
## 2021 DHS H2 Physics Prelim Paper 3 Suggested Solutions

Section A



- or  $(s = ut + \frac{1}{2}at^2) s = 8.5 \times 0.87 + \frac{1}{2} \times (-9.81) \times 0.87^2$
- or  $(s = vt \frac{1}{2}at^2) s = 0 \frac{1}{2} \times (-9.81) \times 0.87^2$
- or  $(s = \frac{1}{2}(u + v)t$  or area under graph)  $s = 0.5 \times 8.5 \times 0.87$  C1

**A1** 

|   | (d) | acceleration (of freefall) is unchanged / not dependent on mass, and so no effect (on maximum height) |                                                                                            |           |  |  |  |
|---|-----|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------|--|--|--|
|   |     | OR expla                                                                                              | OR explanation in terms of energy:                                                         |           |  |  |  |
|   |     | (initial) KE $\propto$ mass, ( $\Delta$ )KE = ( $\Delta$ )PE, (max) PE $\propto$ mass, and so         |                                                                                            |           |  |  |  |
|   |     | no effect                                                                                             | (on maximum height)                                                                        | B1        |  |  |  |
| 2 | (a) | Force ex                                                                                              | perienced by a mass in a gravitational field                                               | B1        |  |  |  |
|   | (b) | (i) tota                                                                                              | l downward force on the moving pulley                                                      |           |  |  |  |
|   |     |                                                                                                       | 60 + (2.4 x 9.81) = 984 N                                                                  | C1        |  |  |  |
|   |     |                                                                                                       | the moving pulley is moving upwards at a constant speed,                                   |           |  |  |  |
|   |     |                                                                                                       | t force = 0                                                                                |           |  |  |  |
|   |     | 27                                                                                                    | cos 11.5º = 984                                                                            | C1        |  |  |  |
|   |     | Т =                                                                                                   | 502 N                                                                                      | A1        |  |  |  |
|   |     | (ii) Cosin                                                                                            | e of angle (with vertical) decreases                                                       |           |  |  |  |
|   |     | OR ar                                                                                                 | ngle of rope (with vertical) increase                                                      | M1        |  |  |  |
|   |     | Her                                                                                                   | nce tension increases                                                                      | A1        |  |  |  |
|   | (c) | (i) rop                                                                                               | e / lower pulley has to be lifted up                                                       |           |  |  |  |
|   |     | OR                                                                                                    | load has kinetic energy (any one)                                                          | B1        |  |  |  |
|   |     | (ii) force                                                                                            | applied is less than weight of load                                                        | B1        |  |  |  |
| 3 | (a) | pV/T=0                                                                                                | constant                                                                                   |           |  |  |  |
|   |     | T = (6.5 x                                                                                            | x 10 <sup>6</sup> x 30 x 300) / (1.1 x 10⁵ x 540)                                          | C1        |  |  |  |
|   |     | = 985 K                                                                                               |                                                                                            | A1        |  |  |  |
|   | (b) | (i) The                                                                                               | e increase in the internal energy of a system is equal to the                              | B1        |  |  |  |
|   | :   | sum of the                                                                                            | thermal energy supplied to the system and work done on                                     |           |  |  |  |
|   | f   | he system                                                                                             | . <b>B1</b>                                                                                |           |  |  |  |
|   |     |                                                                                                       | thermal energy supplied to system, thus increase in intern<br>ork done on system <b>B1</b> | al energy |  |  |  |
|   |     | SO                                                                                                    | U increases B1                                                                             |           |  |  |  |
|   |     | <i>U</i> ir                                                                                           | ncreases so kinetic energy of atoms increases                                              |           |  |  |  |
|   |     | and                                                                                                   | hence T increases                                                                          | B1        |  |  |  |
|   |     |                                                                                                       |                                                                                            |           |  |  |  |

(c) 
$$KE \propto T$$
, hence  $v \propto \sqrt{T}$ , and so C1

ratio = 
$$\sqrt{\frac{350}{300}} = 1.1$$
 A1

(ii) 
$$\omega = \frac{v_0}{x_0}$$
 C1

$$T = \frac{2\pi}{\omega}$$

$$0.42 = \frac{2\pi \times 0.050}{T}$$
C1

(b) one point labelled P where ellipse crosses displacement axis B1

## 5 (a) When two or more waves of the same kind meet at a point at the same time,B1

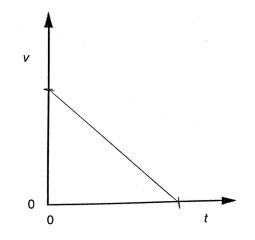
the displacement of the resultant wave is the vector sum of the displacements of the individual waves at that point at that time.

