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A LETTER TO THE READER

Hello, and thank you for picking up my book! I am Yang Xu from the 2021 VJC cohort, and
I am really excited to share with you my journey with Mathematics! Math wasn't always my
strongest subject, and I really struggled with it back in secondary school. I understand the
frustration when concepts do not click despite the e�ort, and the disappointment at the marks
lost to careless mistakes. But one thing Mathematics has taught me is that with the right
mindset, appropriate guidance, and some practice, you can really start to see improvement,
and even start enjoying math! Having gone through this journey myself, I �rmly believe
that everyone is capable of doing well in Mathematics, provided the e�ort and appropriate
understanding of the subject.

Mathematics is a subject of immense beauty, but only if you allow yourself to see it. In my
humble opinion, the structure of the examined syllabus and the competitive nature of exams
often overshadow the true elegance of math, making it easy to miss the profound connections
between topics. Through this book, I hope to help you discover new insights and develop
a deeper appreciation for math, especially for the examinable topics. But even if you don't
come away with that appreciation right away, I still encourage you to keep an open mind
and give your best e�ort. Remember, the true beauty of mathematics goes far beyond what
I can express here. I urge you to continue exploring on your own if you're curious; there is
truly so much more to discover!

In this book, I have put together a non-exhaustive summary of the key ideas and conventional
solving methods from the H2 Math syllabus. I've also included some personal tips, shortcuts,
and insights that I found helpful as a student. These sections are designed to help refresh
and review the H2 content while o�ering some new perspectives on familiar concepts. I have
also dedicated a part towards the end of this book to exploring some interesting topics in
the syllabus, though not explicitly taught. These concepts have personally helped me a lot
in my math journey, but they're only the tip of the iceberg. I encourage you to dive deeper
and explore more beyond what's presented here.

Please note that this book is only supposed to serve as a supplement, not a
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replacement of your school notes. Certain parts also require H2 knowledge that
is not covered explicitly in this book.

On a side note, I would also like to mention that Math concepts beyond the syllabus can
also develop your critical thinking and problem-solving skills in H2 Math. After all, that
is what you are being examined for. These topics either broaden your way of thinking, or
provide valuable insights into H2 Math topics. For instance, learning about `Linear Algebra'
has helped me to appreciate the interconnections between vectors, matrices, and systems of
linear equations. I would occasionally share some of the insights I have gained throughout
the span of this book. Meanwhile, I also encourage you to read beyond the syllabus, to
see the underlying interconnection between di�erent topics, and appreciate the beauty of
Mathematics.

As a disclaimer, some of the phrasings in this book are layman paraphrases for the sake of
simplicity and ease of comprehension. They may not be accepted in working presentations,
hence I would urge you to clarify the presentation aspects with your tutors. The content
here is also non-exhaustive, hence don't expect to �nd everything here. This just serves as a
brief recap, an extension, and some hopefully-useful tips.

Moreover, if you face any di�culties in your studying, please do not hesitate to contact your
subject tutors, or me via my VJC email (yang.xu.2021@vjc.edu.sg). With that, I wish you
all the best for all your Math tests and exams; I really really believe that all of you are able
to do well in them!

Best Wishes,
Yang Xu
Class of 21S51
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CHAPTER 1

GENERAL TIPS

1 Analysing the Question

Read ALL questions carefully.

A good habit would be to have a pen or pencil in hand when reading the question. Underline
or circle whatever is important and annotate beside it.

For example, `maximum point at x = 2' implies d2y
dx2 < 0 and dy

dx
= 0 at x = 2.

If you are like my past self, you might think: �I already have them in my head, why do I
need to write it down and waste my time?� To this, I would say that annotating can help to
direct your thought process in the right direction, while helping you to store the information
safely. At times, questions contain so much information that it is very di�cult to remember
everything. This also leads me to the next point.

Try to practice the habit of copying the question.

Even when you are stumped and completely clueless upon reading the question, just copy it
down �rst as your �rst line of working. Sometimes (and I can say that it is not uncommon),
copying the question can help you to remember certain concepts related to it, which will be
the appropriate formulae or concepts required to solve the question.

Behaves like muscle memory, works like magic. I do this all the time and I can guarantee it
helps!
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General Tips 9

Take on di�erent viewpoints when analysing the question.

Acknowledge that there are many solutions to the same question.

For example, when you see ax2 + bx + c = 0, how will you �nd the number of real roots?
You could draw out the graph and see if there are intercepts, or you can make use of the
discriminant value to determine the number of real solutions.

Some questions can allow you to have multiple perspectives to view it. An expansion of (1+
x)n can be seen as a Binomial Expansion, a Maclaurin Expansion, a polynomial expansion,
or even a combinatorics problem where the number of ways to combine one term from each
of the `n' brackets are used to �nd the terms.

Taking on multiple viewpoints can help you �nd faster and more e�cient methods to solve
questions. Some questions even require you to combine di�erent perspectives in order to
solve it, like �nding the number of intersections between an ellipse and a parabola.

When you are stuck, try taking on a di�erent approach. Even if it does not provide you with
a solution, it may o�er you valuable insights that are useful in solving the question.

Start with the end in mind

Arguably, the most important element to solving a problem is to have a clear direction.
Navigating a maze with a planned route is exponentially easier than without one. As much
as possible, try to mark out di�erent �checkpoints� along the way, to ensure that you are on
the right path to solving the problem. Here are some useful questions to help plan this route:

� What information is required? Where is the end-point here?

� What information do I currently have? What tools can I use with this information?

� Are there any information I must have in order to reach the end-point?

As a hiker myself, this is analogous to planning a hike. Imagine planning a hike up a snowy
cli�: We will have to pass by steep hills and snowy terrain, rest overnight at a mountain
lodge before climbing up a twenty meter cli� to reach the summit. For the steep hills we
will require walking sticks; crampons and an ice axe for the snow; a harness with ropes and
camming devices for the rock climbing. All these have to be planned out before setting o�
for the hike itself.

Likewise, you need to plan out a road map before embarking on each problem, with areas you
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must pass by and tools you will require before reaching the destination. This might sound
vague, so we illustrate this with an example.

Example : 2023 SMO Q8

Two planes x+ y + 3z = 4 and 2x− z = 6 intersect at the line

r⃗ ×

−1
a
b

 =

−2
c
d


Find |a+ b+ c+ d|. (Don't worry, this is solvable with H2 Maths.)

We start o� with a sanity check: We know that two planes indeed intersect on a line,
which aligns with the information provided by the question, so we are on the right track.

Planning: Given the equations of the two planes, we are able to determine the line of
intersection. We are also given the equation (in a manipulated form) of the same line,
which contains the unknowns a, b, c, d; so we are likely expected to �nd the equation of
the line ourselves, then compare it to the unknowns given. The end-point is where we �nd
the sum of all the unknowns.

We break it into two sub-problems: Finding the equation of this line, then comparing
it with the second equation (with unknowns) to �nd the unknowns.

Sub-problem 1: Find the equation of the line of intersection of the two planes.

(Planning the approach) The line must lie on both planes, and so this line must be per-
pendicular to the normal of both planes.

(Tool 1) The cross-product of two vectors conveniently gives a third vector which is per-
pendicular to the �rst two, so we will need that. This gives the direction of the line, but
is insu�cient since a line is de�ned by a point and a direction vector. So we will need to
�nd a point that lies on both planes.

(Tool 2) That should not be too complicated, since a point lies on a plane if it satis�es the
equation of the plane; we can make intelligent guesses and verify easily whether a point
lies on both planes. With the point and the direction vector, we can successfully assemble
the equation of the line, and sub-problem 1 is completed.

Sub-problem 2: Use the known equation to �nd the unknowns.

(Planning) We know that r⃗ can be rewritten as a column vector with components x, y, z
so we can compute the cross product on the left-hand side, then equate it to the column
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vector on the right.

(Tool 1) From the previous part we have already found an entire line of points (x, y, z)
that lie on both planes. We can simply pick and choose some of these points (and sub
them in to the cross-product equation) to form equations in a, b, c, d, and the question is
solved.

Though it looks like a whole lot, the above planning is much easier than it looks. Planning
is usually done in a matter of seconds, and comes even quicker with practice. Practice
this in your day-to-day problems, and soon it will become second-nature to you.

That said, the problem is actually rather simple after we laid out the road map.

Solution:

n⃗1 × n⃗2 =

1
1
3

×

 2
0
−1

 =

−1
7
−2


(3, 1, 0) lies on both planes, since it satis�es both plane equations. So equation of l:

r⃗ =

3
1
0

+ t

−1
7
−2



Computing the given cross-product yields: by − az
−z − bx
ax+ y

 =

−2
c
d


So using x = 3, y = 1, z = 0 from the above point (3, 1, 0):

b(1)− a(0) = −2 ⇒ b = −2

−(0)− (−2)(3) = c ⇒ c = 6

We use another point (2, 8, −2), as generated from the equation of the line we found:

(−2)(8)− a(−2) = −2 ⇒ a = 7

7(2) + 8 = d ⇒ d = 22

Therefore they sum to give 33. ■

At times, the road ahead is foggy and a clear direction cannot be seen. In times like these,
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you would have to plan as much as possible, before diving into the problem head-�rst. Do
not forget to continue planning along the way. Some problems require you to play around
with the expressions given, before you can see the clear path, like the integral of (1− e−x)−1.

Your plan at the start may also be incorrect at times, akin to a turn down a wrong path.
These situations require you to re-evaluate your direction and amend some of your existing
plans.

Most problems you face in the syllabus would likely be less unorthodox than the one above,
and so (hopefully) easier to plan out. From my experience, most questions in the H2 syllabus
are rather standard, with only a handful of question types, each requiring similar routes. This
is why practicing setting out these plans provide much value: As you are likely to encounter
it again. Practice (in the right manner) makes perfect!
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2 Solving the Question

Mathematics is all about solving problems. Having certain good habits can make the di�er-
ence between solving the question quickly and struggling to even start.

