.		
	$\mathbf{D}_{\mathbf{f}} = \mathbb{R} \setminus \left\{ \frac{a}{b} \right\} \to \mathbf{R}_{\mathbf{f}} = \mathbb{R} \setminus \left\{ \frac{a}{b} \right\} \to \mathbf{R}_{\mathbf{f}^2} = \mathbb{R} \setminus \left\{ \frac{a}{b} \right\}$		
	$f^2: x \mapsto x, x \in \mathbb{R}, x \neq \frac{a}{b}$		
	$\mathbf{R}_{\mathbf{f}^2} = \mathbb{R} \setminus \left\{ \frac{a}{b} \right\}$		
(ii)	Since $f^{2}(x) = x$, $f^{2023}(x) = ff^{2022}(x) = f(x) = f(x)$	$\frac{ax}{bx-a}$	
	$f^{2023}(1) = \frac{a}{b-a}$		
(iii)	$g(x) = \frac{1}{x}, x \in \mathbb{R}, x \neq 0$		
	$\mathbf{R}_{g} = \mathbb{R} \setminus \{0\}, \ \mathbf{D}_{f} = \mathbb{R} \setminus \left\{\frac{a}{b}\right\}$		
	Observe that $\frac{a}{b} \in \mathbf{R}_{g}$ but $\frac{a}{b} \notin \mathbf{D}_{f}$.		
	Since $R_g \not\subseteq D_f$, the composite function fg doe	es not exist.	

Q9	2016/H2 Specimen Paper/II/1	
(i)	Let $3\cos x - 2\sin x = R\cos(x+\alpha)$	
	$= R \cos x \cos \alpha - R \sin x \sin \alpha$	
	$R\cos\alpha = 3 (1), \qquad R\sin\alpha = 2 (2)$	
	$(1)^2 + (2)^2 : R^2 = 13$	
	$\Rightarrow R = \sqrt{13}$	
	$\frac{(2)}{(1)}:\tan\alpha=\frac{2}{3}$	
	$\Rightarrow \alpha = \tan^{-1} \frac{2}{3}$	

$$\begin{array}{ll} \therefore 3\cos x - 2\sin x = \sqrt{13}\cos\left(x + \tan^{-1}\frac{2}{3}\right) & \Rightarrow \mathbb{R}_{t} = \left[-\sqrt{13}, \sqrt{13}\right] \\ \cos(x+\alpha) = 0 \\ x+\alpha = \frac{\pi}{2} \quad \text{or} \quad x+\alpha = -\frac{\pi}{2} \\ x = \frac{\pi}{2} - \alpha \quad \text{or} \quad x = -\frac{\pi}{2} - \alpha \\ & \left(-\tan^{-1}\frac{2}{3}, \sqrt{13}\right) \\ y = 3\cos x - 2\sin x \\ \hline \left(-\pi, -3\right) & \left(0, 3\right) \\ (\alpha, -1) \\ (\alpha, -1)^{2} \\ (\alpha, -1)^{2} \\ (\alpha, -1)^{2} \\ (\alpha, -3) \\ (\alpha$$