. .

**(b)** (i) 
$$\lambda = \frac{V}{f} = \frac{330}{200} = 1.65 \text{ m}$$
 A1

(ii) The distance of the upper loudspeaker from the man is

 $\sqrt{9.3^2 + 4.0^2} = 10.124 m$   $\therefore$  the path difference between the waves reaching the man is 10.124 - 9.3 = 0.8237 m


the path difference is 
$$\frac{0.8237}{1.65} = 0.50\lambda$$
 C1

C1

This means that the waves interfere destructively and the man will hence detect a **minimum** of sound intensity.

|       | • •                     | <b>1.</b> increase the frequency of the sound crease the separation between the two loudspeakers               | B1<br>B1                     |
|-------|-------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------|
| (a)   |                         | electric force per unit positive charge experienced by a si charge placed at that point.                       | mall stationary<br><b>B1</b> |
| (b)(i | to th (<br>velo         | ne right / from the left / from A to B / in the same direction<br>city                                         | on as electron<br><b>B1</b>  |
| (ii)  | <i>v</i> <sup>2</sup> = | <i>u</i> <sup>2</sup> + 2 <i>a</i> s                                                                           |                              |
|       | a =                     | (1.5 × 10 <sup>7</sup> )²/ (2 × 2.0 × 10⁻²)                                                                    | C1                           |
|       | Othe                    | er alternative calculations for the C1 mark:                                                                   |                              |
|       | e.g.                    | <i>a</i> = 1.5×10 <sup>7</sup> / 2.67×10 <sup>-9</sup>                                                         |                              |
|       | e.g.                    | $a = [(1.5 \times 10^7 \times 2.67 \times 10^{-9}) - 2.0 \times 10^{-2}] \times [2 / (2.67 \times 10^{-9})^2]$ |                              |
|       | e.g.                    | a = (2.0×10 <sup>-2</sup> × 2) / (2.67×10 <sup>-9</sup> ) <sup>2</sup>                                         |                              |
|       |                         | = 5.6 × 10 <sup>15</sup> m s <sup>-2</sup>                                                                     | A1                           |
| (iii) | Ε                       | = F / Q                                                                                                        |                              |
|       |                         | = (9.11 × 10 <sup>-31</sup> × 5.6 × 10 <sup>15</sup> ) / 1.6 × 10 <sup>-19</sup>                               | C1                           |
|       |                         | $= 3.2 \times 10^4 \text{ V m}^{-1}$                                                                           | A1                           |

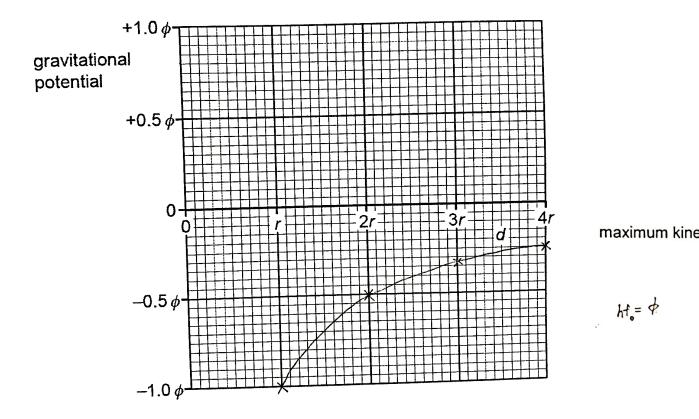
(c) straight line with negative gradient starting at an intercept on the *v*-axis and ending at an intercept on the *t*-axis. B1



7 (a) Angular velocity is the <u>rate of change of angular displacement</u> of a radius joining the body to the axis of rotation.B1

A1

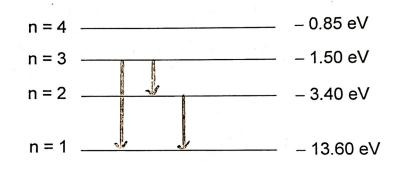
6


$$\omega = \frac{2\pi}{T} = \frac{2\pi}{(44.2 \times 365 \times 24 \times 3600)}$$
C1

**(b)(i)** = 
$$4.5 \times 10^{-9}$$
 rad s<sup>-1</sup> A1

- (ii) magnitude of the centripetal force about P is the same M1  $M_1 x \omega^2 = M_2 (d - x) \omega^2$  $\frac{M_1}{M_2} = \frac{(d - x)}{x}$  A1
- (iii) x = 0.4d C1 Consider S<sub>2</sub>, gravitational force provides centripetal force  $\frac{GM_1M_2}{d^2} = M_2(d - x)\omega^2$ C1  $GM_1 = d^2(d - x)\omega^2$

$$(6.67 \times 10^{-11})M_1 = (1.0 - 0.4)(1.8 \times 10^{12})^3 (4.5 \times 10^{-9})^2$$
C1  
$$M_1 = 1.1 \times 10^{30} \text{ kg}$$
A1