Be Systematic

The idea of being systematic (an organised method to do something) is always valued in
mathematics. It provides e�ciency and prevents unnecessary mistakes.

How would you expand the following expression?

(3x2 − 2 + 5x−1)(6x3 − 4 + 7x)

Without an organised system, one would jump in directly and multiply using the �rainbow
method�, pairing each term in the �rst bracket with a term in the second bracket.

18x5 − 12x2 + 21x3 − 12x3 + 8− 14x+ 30x2 − 20x−1 + 35

After which terms with the same �x power� is combined.

Consider an alternate method, where we start from the lowest possible x power, and work
our way up. The lowest possible x power here is −1, so we �nd all ways to create a term
with x−1, that is, one way: picking 5x−1 from the �rst bracket and −4 from the second. So
the coe�cient of x−1 is −20.

Next we repeat the same for x power 0. Each time, ask yourself, �which two terms multiple
to give me a term of this power?�. Repeat this procedure for each x power until we reach the
maximum possible power of 5.

(5)(−4)x−1 + [(−2)(−4) + (5)(7)] + (−2)(7)x+ [(5)(6) + (3)(−4)]x2

+[(−2)(6) + (3)(7)]x3 + (3)(6)x5

This method is more systematic and makes it easier to keep track of your terms, especially
as the expression gets more complex.

I would advise you to take out a pen and a piece of paper to try it yourself, to see that the
latter method is indeed much more organised.

A systematic method could also be breaking down a complex problem into smaller and simpler
problems, then tackling them one at a time:
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� To �nd the equation of a straight line, we can break it into three steps: First �nding its
gradient, next �nding a point on the line, then assembling them to form the equation
of the line.

� To �nd a complicated complex number like z5

(w∗)2
, we can break it into three steps:

First �nding its modulus, then �nding its argument, lastly assembling them to �nd the
complex number.

� To �nd the projection of vector a⃗ on line L, we can break it into three steps: First
�nd the length of the projection, next �nd the unit vector of the direction of L, lastly
assemble them to �nd the projection vector.

The idea of being systematic extends beyond the listed examples. Systematic approaches exist
for every single topic, though a method may be systematic to one person but not another;
what makes a method systematic is whether it appears organised to you. In general, having
a systematic approach to problems will always be more e�cient and reduce the likelihood of
careless mistakes.

Pattern Recognition

The ability to recognise patterns is required to solve certain questions, and can also provide
computational shortcuts in some cases. Take this compound interest question, for example:

Example : Recognising the Pattern

$1000 is deposited into a bank at the start of month 1. At the end of every month, the
total amount grows by 1%, whereas at the start of every month, $1000 more is deposited
into the bank. Find the total amount at the end of n months.

Since the question is interested in the amount at the end of the month, we let $Tn denote
the balance at the end of n months. We list the �rst few terms and generalise using the
pattern.

T1 = 1.01(1000), T2 = 1.01(1000 + 1.01(1000)) = 1.01(1000) + 1.012(1000)

T3 = 1.01(1000 + 1.01(1000 + 1.01(1000))) = 1.01(1000) + 1.012(1000) + 1.013(1000)

Notice the pattern: All Tn start with 1.01, increasing their power by 1 each term, ending
at 1.01n. Thus we generalise: Tn = 1000

∑n
r=1 1.01

r which represents a GP. ■

We consider another problem utilising patterns as a shortcut.
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Example : Generalising with Patterns

Given two terms of a GP: a17 = 27 and a20 = 729, �nd an.

The slightly more obvious method would be to �nd the common ratio:

r3 =
a20
a17

= 27 ⇒ r = 3

Then the �rst term:

a1 =
a17
r16

=
1

313

Lastly plugging it into the formula for an:

an = a1r
n−1 =

1

313
(3n−1) = 3n−14

However, we can consider a shortcut: Notice that a17 = 33 and a20 = 36. The subscript
and the index always has a di�erence of 14: 17−3 = 14 and 20−6 = 14. Thus, an = 3n−14.

Important Note: This shortcut must be used with care, especially in considering the case
where r might be equal to −3. Suppose we were instead given a17 = 27 and a19 = 243.
Using the same shortcut (without considering that r can be negative) will give us an =
3n−14, when in reality the answer is an = (±3)n−14. ■

Fortunately in most other contexts, this shortcut can be used rather freely without such
corner cases. The above just serves to highlight that it should not be applied blindly.

Simplify your Expression

Learning to simplify your expressions can save you considerable time and make your work
much neater. This is bene�cial to you since disorganised work tends to invite careless mis-
takes. It is also helpful when checking your work later on, and much more pleasant for the
person marking your script. Simplifying your expressions can be done in a few ways:

1. Cancelling redundant terms: Always remove the terms if they are not necessary. Do
not waste your time rewriting it over and over again. Contrast the two presentations:

Example : Cancelling redundant terms in inequalities

Find the range of x for which the following inequality is satis�ed.

(x2 − 4)2

x3 − 6x2 + 11x− 6
> 0
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Ine�cient presentation:

(x2 − 4)2

x3 − 6x2 + 11x− 6
> 0

Using factor theorem we simplify the denominator:

(x2 − 4)2

(x− 1)(x2 − 5x+ 6)
> 0

((x+ 2)(x− 2))2

(x− 1)(x− 2)(x− 3)
> 0

(x+ 2)2(x− 2)

(x− 1)(x− 3)
> 0

(Continue solving using test point method with critical points −2, 1, 2, 3)

The above method is evidently ine�cient. Since the numerator is never negative,
we only need to consider the denominator (�nd the x values for which denominator
is positive). Contrast the above with the e�cient presentation; much more time is
required to write out the ine�cient method.

E�cient presentation:
(x2 − 4)2

x3 − 6x2 + 11x− 6
> 0

Using factor theorem we simplify the denominator. We also cancel the numerator
since it is never negative.

1

(x− 1)(x2 − 5x+ 6)
> 0

1

(x− 1)(x− 2)(x− 3)
> 0

Then test-point method can then be conducted using critical points 1, 2, 3. ■

Such ine�ciencies scale with the complexity of the question. While the above example
may not illustrate a big di�erence, the contrast is de�nitely greater for tedious problems.
It is hence advisable to cancel the redundant terms at the �rst opportunity.

2. Multiplying across by a non-zero factor: Whenever dealing with multiple frac-
tions, multiply across by the denominator if possible. It is much neater that way.

Example : Multiplying across

Find the equation of the tangent to the curve y = 4
7
x2 at x = 1

3
.
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dy

dx
=

8

7
x

At x = 1
3
,

y =
4

63
, Gradient =

8

21

So equation of line is:

y − 4

63
=

8

21

(
x− 1

3

)
y =

8

21
x− 8

63
+

4

63
=

8

21
x− 4

63

Instead of shifting 4
63

to the right hand side �rst, it is advisable to multiply across
by 63 to get rid of the fractions. This is also neater should you require this equation
again in a later part.

63y − 4 = 24x− 8 ⇒ 63y = 24x− 4

■

Multiplying across by a constant (other than zero) is always permissible. Do note,
however, that in order to multiply across by an unknown (like x or f(x)), you �rst have
to ensure that it does not, or will not equal to zero.

3. Factorising: Factorise out any common factors whenever you have the chance to. This
reduces the amount of things you have to write.

Example : Factorising

Given y = 2x2
√
3x3−7

, �nd dy
dx

and use it to �nd the x-coordinates of the stationary
points.

We expand using the product rule:

dy

dx
=

4x√
3x3 − 7

+ 2x2 ·
(
−1

2

)
· (9x2)

(3x3 − 7)3/2

=
1

(3x3 − 7)3/2
(4x(3x3 − 7)− 9x4)

=
12x4 − 9x4 − 28x

(3x3 − 7)3/2

The numerator can then be set to 0 to �nd the stationary points. ■

4. Avoiding unnecessary expansions and simpli�cations: Sometimes, simpli�ca-
tions are not required to solve for the answer. Unnecessary expansions can also make
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the problem more complicated. Keep the expression in its factored form until it's
absolutely necessary to expand it (when there is no other way to solve).

Example : Avoiding unnecessary expansions

Find the derivative of y = (x2 + 1)3(2x2 − 1) at x = 1.

Instead of expanding this expression, we di�erentiate using the product rule:

dy

dx
= 3(x2 + 1)2(2x2 − 1) + (x2 + 1)3(4x)

Now instead of simplifying the expression above, we can simply substitute x = 1
into the right-hand-side to �nd the value of dy

dx
, since that is all that the question

requires.

Realise also that expanding �rst would have required additional steps and led to
more opportunities for mistakes. ■

Be Sensitive to the Nuances

It's important to be sensitive to the subtleties in the question. Pay attention to conditions
such as whether a variable is positive or negative, whether it is an integer or a real number,
or the presence of certain constraints like speci�c domains or principle ranges. These nuances
may require us to exclude certain solutions.

For example when working with functions, special attention must be given to the domain
and range. Suppose we want to �nd the inverse function of y = x2 for x < 0. When we
take the inverse of this function, we obtain x = ±√

y. However, because we are restricted to
x < 0, we must choose the negative root, i.e. x = −√

y, to satisfy the condition.

Another common situation arises with modulus. For example, suppose k is an unknown
negative constant, then |k| = −k rather than k. This is crucial when solving inequalities
or equations involving absolute values, since the incorrect interpretation of |k| will de�nitely
lead to the wrong solution.
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3 Checking Your Work

Once you've completed a problem, it is essential to verify your solution. Checking your work
can prevent careless mistakes, improve accuracy, and help you understand any steps where
you might have gone wrong. Here are some methods you can use to check your solutions
e�ectively.

Substitute the Solution Back into the Original Problem

The most straightforward way to check if your solution is correct is to substitute it back
into the original equation or inequality. This ensures that the solution satis�es the problem's
conditions.

