

4 The five isotopes of krypton occur in the following abundances:

Isotopic mass	% abundance		
80	2		
82	12		
83	12		
84	57		
86	17		

Use these data to calculate a value, to one decimal place, for the A_r of the atmospheric krypton.

$$A_{\rm r} = \frac{2}{100} \times 80 + \frac{12}{100} \times 82 + \frac{12}{100} \times 83 + \frac{57}{100} \times 84 + \frac{17}{100} \times 86$$

= 83.9

The relative atomic mass of boron, which consists of the isotopes ${}^{10}_{5}B$ and ${}^{11}_{5}B$ is 10.8. What is the percentage of ${}^{11}_{5}B$ atoms in the isotopic mixture?

Let A be the fraction of ${}^{11}_{5}B$, thus the fraction of ${}^{10}_{5}B$ is (1-A).

11A + (1–A) 10 = 10.8

A = 0.8

5

% abundance = 0.8 x 100 = 80%

<u>Chec</u>	kpoint 3 (Think	(-pair-share)	
1	Discuss if ea false.	ch statement is true (T) or false (F). Provide an explanation for state	ment that
(a)	There are tw	vo 2s orbitals.	T / F
	Explanation (if any):	There is only one 2s orbital. All s subshells contain one s orbital.	_
(b)	1s subshell	and 2s subshell are in the same principal quantum shell.	т / <u>Е</u>
	Explanation	They are in different principal quantum shell.	
	(if any):	1s subshell is in the 1 st principal quantum shell, 2s subshell is in the principal quantum shell.	2 nd
(c)	3p _x orbital is	s at a higher energy level than 2p _x orbital.	<u>T</u> / F
	Explanation (if any):	The larger the principal quantum number, the higher the energy level $3p_x$ is of a higher energy level than $2p_x$.	el, hence
(d)	3p _x orbital is	s at a higher energy level than 3p _y orbital.	т / <u>Е</u>
	Explanation (if any):	All the three 3p orbitals are at same energy level (degenerate).	
(e)	2p _y and 3p _y	orbitals have the same shape but different in size.	<u>T</u> / F
	Explanation (if any):	All p orbitals have dumbbell shapes and 3py orbital is bigger in size (electrons are more diffused).	
(f)	3s, 3p and 3	d orbitals are in the same subshell.	т / <u>Е</u>
	Explanation (if any):	They are in the same principal quantum shell but different subshells	
(g)	Electrons or	bit around the nucleus.	т / <u>Е</u>
	Explanation (if any):	Electrons do not revolve around the nucleus at particular distance front nucleus in one plane, instead they are found in atomic orbitals (region dimensional space where there is 95% chance of finding an electron	om the on of 3- ı).

Checkpoint 4(a)

1 Complete the table below with reference to the periodic table.

In term	n terms of s, p, d, f notations		electron-in-boxes representation							
	Full electronic configuration	1s 2s		2р	3s	Зр	3d			
₁H	1 s ¹									
₂He	1s ²									
зLi	1 s ² 2 s ¹									
₄Be	1s ² 2s ²									
₅B	1 s ² 2 s ² 2 p ¹							1		
₆ C	1 s ² 2 s ² 2 p ²									
7 N	1 s ² 2 s ² 2 p ³									
0 ₈	1 s ² 2 s ² 2 p ⁴									
₀F	1 s ² 2 s ² 2 p ⁵									
10 Ne	1 s ² 2 s ² 2 p ⁶									
19 K	1 s ² 2 s ² 2 p ⁶ 3 s ² 3 p ⁶ 4 s ¹									
₂₀ Ca	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$									
₂₂ Ti	1 s ² 2 s ² 2 p ⁶ 3 s ² 3 p ⁶ 3 d ² 4 s ²									
* ₂₄ Cr	1 s ² 2 s ² 2 p ⁶ 3 s ² 3 p ⁶ 3 d ⁵ 4 s ¹									
* ₂₉ Cu	1 s ² 2 s ² 2 p ⁶ 3 s ² 3 p ⁶ 3 d ¹⁰ 4 s ¹							1		