- (c)(i) The work done per unit mass in bringing a small test massB1B1
  - (ii) curve from *r* to 4*r*, with gradient of decreasing magnitude and line showing potential is negative throughout
     B1
     line passing through (2*r*, -0.5/ħ) and (4*r*, -0.25/ħ)
     B1



Section B

**8** (a)(i) A photon is a discrete packet (quantum) of energy of electromagnetic radiation.

**B1** (ii) The work function energy of a metal is the minimum energy of photon to cause emission of electron from the surface of a metal. **B1** (b)(i) 1. *f*<sub>0</sub> correctly labelled **B1** 2. parallel line with same gradient and higher horizontal intercept **B1** (ii) Planck constant **B1** *I*ax KE corresponds to electrons emitted from surface Energy is required to bring electron to surface **B1 B1** Hence (IV) intensity determines number of photons arriving per unit time determines number of electrons emitted per unit time, and not energy. **B1** (c)(i) 13.60 eV **B1** (ii)1.



| correct energy levels                                                                  | B1 |
|----------------------------------------------------------------------------------------|----|
| correct direction of arrows                                                            | B1 |
| <b>2.</b> energy in Joules = 1.90 x 1.6 x 10 <sup>-19</sup> = 3.04 x 10 <sup>-19</sup> | C1 |
| E = hc/ +                                                                              |    |
|                                                                                        |    |
| = 6.54 x 10 <sup>-7</sup> m                                                            | A1 |
| Visible light region (red)                                                             | B1 |

(d)(i) Wavelength that is associated with a particle that is moving. B1

(ii) P = h/mv C1  $v = (6.63 \times 10^{-34}) / (9.11 \times 10^{-31})(1.2 \times 10^{-10})$  C1  $= 6.1 \times 10^6 \text{ m s}^{-1}$  A1

- (iii) wavelength is about the separation of atoms in a crystal **B1** can be used in electron diffraction **B1**
- 9 (a)(i) The average time taken for the initial number of nuclei (or activity) of B1 a particular radioactive nuclide to reduce to half its original value. **B1** 
  - (ii) Decay is not affected by external or environmental factors (such as pressure, temperature etc) **B1**

$$\lambda = \frac{\ln 2}{t_{W2}}$$
  
=  $\frac{\ln 2}{432.2 \text{ yrs}}$   
=  $\frac{\ln 2}{432.2 \times 365 \times 24 \times 3600 \text{ s}}$   
= 5.086 ×10<sup>-11</sup> s<sup>-1</sup> A1

(iii)

Number of undecayed atoms,

$$N = \left(\frac{1.00 \text{ g}}{241 \text{ g mol}^{-1}}\right) (6.02 \times 10^{23} \text{ mol}^{-1}) = 2.4979 \times 10^{21} \text{ C1}$$
$$A = \lambda N$$

$$= (5.086 \times 10^{-11} \text{ s}^{-1})(2.4979 \times 10^{21})$$
C1

(v) Loss of mass

= 241.0568229 - (237.0481673 + 4.0026032) C1  
= 
$$6.0236 \times 10^{-3}$$
 u  
Energy =  $(0.0060524$  u x  $1.66$  x  $10^{-27}$  x  $(3.00 \times 10^8)^2$  C1  
=  $9.0423 \times 10^{-13}$  J  
=  $5.65$  MeV A1

(b) For nuclei having high nucleon numbers, the binding energy per nucleon decreases with larger nucleon numbers. **B1** When two such nuclei fuse together, they will produce a daughter nucleus

7

which has an even larger nucleon number and smaller binding energy per nucleon. **B1** 

The total binding energy of the products is less than that of the initial nuclei, hence there is an increase in the total mass of the system, and energy has to be supplied for such a reaction to take place. **B1** 

(c) (i) 
$$\frac{4}{2}\alpha$$
 B1

(ii) 1. Initially alpha particle must have some kinetic energy. B1

2.

1.1 
$$MeV = 1.1 \times 1.6 \times 10^{-13} = 1.76 \times 10^{-13} \text{ J}$$
 C1

$$E_k = \frac{1}{2}mv^2$$

$$1.76 \times 10^{-13} = \frac{1}{2} (4 \times 1.66 \times 10^{-27} \times v^2)$$
 C1

$$v = 7.3 \times 10^6 \text{ m s}^{-1}$$
 A1

~ THE END ~