Example : Substituting Back

Solve for the intersection of the lines y = 2x+ 3 and 2y = 3x+ 7.

2(2x+ 3) = 3x+ 7 ⇒ x = 1 ⇒ y = 5

So our answer is (1, 5). To check, substitute x = 1 and y = 5 back into the original
equations:

2(1) + 3 = 5

2(5) = 3(1) + 7

Since both sides of the equations are equal, the solution is veri�ed as correct. ■

Check for Special Cases

In problems involving inequalities or domains, ensure that your solution holds true for special
cases or boundary conditions. For example, in an inequality problem, try testing values near
critical points to see if they satisfy the inequality.

Example : Checking Boundary Conditions

Consider the inequality x−2
x+3

> 0. The critical points are x = 2 and x = −3. Test values
near these points:

x = 0 :
0− 2

0 + 3
=

−2

3
(Not greater than 0)

x = 3 :
3− 2

3 + 3
=

1

6
(Greater than 0)

Testing values around the critical points can help to catch careless mistakes should there
be one. ■
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Solving Using a Di�erent Method

If time permits, try solving the problem using a di�erent approach. For example if you have
already solved for the intersection of two parabolas algebraically, you can then graph it out
using your GC to check whether your solutions align with the graph.

Estimate the Result

If the problem involves numerical answers, try estimating the answer to see if it seems rea-
sonable. Using these approximations can catch careless mistakes if your solution happens to
be far o� the sensible range. This can be done either before or after solving; the key is to
have a rough gauge of where your answer should lie.

Example : Estimation for Reasonableness

Consider the integral
∫ 1

0
(3x2 + 2) dx. Without solving it exactly, we can approximate:

3x2 + 2 is approximately 3(0.52) + 2 = 2.75 at x = 0.5.

So the integral should be around 2.75× 1 = 2.75. Solving it exactly gives:∫ 1

0

(3x2 + 2) dx =
[
x3 + 2x

]1
0
= 1 + 2 = 3.

The estimate was close, verifying that our exact solution is reasonable. ■



CHAPTER 2

SYSTEM OF LINEAR EQUATIONS

1 Simultaneous Equations

A system of linear equations is just as its name suggests, a collection of one or more linear
equations, containing the same set of variables (e.g. a, b, and c). It is commonly known as
`simultaneous equations'.

One common application is �nding the point of intersection between two lines, where each
line can be represented by a linear equation (i.e. y = mx+ c). When determining the point
where two lines intersect, the coordinates of this intersection point must satisfy both line
equations simultaneously, thus generating the simultaneous equations.

Consider the following example, where we �nd the intersection point of two lines:

x

y

y = 2x+ 1

y = −x+ 4

(1, 3)

21
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The equations of the two lines are given by:

y = 2x+ 1

y = −x+ 4

We can solve this system by equating the two equations since they both represent y:

2x+ 1 = −x+ 4

3x = 3

x = 1

Substitute x = 1 into one of the original equations to �nd y:

y = 2(1) + 1 = 3

*Why does it su�ce to substitute x into only one equation? It is because both lines have the
same y value at that x value.

Thus, the point of intersection is (1, 3).

As shown in the diagram, the lines y = 2x + 1 and y = −x + 4 intersect at the point (1, 3).
Once again, this method is valid since the point of intersection must simultaneously satisfy
the equations of both lines. The point to be made is that a system of linear equations is
useful where multiple conditions have to be satis�ed simultaneously.

2 Solving Approaches

1. Simultaneous Equations: A concept you may be more familiar with, `simultaneous
equations', is one of the common methods to solve a system of linear equations.

One of the variables is made the subject, and substituted into another equation. The
process is repeated until one variable is solved for. The other two can then be found
accordingly.

2. Using a Graphing Calculator (GC):

On � Apps � 4: PlySmlt2 � 2: Simultaneous Eqn Solver � Choose the number of
unknowns (a.k.a. variables) and the number of equations. Input coe�cients of variables
in the GC matrix, lastly press `F5: Graph' to solve.
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3 Tips and Tricks

� Identify all the relevant information from the question before listing down
your equations.

Example : Identifying the equations

When the polynomial f(x) = x3 + ax2 + bx + c is divided by (x − 4), (x − 1), and
(x+ 2), the remainders are 10, 15, and −5 respectively. Find the values of a, b, and
c.

Here, we have 3 unknowns, 3 divisors and 3 remainders. Using the remainder theorem
would give us 3 variables and 3 equations, which can be solved by GC. ■

� Most of the time, the number of equations equals the number of variables.

Like the above example, most questions have the same number of equations as variables,
which generally means they can be solved such that each variable has a speci�c value.

However, do not spend too long trying to �nd equations if you cannot. Some ques-
tions require you to use logical deductions to determine the last variable despite having
fewer equations than variables. These questions usually involve �nding the `minimum'
or `maximum' value for a speci�c variable.

Example : More variables than equations

Given that the real numbers x, y and z satisfy:

5x− y + 3z = 15

2x+ 3y + 5z = 19

Find the maximum value of x, provided that z is non-negative.

In this problem, we have 3 unknowns but only 2 equations. Solving requires express-
ing x and y in terms of z. For example:

x = −14

17
z +

64

17
, y = −19

17
z +

65

17

Then, we can �nd the appropriate z value to maximise x. ■

� Assign identities to the variables you are using.

This is just a simple statement like �Let a, b, and c represent the number of apples,
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bananas, and cherries bought, respectively�. This is not necessary when the question
has already given the names to the variables.

� Be extremely careful and look out for tiny `additional' details.

At times, questions tend to contain too much information, such that some small details
are overlooked. Be extra cautious with these details, such as the ��xed income� in the
question below.

John and Sam are drivers for a ride-hailing company and are paid $p and $q per trip on
weekdays, respectively. On weekends, they are paid 30% more per trip. Additionally,
John and Sam receive a �xed monthly salary, $m and $n, respectively. The table below
shows the number of trips made by each driver in the �rst four months of 2023 and the
combined monthly income of both drivers. Solve for p, q, m, and n.

Month
No. of Weekday Trips No. of Weekend Trips Income
John Sam John Sam Total Payout

January 15 20 5 6 6426
February 12 18 4 8 6238
March 20 22 7 5 6837.5
April 18 16 6 7 6519.5

In addition to solving for p and q, you also have to account for the monthly salaries,
m and n, which are additional values given by the question. So your equations should
look something like this:

15p+ 20q + 5(1.30)p+ 6(1.30)q +m+ n = 6426



CHAPTER 3

INEQUALITIES

1 Overview

Inequalities are statements of relationships (greater than `>', greater than or equal to `≥',
and less than `<') between two or more numbers, or more commonly algebraic expressions.

Some Common Knowledge (Non-exhaustive):
� xn ≥ 0 for all real and even n.

� |x| ≥ 0 for all real x.

� |x| > k ⇒ x > k, or x < −k.

� |x| < k ⇒ x < k, and x > −k ⇒ −k < x < k.
*The use of `or' and `and' have very di�erent meanings. This important concept will
be covered in more detail on the next page.

� ex ≥ 0 for all real x.

� −1 ≤ sinx, cosx ≤ 1.

� −π
2
≤ sin−1 x ≤ π

2
, and 0 ≤ cos−1 x ≤ π.

� For increasing functions (i.e. f ′(x) > 0), if a > b, then f(a) > f(b).

2 Solving Approaches

1. Graphing and Observation

Provided that the question allows, you can graph the function using your GC or by
hand, and observe where the graph lies (i.e. above or below the x-axis) for each segment.

25
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2. Algebraic Simpli�cation and Test-point Method

Most of the time, you would be required to perform algebraic manipulations to the
inequality given. After reaching a simpli�ed inequality, the test-point method can be
used to determine the solutions.

3 Modulus

Modulus is a concept that stumps many and is rather confusing to understand by just looking
at the algebraic expressions. As such, a visual representation would help in the comprehension
of the modulus function in inequalities.

Consider the following example:

x

y

y = |x|

y = 2
(-2, 2) (2, 2)|x| < 2

−2 < x < 2

|x| > 2 |x| > 2

x < −2 x > 2

With reference to the above graph of y = |x| and y = 2, the segment where |x| < 2 (below the
red line) is continuous, while the segment where |x| > 2 (above the red line) is discontinuous.
This is because it is possible for x to be greater than −2 and smaller than 2 simultaneously,
while x cannot be greater than 2 while being less than −2 at the same time.

Hence, this explains the above inequalities:

|x| > k ⇒ x > k, or x < −k

|x| < k ⇒ x < k, and x > −k ⇒ −k < x < k

In a more mathematical sense, `or' implies union, while `and' implies intersection. Another
method to visualize this is through the number line:
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x
−k k

|x| < k
x > −k

x < k

|x| > k
x < −k x > k

Notice how we take the union of the disjoint red lines, and the intersection of the overlapping
blue lines. This illustrates the above point.

4 Tips and Tricks

� The number line can be thought of as a graph, but with only the x-axis.

The only y component is the sign (i.e. + or −) to indicate whether the function is
positive, negative, or zero in the respective regions of x.

Example : Abstracting away the y-axis

Consider the graph of y = x3 − 4x.

−2 2

x

y

The graph can then be �compressed� along the y-axis, to give a number line:

x

− + − +

x = −2 x = 0 x = 2
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Abstracting away the graph in blue, we get the number line:

x

− + − +

x = −2 x = 0 x = 2

This visualization aids in understanding the relationship between a cartesian graph
and the number line. It also shows why the test-point method works. ■

� Always shift all terms to one side before solving.

This reduces careless mistakes. For example:

2

x+ 2
<

3

3− x
⇒ 2

x+ 2
− 3

3− x
< 0

� Never multiply across by f(x).