<u>Cr</u>	Checkpoint 4(b)										
1	1 Which atom has 2 unpaired electrons?										
	Α	Ba [Xe] 6s ² (0 unpaired e ⁻)									
	в	Ge	[Ar] 3d ¹	⁰ 4s² 4p² (2 un	paired e⁻ in 4p	orbitals)					
	С	Fe	[Ar] 3d ⁶	4s ² (4 unpaire	d e⁻ in 3d orbit	als)					
	D	Sc									
								()		
2	Whie	ch ator	n has a ha	alf-filled set of	4p electrons?						
	Α	Al	3	p ¹							
	в	Р	:	3p ³							
	С	Ga		4p ¹							
	D	As		4p ³							
								()		
2	The	tabla m	afara ta th	o olootrop dia	wikution in the		f an atom with a	alat			
3	prote	table r ons. W	hich row i	is correct for th	nis atom?	second shell o	i an alom with ei	gnt			
	•				1		1				
		0	orbital sha	pe 🚫	Orbital sh	iape 🔘					
		Orb	ital type	Number of	Orbital type	Number of					
	Α		D	2	s	4					
	B		D	4	S	2					
	C		S	2	p	4					
	D		S	4	р	2	•				
	L						1	()		
	٨n	atom	with eight	protops: oxya	\rightarrow electronic	configuration:	$1e^{2}2e^{2}2n^{4}$				
	Se	cond s	hell : 2s ² 2	2p ⁴		, configuration.	13 Z3 ZP				
5		ng tha	around a	tata valance a	lastronia confi	nuration of atom	m aivon holow. I	dontify	(the		
5	ele	ments	with refer	ence to the pe	riodic table.	juration of ato	in given below, i	uentity	/ the		
		4.5	24-4								
	(i) $4s^24p^4$ (ii) $5s^25p^1$										
	(")	<u>S</u> e	e and In								

removed from the inner principal quantum shell. Hence there are 5 valence electrons.

Hence element **J** is from Group 15.

Its valence shell electronic configuration is ns²np³.

Checkpoint 7 (Continued)

2 The table below shows the first 8 successive IEs (in kJ mol⁻¹) for elements **Y** and **Z**.

	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th
Y	578	1817	2745	11577	14842	18379	23326	27465
Z	1012	1907	2914	4937	6274	21267	25431	29872

Deduce which groups in the Periodic Table does each element, Y and Z, belong to?

For **Y**, the significant increase in the IE is from the $\underline{3^{rd} to 4^{th}}$, implying that the $\underline{4^{th}}$ electron is removed from the inner principal quantum shell. Hence there are $\underline{3}$ valence electrons. <u>Y</u> is in group <u>13</u>.

For Z, the significant increase in the IE is from the <u>5th to 6th</u>, implying that the <u>6th</u> electron is removed from the inner principal quantum shell. Hence there are <u>5</u> valence electrons. <u>Z</u> is in group <u>15</u>.

3 The diagram below shows successive ionisation energy values of all electrons for an unknown element **Z**.

(a) Account for the large difference between the 2nd and 3rd ionisation energy values.

The 3rd electron from **Z** is removed from the inner principal quantum shell which is in a <u>much lower</u> energy level. The electron in inner principal quantum shell experience <u>much</u> <u>greater</u> nuclear attraction hence requires <u>much more</u> energy to overcome it.

(b) How many occupied principal quantum shells does Z have?

There are <u>**2** sharp jumps</u> in successive I.E., indicating that there are 3 occupied principal quantum shells.

(c) Write the electronic configuration of Z.

Total number of electrons on the element = 12 Electronic configuration = $1s^2 2s^2 2p^6 3s^2$