There is a high chance that you will lose a solution. For example, do NOT do this:

2x2 − 3x+ 1

x+ 2
< 0

2x2 − 3x+ 1

x+ 2
× (x+ 2) < 0× (x+ 2) =⇒ 2x2 − 3x+ 1 < 0

By doing the above, you will lose the condition of x ̸= −2, hence losing a solution.

f(x) refers to any term containing x. However, constants can be multiplied across as
long as they are not zero.

� Be sensitive to �impossible� values.

Always check for values that make the expression unde�ned. For example, in the
inequality 2x2−3x+1

x+2
< 0, x = −2 is an �impossible� value since it makes the denominator

zero.

Mark these values on the number line with a hollow dot.



Inequalities 29

� Be mindful of changing domains when substituting.

Always consider the domain of the original term and the new term after substitution.

Example : Being careful with domains

Find the set of values of x for which 6
x+5

> x. Hence, solve for 6
lnx+5

.

From the �rst part of the question, the set of x values is:

{x ∈ R : −5 < x < 1 or x < −6}

When substituting lnx, we must remember that lnx is only de�ned for x > 0, so
the solution set becomes {x ∈ R : e−5 < x < e or 0 < x < e−6}. ■

� Be very careful with what the question is asking for, speci�cally for `deter-
mine the set'.

Set refers to the set builder notation, which is written as: {x ∈ R : a < x < b}.

Explanation of the components:
� The curly braces {} is how we represent a set of values.

� The �rst x represents all possible numbers in the set.

� The symbol ∈ means �is an element of.�

� R represents the set of real numbers.

� The colon (:) means �such that.�

� a < x < b is the range of x that was found through solving the inequality.
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CURVE SKETCHING

1 Overview

Unsurprisingly, the topic of curve sketching essentially revolves around sketching a curve. The
behaviors of graphs (e.g. asymptotes, shapes, etc.) with respect to the algebraic functions
are also studied in this topic.

Some Common Knowledge (Asymptotes)

� Exponential (ex)
Asymptote: y = 0

� Tangent (tanx)

Asymptote: x = (2n−1)π
2

, n ∈ Z

*2n− 1 is a general representation of an odd number.

� Logarithmic (lnx)
Asymptote: x = 0

� Rational function
(
y = ax+ b+ c

g(x)

)
Asymptotes: y = ax+ b, g(x) = 0

Example : y = 2x+ 1 + 3
x+1

30
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Vertical Asymptote: x = −1 Oblique Asymptote: y = 2x+ 1

Asymptote: x = −1

Asymptote: y = 2x+ 1

y = 2x+ 1 + 3
x+1

■

2 Solving Approaches

1. Plot graph on GC and copy.

This is the go-to if you are provided with the equation with no unknowns, or are unsure
of how to plot the graph yourself.

2. Plot by hand (for functions with unknowns, etc.).

Before rushing to plot the graph, make sure you:
� Determine all the asymptotes (if there are any).

� Calculate the axial intercepts.

� Deduce the general shape of the graph if possible.

� Be clear about the domain of the function.

Then, and only then, do you proceed to sketch the graph.

When plotting a graph, be sure to label the following (if applicable):
� Axes

� Coordinates of axial intercepts

� Coordinates of turning points

� Coordinates of start and end points

� Coordinates of vertices
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� Coordinates of intersections

� Equation of the function (except for parametric equations)

� Equations of asymptotes

3 Visualizing Asymptotes

� Vertical Asymptotes:

Vertical asymptotes are lines where the function becomes unde�ned and the value of
f(x) grows without bound (positive or negative in�nity). These generally occur when
the denominator of a function equals zero.

Tip: Look for the points where the denominator equals zero. At these points, the
function shoots up or down toward in�nity.

Example : y = 1
x−2

In the function y = 1
x−2

, the vertical asymptote occurs at x = 2, where the denomi-
nator becomes zero and the function explodes to in�nity.

−4 −2 2 4

−10

−5

5

10

Asymptote: x = 2

x

y

As x approaches 2 from the left, y tends toward −∞, and from the right, y tends
toward ∞. ■

� Horizontal Asymptotes:

Horizontal asymptotes describe how a function behaves as x gets larger and approaches
in�nity or negative in�nity. If the function approaches a horizontal line and �attens
out, this horizontal line is known as the horizontal asymptote.
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Tip: Evaluate the function as x → ∞ and x → −∞. For rational functions:

� If the degree of the denominator is greater than the degree of the numerator, the
horizontal asymptote is y = 0.

� If the degrees are equal, the horizontal asymptote is the ratio of the leading coef-
�cients.

Usually we are only concerned with the leading terms (terms of the highest x power)
since it will be signi�cantly larger than all other subsequent terms when x gets large.

For example when x = 1000, 3x3+2x = 3000002000 which is almost the same as 3x3 =
3000000000 (in fact, the percentage error is 0.000067% which is almost negligible!).
This error will become smaller as x gets larger, thus we can e�ectively ignore all smaller
powers when evaluating large x.

The converse is true when we look at very very small x: we ignore high powers since
they shrink much quicker than lower powers.

Example : y = 2x2+3
x2−1

In this function, as x → ∞, the horizontal asymptote is determined by the ratio of
the leading coe�cients, which gives y = 2.

−10 −5 5 10

−4

−2

2

4

Asymptote: y = 2

x

y

As x → ∞, the function �attens out to the horizontal line y = 2. ■

� Oblique Asymptotes:

Oblique asymptotes, also known as slant asymptotes, occur when the degree of the
numerator is exactly one more than the degree of the denominator. In this case, the
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function approaches a straight-line path as x becomes large, rather than a horizontal
asymptote.

Tip: Perform polynomial long division to �nd the equation of the oblique asymptote.

Example : y = x2+3
x

Performing long division on x2+3
x

, we get y = x + 3
x
. So the oblique asymptote is

y = x.

−10 −5 5 10

−10

−5

5

10

Asymptote: y = x

x

y

As x → ∞, the function behaves more and more like y = x. This is because the
remaining term 3

x
becomes insigni�cant in comparison to x. ■

4 Tips and Tricks

� Do not trust the GC entirely.

Always read your GC with caution. The GC only provides an approximate value, but
it may not be exact, accurate, or precise.

Use your mathematical intuition when approaching a graph (e.g. general shape of the
graph, presence of asymptotes and intercepts, value of f(x) as x → ∞, etc.). You can
develop this by plotting more graphs by hand. (�Desmos� is a good graphing site for
practice).

� Zoom in zoom out.

To be safe, zoom out to see the general shape of the graph, then zoom in to observe
the tiny details
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Example : y = 3x+3
2x2−1

It may be di�cult to notice the existence of 2 turning points without zooming in.

−4 −2 2 4

−4

−2

2

4
y = 3x+3

2x2−1

x

y

There is a minimum point near x = −1. ■

Note: Some rational graphs (like the above) have two turning points; always zoom in
to con�rm.

� Read the question carefully and take note of the domain.

Especially for functions with speci�ed domains, do not draw the graph beyond the
given domain.

For parametric equations, input your domain into your GC using the `Windows' func-
tion.

� Scale your axes properly as much as possible.

Ideally, the two axes should be proportionally scaled. A poor scale leads to a higher
chance of misinterpretation and careless mistakes, hence it is advisable to avoid.

� Observe your graph carefully, it might direct you to solve subsequent parts.



CHAPTER 5

FUNCTIONS

1 Overview

Functions are mathematical relations that map each element in one set (called the domain)
to exactly one element in another set (called the range).

2 Key Concepts and Common Mistakes

� Functions vs Images

f is a function while f(x) is the value of the function at x. It is important to note that
while f can be a one-to-one function, f(x) itself cannot be one-to-one. The distinction
is that f refers to the entire function, while f(x) is simply a value or output of the
function.

� Graph of a Function

A graph of y = f(x) is the set of all images f(x). Therefore, we can have a graph of
y = f(x), but not of y = f , because f represents the function itself, not its output
values.

� Inverse Functions and the Horizontal Line Test

Only one-to-one functions can have an inverse function. The existence of an inverse is
tested using the horizontal line test. (Why does the horizontal line test work?)

36
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� Re�ections of Functions and Their Inverses

The graphs of y = and y = f−1(x) are re�ections of each other in the line y = x. This
symmetry occurs because the inverse function f−1 essentially reverses the mapping of
the original function f . So f−1(f(x)) = x.

� Composite Functions

A composite function, denoted as fg(x), means that the function g operates �rst, and
then the function f operates on the result of g(x). This order is crucial, since it dictates
the few following results on composites.

Because g operates �rst, the domain of the composite function fg is the domain of g.

� Existence of Composite Functions

The existence of the composite function fg requires that the range of g (Rg) is a subset
of the domain of f (Df ). This is because g operates �rst, passing on its output to f
afterwards, hence f must be able to accommodate whatever g outputs. This ensures
that f can operate on the output of g.

� Range of Composite Functions

The range of the composite function fg is determined by limiting the domain of f to
the range of g. Therefore, the range of fg depends on both the functions f and g.

� Note on Function Composition

It is important to note that ff−1 may not always be the same as f−1f . This is because
the composition of functions is not necessarily commutative, meaning that the order in
which functions are composed matters. This will be covered in more detail later on.

� Learn to Sketch

Whenever you are stuck, sketch! Even a simple sketch can provide insights, and chances
are that you might gain some inspiration and be able to continue afterward.
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3 Domain and Range

The importance of domain and range cannot be overemphasized in the topic of functions.
Here are some cases where the domain (D) and range (R) are crucial:

1. Drawing any graph:

When drawing the graph of a function, knowing the domain and range helps you under-
stand the limits of the function and where to plot points. For instance, if the function
is not de�ned for certain values, you can avoid plotting beyond those points.

2. Determining the inverse of a square function:

For a function such as y = (x + 1)2 + 3, the inverse function only exists for restricted
domains. For example, if y ≤ 1, the inverse of this function exists within that restricted
range, ensuring the function remains one-to-one.

Example : Inverse of y = (x+ 1)2 + 3 for x ≤ −1

y − 3 = (x+ 1)2 ⇒ x = ±
√

y − 3− 1

To �nd the inverse function required, we have to consider the original domain x ≤ −1

Since
√
y − 3 ≥ 0, the only way x ≤ −1 can be satis�ed is if we take

x = −
√

y − 3− 1

Thus
f−1(y) = −

√
y − 3− 1 ⇒ f−1(x) = −

√
x− 3− 1

*Important side note: Only change the variable from y to x at the �nal step
to avoid confusion. The original domain restriction applies to x, and changing the
variable too early can cause misunderstandings about whether the restriction applies
to the original function or the inverse. ■

3. Composite functions:

The domain of a composite function fg(x) depends on both the domain of g(x) and
the range of g(x). If g(x) maps outside the domain of f(x), the composite function
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cannot exist at those points.

4. Graphing ff−1 and f−1f :

It's important to note that ff−1 and f−1f are not always the same. The graph of ff−1

typically maps back to the identity function on the range of f(x), while f−1f maps
back to the identity function on the domain of f(x).

Rf−1f = Df since f operates �rst.
Rff−1 = Df−1 since f−1 operates �rst.

So if Df ̸= Df−1 then Rf−1f ̸= Rff−1 .

Example : Graphing ff−1 and f−1f
Consider the function f(x) = lnx for x > 5, so f−1(x) = ex for x > ln 5. Contrast
the two:

f(f−1(x)) = x for x > ln 5

f−1(f(x)) = x for x > 5

Notice that the domain of the two composites are di�erent, although both give the
same rule of x. This is due to the di�erence in domain of the �inner functions�. ■

4 Why does re�ecting a function give its Inverse?

In the H2 syllabus, you are only required to know that re�ecting a function gives its inverse;
you need not know how it works. But if you are interested, this section o�ers a unique
perspective to answer this question. I have tried my best to express the ideas coherently;
read it carefully, but feel free to skip ahead if you do not understand my points.

Inverse functions are functions that reverse the mapping of a given function. We know that
the graph of the inverse function y = f−1(x) can be obtained by re�ecting the graph of
y = f(x) in the line y = x, but why does re�ection work?

� Swapping of Axes:

When we talk about inverse functions, we are swapping the roles of the input (domain)
and output (range). If a function f(x) takes an input x and maps it to an output y,
the inverse function f−1(x) does the opposite: it takes y and maps it back to x. In this
sense, we are switching the roles of x and y.

This swapping can be visualised as a change in axes, where x and y swap places with
each other. Pay close attention to this idea of swapping.
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� Taking on Two Di�erent Perspectives:

Consider the following two graphs. One represents the usual graph of y = f(x), and the
other is the same graph but with the axes swapped; we are essentially looking at the
same graph from two di�erent perspectives. Both graphs are mathematically identical,
but the labeling of the axes is di�erent.

−2 2

−2

2

x

y

y = f(x)

−2 2

−2

2

y

x

x = f−1(y)

In the left graph, we see the function y = f(x) = x2 for x ≥ 0. On the right, we
have swapped the axes so that y is on the horizontal axis and x is on the vertical axis.
This corresponds to the equation x = f−1(y) =

√
y; we have simply shifted f from the

left hand side to the right hand side. Though they are written di�erently, both still
represent the same equation mathematically.

Notice that in the red graph, if we were to swap the positions of x and y in both the
equation and on the axes, we will get the exact graph of y = f−1(x) (illustrated below).
This is exactly the inverse function that we set out to �nd. Once again, the above pair
are both the same function, while the bottom pair are inverses of each other.
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y = f(x)
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x

y

y = f−1(x)
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� Why Re�ections Work:

The re�ection came in the �rst step when we took on two di�erent perspectives at the
same function, after which we changed the position of the axes. This had the overall
e�ect of re�ecting the graph of y = f(x) in the line y = x. While this is a shortcut
we often use, I see value in understanding the mechanism behind this concept: the
swapping of x and y.

An alternate perspective is that when we re�ect in the line y = x, the coordinates
of each point are swapped. For example, a point (a, b) on the graph of y = f(x)
corresponds to the point (b, a) on the graph of y = f−1(x). Again, this leads us back
to the concept of swapping x and y, the very essence of inverse functions.

Example : Inversing the coordinates

Let f(x) = x2 for x ≥ 0. The inverse function is f−1(x) =
√
x.

In the original graph of f(x), the point (2, 4) means that f(2) = 4. On the inverse
graph, the point (4, 2) corresponds to f−1(4) = 2. Swapping these points re�ects
the reversal of the input-output relationship between the function and its inverse.

−1 1 2 3 4 5

2

4

x

y

y = f(x)

y = f−1(x)
y = x

The point (2, 4) on y = f(x) re�ects to the point (4, 2) on y = f−1(x). ■

5 An Interesting Perspective on the Horizontal Line Test

We know that the horizontal line test checks if a function is one-one, and we know that only
one-one functions can have inverses. This is a perfectly valid explanation of why the horizontal
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line test works. However, in this section I would like to take on a di�erent perspective to
�discover� the horizontal line test.

We know from previous results that some functions can be re�ected in the line y = x to
produce their inverse. However, we need to verify if the new, re�ected graph is a valid
function. To do this, we will re�ect y = f(x) and test whether the resulting graph is a proper
function by running the vertical line test.

Consider the graph of a one-to-one function. Below is the graph of y = f(x), and next to it
is the graph of y = f−1(x), obtained by re�ecting y = f(x) in the line y = x.

−2 2

−2

2

x

y

y = f(x)
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y = f−1(x)

In this case, the vertical line test is satis�ed in both the original and re�ected graphs, meaning
both the function f as well as the inverse f−1 exist, and are both valid functions.

Now notice that when we re�ect the red graph along with the vertical line back to its original
position as illustrated below, the graph now represents y = f(x) again, while the vertical line
now becomes a horizontal line. This is what we call the horizontal line test, since it tests if
the inverse function is valid (whether it exists).

−2 2

−2

2

x

y

y = f(x)
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Now, we consider a case where the horizontal line test fails. Depicted below is the graph
of y = x2; it can be re�ected in the line y = x to give the graph of the supposed �inverse�
function.
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y = f−1(x)

However, we see that the vertical line test fails on the re�ected graph (in red) indicating that
f−1(x) is not a valid function. Thus, the inverse of f(x) = x2 does not exist.

This failed vertical line test can be re�ected back to show a failed horizontal line test as
shown below. Once again, we see that the horizontal line test is simply a re�ection of the
vertical line test in the line y = x.
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4
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y

y = f(x)

Summing up the above: By re�ecting a function in the line y = x, we obtain a candidate
for its inverse. To check if this inverse is a valid function, we use the vertical line test on
the re�ected graph. When we re�ect the graph back to its original form, the vertical line
transforms into a horizontal line on the original graph. This gives us the horizontal line test.

Important Tip: The horizontal line is conducted on the graph of y = f(x), and not y =
f−1(x).



CHAPTER 6

GRAPH TRANSFORMATIONS

1 Transformations

Graph transformations deal primarily with three types of changes: translation, stretching,
and re�ection. As their names suggest, they transform the original graph into a similar shape,
even though the graph may be re-positioned or scaled.

Transformations are di�erent from deductions (next chapter) whereby the latter derives a
di�erent graph from the original graph. These two graphs may not even look alike.

Translation: This involves shifting the graph, usually associated with the addition or sub-
traction of a constant. It changes the position of the graph without altering its shape.

Stretching: This distorts the graph, usually associated with multiplication or division by a
constant. Stretching can either expand or compress the graph along the x- or y-axis.

Re�ection: This involves �ipping the graph about an axis, usually associated with a change
in polarity (a negative sign). Re�ections occur over the x-axis or y-axis.

2 Tips, Tricks, and Ideas

� Understanding through axes relocation

While not directly important for solving problems, you can think of transformations as
changing the axes or relocating them. This aids in understanding but is not required
content-wise. More details on this idea will be covered in the next section.
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� Changes in coordinates

Another useful way to think about transformations is by focusing on the changes in the
coordinates of points, rather than the overall shape of the graph. This is just a thought
process�avoid presenting it this way during exams.

Example : Transformation from y = f(x) to y − 4 = f(x)
Consider points A(0, 4), B(−3, 0), and C(4, 0) on the graph of y = f(x). To describe
the transformation to y − 4 = f(x), we can analyze the coordinate changes.

Initially, each point is (x, y) = (x, f(x)) since y = f(x). After the transformation,
the �nal points are (x, y) = (x, f(x)+4), since y = f(x)+4 after the transformation.
This means we add 4 to each y-coordinate.

Thus, the transformed points are:

A′(0, 8), B′(−3, 4), C ′(4, 4)

■

� One step at a time

Always go step-wise with transformations, especially when multiple transformations
are involved. There's no need to rush unless you're extremely con�dent.

Example : Transformation from y = f(x) to y = f
(
1
2
x− 1

)
Let f(x) be a rational function with a vertical asymptote. We perform the transfor-
mation in two steps:

1 2 3 4 5

−4

−2

2

4
x = 2

(3, 1)

x

y

y = f(x)

Step 1: Replace x with x− 1, which translates the graph horizontally.
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1 2 3 4 5 6

−4
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4
x = 3

(4, 1)

x

y

y = f(x− 1)

Step 2: Replace x with 1
2
x, which stretches the graph horizontally by a factor of 2.

2 4 6 8 10

−4
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4
x = 6

(8, 1)

x

y

y = f
(
1
2
x− 1

)
Note that the order of transformations matter: It would be incorrect to �rst replace
x with 1

2
x then replace x with x− 1. ■

� Use completing the square for quadratic transformations

For transformations involving quadratic functions, completing the square simpli�es the
process.

Example : Transformation from y = x2 to y = x2 + 2x− 5
We �rst complete the square:

y = x2 + 2x− 5 ⇒ y = (x+ 1)2 − 6

Now the transformation becomes simpler. First, replace x with x+ 1 (translation),
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followed by replacing y with y + 6 (translation). ■

� Separate y-transformations from x-transformations

It's a good practice to keep the transformations of y and f(x) separate. Manipulate
the equation until you have f(ax + b) on the right-hand side, with all other terms on
the left. This makes it easier to identify the transformations.

Example : Transformation from y = 1
2
f(x+ 1)− 6

First, manipulate the equation:

2y + 12 = f(x+ 1)

Now the transformations are clear:
1. Replace x with x+ 1 (translation).
2. Replace y with y + 12 (translation).
3. Stretch the graph vertically by a factor of 1

2
.

■

� For replacement of x, only replace x, not the entire expression

When replacing x, ensure that you are only replacing the x-term itself, and not the
entire expression (ax+ b).

Example : Transformation involving f(x+ 1)
If you replace x with 2x, f(x+ 1) becomes f(2x+ 1), not f(2x+ 2). ■

3 Visualising Transformations

As a student, one concept I struggled quite a bit with was the counter-intuitive nature of graph
transformations: Why does replacing x with x− a shift the graph in the positive direction?
Intuitively, if we are subtracting a, shouldn't we be moving in the negative direction instead?

To break this down, let's look at how the transformation works and why this happens:

Replacement on the x -axis

Imagine you are standing on a value x1 on the x-axis. The point x1 − a is �a� units behind
you, and x1 + a is �a� units in front of you.
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xx1x1 − a x1 + a

Now we execute the replacement by replacing x with x− a. This also means replacing every
x-coordinate xi by xi−a: So the point x1−a becomes x1−2a, x1 becomes x1−a, and x1+a
becomes x1.

xx1 − 2a x1 − a x1

Notice that even though you have not moved, you are now standing on x1−a; meaning every
point on the axis has e�ectively shifted right by �a� units.

This means that replacing x with x − a causes your graph to be translated in the positive
x-direction by �a� units.

Understanding it as a Delay

Think of f(x−a) as a function where every input x is �delayed� by a. You now need to move
a units further along the x-axis to achieve the same output f(x) had at x.

The confusion arises from thinking that x − a implies moving left. But remember, the
transformation happens to the input, not the output. Replacing x with x − a delays the
function's response by a units, causing the graph to shift in the positive direction to make
up for this delay.

These visualisations can also be applied to other transformations like scaling or re�ection.
Always think of transformations as moving the points relative to where they used to be. A
graph is, after all, just a collection of many points.
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GRAPH DEDUCTION

Though similar to graph transformation, graph deduction is not exactly the same. The former
performs changes on the original graph, while the latter creates a new graph by deducing
certain features from the original graph.

In the H2 syllabus, there are only three types of graphs you need to know how to deduce:
Modulus graphs (i.e. y = |f(x)| and y = f(|x|)), reciprocal graphs (i.e. y = 1

f(x)
), and the

derivative graph (i.e. y = f ′(x)).

The steps required to produce the desired graph will not be covered extensively, as those are
already detailed in your H2 notes. Instead of �ooding you with graphs and examples like the
previous chapter, here we will explore the further intuition that some students may not have
fully developed.

True understanding would help you to deduce any combinations of the above without memo-
rising, with the �exibility to accommodate additional transformations if the question requires.
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1 Modulus Graphs

The two main types of modulus graphs are y = |f(x)| and y = f(|x|), which behave very
di�erently. Recall from functions that given an equation like y = f(x), x is the input while
f(x) is the output.

For y = |f(x)|, the modulus is applied on the output (y-coordinates), while for y = f(|x|)
the modulus is applied on the input (x-coordinates).

For y = |f (x)|:

As mentioned, here we are computing the function with its usual domain, however the range
has changed due to the added modulus outside f(x). So where the original function may
have had negative outputs, these outputs now become positive due to this outer modulus.

In other words, any negative y-values of the original function will be re�ected into positive
values while keeping all positive values the same. The modulus literally �re�ects� the negative
portion of the graph upwards into the positive region.

For y = f (|x |):

Since the modulus is now applied inside the bracket, the modulus actually operates on x
before the function f can even access x. In other words, this is a composite function like fg
where the above case would be gf .

Firstly notice that when the modulus is applied to positive x values, nothing happens. f
takes in the same (positive x) inputs and produce the same outputs, and business is as
usual. So we should expect the graph for the positive x values (rightward of the y-axis) to
be untouched.

What happens to the negative x values then? They �rst undergo the modulus operation to
become positive, and then are passed into f as positive inputs. So, they produce the exact
same outputs as their positive counterparts. For instance, x = −1 produces the same output
f(1) as x = 1.

In summary, the expression f(|x|) implies that the function treats both the positive and
negative values of x the same way since the modulus of x is always non-negative.
(The modulus is not �always positive� because it can equal zero, which is not positive.)

Visually, the portion of y = f(x) where x ≥ 0 is mirrored onto the negative x-axis.
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2 Reciprocal Graphs

The reciprocal of something, in layman terms, is to take �1 over something�. For instance
the reciprocal of 3 is simply 1

3
; and the reciprocal of 0 is unde�ned for obvious reasons.

To deduce the graph of y = 1
f(x)

from y = f(x), it is helpful to realise that the reciprocal
function operates on the outputs, and not the inputs. This is again, a composite function.
The latter case would be y = f( 1

x
) which is rather di�cult to deduce, hence excluded from

the syllabus.

It is also useful to recognise some key behaviors of the reciprocal function.

The Special Number 1

1 is the only number invariant under the reciprocal function, as 1
1
= 1. Of course, −1 as well,

but for simplicity we summarise both as its magnitude, which is 1.

Note: For the rest of this section, �larger� or �smaller� would refer to the comparison of
magnitudes, so 3 is smaller than 5 and −3 is smaller than −5. Take note that this is not the
case usually, but only when referring to magnitudes; under normal circumstances, −3 is said
to be larger than −5 since it is less negative.

Under the reciprocal function, all numbers larger than 1 become smaller than 1, while all
numbers smaller than 1 become larger than 1. To illustrate, 2 is larger than 1 but its
reciprocal 1

2
is smaller than 1.

When deducing the graph of y = 1
f(x)

, an imaginary horizontal line y = 1 can be plotted
in your head: All points above this line will now go below, while all points below go above.
Since the reciprocal function reverses the order of magnitudes, the graphical implications
are as such: All maxima become minima, while all increasing portions become decreasing;
vice-versa.

Yet there remains one thing unchanged under the reciprocal function, that is, the polarity.
So we should expect all positive portions (above the x-axis) to stay above in the new graph.

The Reciprocal of Zero

What happens at the x-intercepts of the original graph? We take 1
0
which is not de�ned so

we represent it using a vertical asymptote. In the same vein, all vertical asymptotes then
become x-intercepts.
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How about those points near the x-intercept? For very small values of f(x), such as f(x) =
0.001, taking its reciprocal gives a large number 1

f(x)
= 1000; as f(x) gets smaller and smaller,

it is no surprise that 1
f(x)

explodes to in�nity.

Special care must be taken with negative values, since the reciprocal of small negative num-
bers like f(x) = −0.001 gives large negative values like 1

f(x)
= −1000. So as the graph

approach the x-axis from the below the axis, the reciprocal graph then explodes to negative
in�nity.

3 Derivative Graphs

The graph of the derivative, y = f ′(x), describes the gradient of the original graph f(x) at
every point. There isn't much more intuition than what you already know:

Stationary points of y = f(x) correspond to f ′(x) = 0, so the new graph would have an x-
intercept wherever f(x) is stationary. If f(x) is increasing, f ′(x) will be positive, and if f(x)
is decreasing, f ′(x) will be negative. The steeper the slope of f(x), the larger the magnitude
of f ′(x).

4 Two Practical Tips

Partition the Regions: One way to prevent careless mistakes is to section the regions on
your graph according to their behaviours, so we group regions that are alike. Partitions are
typically vertical lines that separate the regions according to x value. This depends mainly
on the type of graphs we are looking at.

For example for derivative deductions, we should partition the regions where the graph is
strictly increasing, then when the graph is strictly decreasing. Similar partitions can be
applied for reciprocals.

This breaks the original problem down into smaller problems, allowing us to isolate each
region and sketch the required graph, part by part.

Derivative Graphs: One of my favourite tricks for drawing derivative graphs is to use a
ruler as a �tangent line�. I would place my ruler tangent to the leftmost point of the graph,
and begin tracing my ruler along the graph.

Throughout, the ruler remains tangent to every point; this traces out the behaviour of the
gradient. If the tangent points upwards, we know the derivative graph must be positive.
If the tangent gets steeper, we assign a larger value to the derivative. Lastly, horizontal
tangents indicate an x-intercept as mentioned.



CHAPTER 8

SERIES AND SEQUENCES

1 Overview

A sequence is a set of ordered terms, usually denoted as u1, u2, u3, . . .. Each term un corre-
sponds to the n-th element of the sequence.

A series is the sum of terms of a sequence, expressed as u1 + u2 + u3 + · · ·. More formally,
we are summing terms from a sequence to form a new value.

Important Note: The convergence of a sequence, de�ned as limn→∞ un, is not the same as
the convergence of a series, which is de�ned as limn→∞

∑
un.

2 Important Results

� The relationship between a term un of a sequence and its sum:

un = Sn − Sn−1

where Sn is the sum of the �rst n terms of the series.

� The existence of a �nite limit limn→∞ un implies that the sequence converges. Other-
wise, the sequence diverges.

� Convergence of series implies convergence of sequence. However convergence of se-
quence may not necessarily imply convergence of series.
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3 Tips for Exams

Presentation is key in this chapter. How you lay out your work and present the limits can
make a di�erence in communicating your understanding of convergence and divergence.

� Convergence of Sequences

When checking for convergence, always begin with the phrase �As n → ∞,� followed by
how the term is a�ected as n increases. Finally, state the limit of the entire expression
if it exists.

Example : Convergence of Sn = 1− 1
(n+1)!

As n → ∞, the factorial (n + 1)! grows extremely large, so the reciprocal 1
(n+1)!

approaches zero.

Therefore, Sn approaches 1 as n → ∞.

lim
n→∞

Sn = 1

■

� Finding Limits: Intuition and Rigour

By intuition: When dealing with limits of sequences, a general rule of thumb is that
if the denominator grows faster than the numerator, the limit of the ratio will tend
towards zero.

Mathematically, this would be when the degree of the numerator is larger than that of
the denominator. So when n gets larger and larger, the denominator would grow much
faster.

Also, only the leading terms (largest power) have to be considered. This is because as
n gets very large, the subsequent terms are much smaller than the leading term; we
can hence neglect them due to their insigni�cant size.

Example : Intuitive Approach

Consider the following limits as n → ∞:

lim
n→∞

3n+ 1

2n2 − 9
= 0

lim
n→∞

3n+ 1

2n− 9
=

3

2
■
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By rigour: To �nd the limit rigorously, divide both the numerator and the denomi-
nator by the highest power of n in the denominator.

This simpli�es the expression by leaving a select few constant terms, with the rest being
reciprocals in n (i.e. powers of 1

n
) meaning they tend to zero as n → ∞.

Example : Rigorous Approach

Find the limit of 3n2+2n
5n2+n+1

as n → ∞.

To �nd the limit as n → ∞, we divide both the numerator and denominator by n2,
as it is the highest power in the denominator:

3n2 + 2n

5n2 + n+ 1
=

3 + 2
n

5 + 1
n
+ 1

n2

As n → ∞, the terms 2
n
, 1
n
, and 1

n2 approach zero, leaving:

lim
n→∞

3 + (0)

5 + (0) + (0)
=

3

5

■



CHAPTER 9

ARITHMETIC AND GEOMETRIC

PROGRESSIONS

1 Important Results

Arithmetic and Geometric Progressions are two special types of sequences. It is important
to remember that they are sequences and not series, unless the question explicitly refers to
an �arithmetic series� or �geometric series�.

Arithmetic Progression (AP):

An AP is de�ned by:

un − un−1 = d

where d is a constant known as the common di�erence. The sum of the �rst n terms of an
AP is given by:

Sn =
n

2
[2a+ (n− 1)d]

where a is the �rst term and d is the common di�erence.

Geometric Progression (GP):

A GP is de�ned by:
un

un−1

= r

where r is a constant known as the common ratio. The sum of the �rst n terms of a GP is
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given by:

Sn =
a(rn − 1)

r − 1
for r ̸= 1

or equivalently,

Sn =
a(1− rn)

1− r
for r ̸= 1

The sum to in�nity for a converging geometric progression (where |r| < 1) is given by:

S∞ = lim
n→∞

Sn =
a

1− r

2 Derivations

Arithmetic Series

The sum of the �rst n natural numbers is a classic example of an arithmetic progression
where the �rst term a = 1, the common di�erence d = 1, and the number of terms n.

Let's represent this sum:
Sn = 1 + 2 + 3 + · · ·+ n

One way to �nd the sum is by pairing the terms. Let's write the sum forwards and backwards,
then add the two equations:

Sn = 1 + 2 + 3 + · · ·+ n

Sn = n+ (n− 1) + (n− 2) + · · ·+ 1

Adding these two:

2Sn = (1 + n) + (2 + (n− 1)) + (3 + (n− 2)) + · · ·+ (n+ 1)

Each of these pairs sums to n+ 1, and there are n pairs. Therefore:

2Sn = n(n+ 1)

Sn =
n(n+ 1)

2

This idea of reversing the order and pairing can be generalised to derive the formula Sn =
n
2
[2a+ (n− 1)d] as well.

Geometric Series
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A geometric progression has the �rst term a, common ratio r, and number of terms n. The
sum of the �rst n terms is:

Sn = a+ ar + ar2 + · · ·+ arn−1

To derive the formula, multiply both sides by r:

rSn = ar + ar2 + ar3 + · · ·+ arn

Now subtract these two equations:

Sn − rSn = a− arn

Sn(1− r) = a(1− rn)

Thus, the sum is:

Sn =
a(1− rn)

1− r
, for r ̸= 1

Sum to In�nity for GP

When |r| < 1, the sum of an in�nite geometric series can be calculated by taking the limit
as n → ∞:

S∞ = lim
n→∞

a(1− rn)

1− r

Since rn → 0 as n → ∞ for |r| < 1, we get:

S∞ =
a

1− r
, for |r| < 1

This is the formula for the sum to in�nity of a converging geometric progression.

3 Tips for Exams

� �Pure� APGP questions

�Pure� APGP questions here refer to questions regarding the terms of an AP or a GP.
They typically do not have contexts or stories attached to them.

These are often just simultaneous equations in disguise. You need to carefully extract
the information from the question and use it to form the relevant equations.

Some questions require 3 unknowns, while some only require 2. Most of the time, you
are required to solve them by hand, since they may not be a system of linear equations
(which can be solved by GC).
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Example : Complicated AP-GP Question

The 4th, 6th, and 9th terms of an AP are also consecutive terms of a GP. The sum
of the 2nd and 5th terms of the AP is 20. Find the �rst term and common di�erence
of the AP, and the common ratio of the GP.

Step 1: Form equations for the AP.

Let the �rst term and common di�erence of the AP be a and d, respectively.

T4 = a+ 3d, T6 = a+ 5d, T9 = a+ 8d

Since these terms are consecutive terms of a GP, we use the property of the geometric
progression:

(T6)
2 = T4 × T9

(a+ 5d)2 = (a+ 3d)(a+ 8d)

a2 + 10ad+ 25d2 = a2 + 11ad+ 24d2

−ad+ d2 = 0 =⇒ d(a− d) = 0

Since d ̸= 0, we conclude that a = d.

Step 2: Use the sum of the 2nd and 5th terms of the AP.

From the question, we know that the sum of the 2nd and 5th terms is 20:

T2 + T5 = 20

Using a = d, the terms become:

T2 = a+ d = 2a, T5 = a+ 4d = 5a

Thus:

2a+ 5a = 20 =⇒ 7a = 20 =⇒ a =
20

7

Since a = d, the common di�erence is also d = 20
7
.

Step 3: Find the common ratio of the GP.

The common ratio r of the GP is given by:

r =
T6

T4

=
a+ 5d

a+ 3d

Substituting a = d = 20
7
:

r =
20
7
+ 5

(
20
7

)
20
7
+ 3

(
20
7

) =
120
7
80
7

=
120

80
=

3

2
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Thus, the common ratio of the GP is r = 3
2
.

Final Answer: The �rst term and common di�erence of the AP are both 20
7
, and

the common ratio of the GP is 3
2
. ■

� Compound interest questions

Carefully identify all given conditions before writing down anything. Pay attention to
details like the starting date, whether the interest is compound or simple, and the rate.
It's important to capture these details correctly to ensure that the equations you form
are accurate.

Example : Interest Questions

$1000 is deposited into a bank at the start of month 1. At the end of every month,
the total amount grows by 1%, whereas at the start of every month, $1000 more is
deposited into the bank. Find the total amount at the end of n months.

Since the question is interested in the amount at the end of the month, we let $Tn

denote the balance at the end of n months. We list the �rst few terms and generalise
using the pattern.

T1 = 1.01(1000), T2 = 1.01(1000 + 1.01(1000)) = 1.01(1000) + 1.012(1000)

T3 = 1.01(1000+ 1.01(1000+ 1.01(1000))) = 1.01(1000) + 1.012(1000) + 1.013(1000)

Thus Tn = 1000
∑n

r=1 1.01
r. ■

If we had set Tn to be the amount at the start of the month, the method would have
been much messier, possibly inviting careless mistakes.

� Draw tables

To be safe, especially in interest rate or problems involving many things changing simul-
taneously, drawing tables can help keep track of information in an organised manner.
If there is a time constraint, the listing method (used in the previous example) can be
used as well; it is much faster than drawing a table.

� Presentation

Always copy the exact phrasing from the question when it refers to concepts like �arith-
metic sum� or �sum to in�nity of geometric series�. This ensures that you are properly
ful�lling the question's requirements.
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SUMMATIONS

1 Overview

Summations primarily deal with adding up the terms of a speci�c sequence. A summation is
usually denoted by the summation symbol

∑
, which represents the sum of the terms from a

sequence according to speci�c bounds. For example,
∑n

r=1 ur means summing up the terms
u1, u2, . . . , un.

2 Solving Approaches

This topic generally revolves around manipulating your expression into an appropriate form
where known formulae can be applied to �nd the sum.

Common Results:
n∑

r=1

kur = k
n∑

r=1

ur

n∑
r=1

(ur + vr) =
n∑

r=1

ur +
n∑

r=1

vr

Tip: This is especially important when your sequence is the sum of an AP and GP; this
formula helps to split it into two separate sums that are much easier to compute. For
example,

∑
ln(3(5)r) is easier to compute when split into ln 3 + r ln(5).

n∑
r=m

ur =
n∑

r=1

ur −
m−1∑
r=1

ur

Tip: You are doing this to make both lower limits r = 1, so that known formulae can be
applied.
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Extra Results (Good to memorise but not necessary):

n∑
r=1

r =
n(n+ 1)

2

The above formula can be derived from sum of an AP.

n∑
r=1

r2 =
n(n+ 1)(2n+ 1)

6

n∑
r=1

r3 =
n2(n+ 1)2

4

3 Tips and Tricks

� When using a previously proven result

Make sure the lower limits of the summations are the same. This is usually r = 1, but
it may not always be the case.

Example : Handling Di�erent Lower Limits

Find
∑13

r=8
1√

r+
√
r−1

given the formula:

n∑
r=6

1
√
r +

√
r − 1

=
√
n−

√
5

In order to apply the given formula, we must express our sums such that the lower
limit is always r = 6.

13∑
r=8

1
√
r +

√
r − 1

=
13∑
r=6

1
√
r +

√
r − 1

−
7∑

r=6

1
√
r +

√
r − 1

Now applying the formula we get

(
√
13−

√
5)− (

√
7−

√
5) =

√
13−

√
7

■

Notice that whenever we have a summation formula (e.g.
∑n

r=1 r =
n(n+1)

2
), the expres-

sion on the right-hand side changes along with the upper limit (i.e. n) of the left-hand
side.
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So while we can apply the formula with a di�erent upper limit (e.g.
∑10

r=1 r =
10(10+1)

2
),

we cannot apply the formula directly when the lower limit is di�erent (e.g.
∑10

r=5 r).
In these cases, the sum must be rewritten into two di�erent sums with lower limits 1:

10∑
r=5

r =
10∑
r=1

r −
4∑

r=1

r

The lower limits must match that of the formula in order to apply it.

� Try to rewrite ur so that known formulae can be applied.

Example : Manipulating ur

Consider
∑n

r=1(ar
2 + br + c). This should be rewritten as:

n∑
r=1

(ar2 + br + c) = a
n∑

r=1

r2 + b
n∑

r=1

r + c
n∑

r=1

1

Splitting them up allows for the known formulae
∑

r2,
∑

r, and
∑

1 to be applied.
■

� Look out for expressions ur containing AP, GP, or both.

In these cases, the AP and GP formulae can be applied to solve the sum more easily.

Example : AP and GP in a term

Consider the following summation. The terms contain both an AP and GP:

n∑
r=1

ln(3r56
r

) =
n∑

r=1

(r ln 3) +
n∑

r=1

(6r ln 5)

Breaking them up makes it much easier to compute the sum. ■

� Present your observations and manipulations appropriately.

Once again, you should always aim to simplify the expression into a form where known
results can be applied.

Be precise with terminology: Are you dealing with an �Arithmetic Progression�, or
�Arithmetic Series�? One is a sequence while the other is a sum.

One way to stay safe is to copy the exact phrasing of the question, such as �in�nite sum�
or �limit of in�nite series�, to ensure that you are answering the question's requirement
correctly.
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4 Method of Di�erences (MOD)

� Look out for partial fractions and sigma notation.

When you encounter partial fractions and summations expressed in sigma notation, it's
a strong indicator that the method of di�erences might be useful.

Denominators containing multiple factors can usually be simpli�ed using partial frac-
tions. For example

∑
1

(r)(r+1)
. It may be handy to memorise a couple of common

partial fraction decomposition so you do not need to derive it every time, such as
1

(r)(r+1)
= 1

r
− 1

r+1
.

Meanwhile, denominators containing surds should be rationalised to reveal the cancel-
lations. For instance

∑
1√

r+
√
r−1

which appeared in one of the earlier examples.

� Be sensitive to repeating terms.

Pay close attention to repeating terms in the sequence, especially those involving con-
secutive integers like (r − 1, r, r + 1) or (r − 2, r − 1, r), etc. These often signal that
terms will cancel out.

� Write out the �rst few terms.

It's often helpful to explicitly write out the �rst few terms of the summation. This
allows you to observe a symmetry or cancellation pattern. Usually, the number of
uncancelled terms at the beginning will equal the number of uncancelled terms at the
end.

Example : Using the Method of Di�erences

Consider the sum:
n∑

r=1

(
1

r
− 1

r + 1

)
Writing out the �rst few terms: (

1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·
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+

(
1

n
− 1

n+ 1

)
Notice that −1

2
cancels with +1

2
.

Most other terms cancel in a similar manner, leaving only 1
1
at the top. By symmetry

we know that only one term is left at the bottom, that is, 1
n+1

.

Therefore, the sum is:

Sn = 1− 1

n+ 1

■

Write out enough terms such that the cancellations happen. Similar cancellations can be
done throughout



CHAPTER 11

DIFFERENTIATION

1 What Exactly is Di�erentiation?

While many students think di�erentiation means �nding the gradient at a point, it is actually
far more than that. Broadly speaking, di�erentiation studies relative rates of change, that
is, how much one variable changes compared to another variable.

The Limit of a Ratio

We look at one of the most familiar expressions, dy
dx
. It is fundamental yet important to know

that dy
dx

is not a ratio itself, rather the limit of a ratio.

dy

dx
= lim

∆x→0

∆y

∆x

Since dy
dx

is a limit, we cannot treat it as a fraction and �take it apart�. For example, dy
dx

cannot
be rewritten as dy = 2dx. Practically however, it behaves exactly like a fraction, which is
why many techniques involving it work similarly. Take the chain rule, for example:

dy

dx
=

dy

dt
× dt

dx

Though the dt in the numerator and denominator seem to cancel out, we cannot write it that
way since dy

dx
is not a fraction hence cannot cancel.

Di�erentiation as a Comparison of Change
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Again we look at the above formula:

dy

dx
= lim

∆x→0

∆y

∆x

We see that the right hand side resembles the gradient formula,

y − y1
x− x1

=
∆y

∆x

This is because the gradient compares the change in y (the rise) to the change in x (the run),
which is exactly what di�erentiation does: to compare changes.

Meanwhile, the limit as ∆x → 0 resembles bringing the two points of interest closer and
closer to each other, until they almost overlap. This produces the supposed �gradient at a
point�. In fact it is comparing a small change in x to a small change in y.

Di�erentiation as an Operator

Just a side note, that di�erentiation is not a function but an operator. A function takes in an
input value and returns an output value. An operator takes in an input function and returns
an output function. The two are somewhat analogous, but it would be inaccurate to refer to
d
dx

as a function.

2 Visualising the Chain Rule

Consider the following scenario.

3 runners, A, B and C take part in a race; A goes against B in the �rst round, while B
goes against C in the second round. For the sake of discussion we assume that each runner
maintains a constant pace. A runs twice as fast as B, while B runs three times as fast as C,
so how much faster is A compared to C?

The solution is simple and intuitive:

Speed of A

Speed of C
=

Speed of A

Speed of B
× Speed of B

Speed of C
= 2× 3 = 6

So A is 6 times as fast as C.

This is analogous to the chain rule, where we compare the changes of two variables using a
series of similar comparisons. For instance:

dy

dz
=

dy

dx
× dx

dz
or

dy

dx
=

dy
dt
dx
dt
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In the pursuit of computation, the meaning behind the chain rule is frequently overlooked.
The chain rule simply helps to compare changes, which is the exact purpose of derivatives.

3 Stationary Points

A stationary point occurs when the derivative of a function is zero, i.e. dy
dx

= 0. This implies
that the slope of the tangent line to the curve at that point is horizontal.

Stationary points can be classi�ed into three categories:

� Minimum point: The second derivative d2y
dx2 > 0.

� Maximum point: The second derivative d2y
dx2 < 0.

� Point of in�ection: The second derivative d2y
dx2 = 0.

We are familiar with the above conditions, but do we know why they are as such?

Consider the graph with a minimum point. We know that the second derivative d2y
dx2 > 0 at

the minimum point.

x

y

dy
dx

< 0 dy
dx

> 0

Observe how dy
dx

changes along with x. As x increases from left to right, the gradient ( dy
dx
)

changes from negative (blue) to zero (at the stationary point) then to positive (red). This

means that dy
dx

increases as x increases, implying d2y
dx2 > 0.
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4 Common Problem Types

The H2 syllabus primarily tests a few types of questions: di�erentiation techniques, tangents
and normals, rate of change, and optimisation (stationary points).

Di�erentiation Techniques

Questions of this form are the most straightforward, typically requiring you to di�erentiate
an expression. To score well you need to know the rules of di�erentiation well: power rule,
product rule, chain rule, quotient rule, as well as the derivatives of terms like ex, ax, lnx, sinx
and so on.

Tangents and Normals

Generally asking for the equation of a tangent or normal, the gradient of the tangent can be
easily found by di�erentiation.

You may �nd the following coordinate geometry information helpful:

� The equation of any straight line can be found using two pieces of information: the
gradient and the coordinates of any one point on the line.

� For a straight line with gradient m passing through a point (x1, y1), the equation of the
line is given by (y − y1) = m(x − x1). This is simply the gradient formula rewritten:
m = y−y1

x−x1
.

� The product of gradients of two perpendicular lines is −1 (i.e. mnormal =
−1

mtangent
).

� Gradient = tan θ. If you do not already know this, refer to the chapter on Trigonometry.

Rate of Change

These questions typically require an understanding of a certain context given, after which
you may be required to form your own equations, which will then be di�erentiated.

To di�erentiate these equations, there are generally two approaches: chain rule or implicit
di�erentiation. The better method is the one you are more comfortable with. For implicit
di�erentiation, do not forget to apply the chain rule. For instance when you apply d

dx
on y3,
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you have to multiply 3y2 by dy
dx

due to the chain rule.

Tip: You cannot have an equation with more than two variables in the same equation, since
you cannot di�erentiate it. If you do, you should express one of them in terms of the other
two. There will be a way.

Example : Volume of a cone

Given the cross sectional diagram of a cone of height 6 cm and radius 2 cm, �nd a general
formula for V in terms of r.

6 cm

2 cm

Using the formula for volume we have:

V =
1

3
πr2h

However this cannot be di�erentiated yet since there are 3 variables. So we have to express
one in terms of the other two.

From the diagram we see the relationship (similar triangles) between r and h, that h
r
= 3

so we can write h = 3r.

Thus,

V =
1

3
πr2(3r) = r3

■

Optimisation (Maximising/Minimising)

Questions of this form would always require setting the derivative to zero. That is where
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some computational tricks come in handy.

Tip: Identify which factors in the derivative cannot equal zero; you can cancel these terms.
Derivatives in these questions are often rather long and complicated, so cancelling the redun-
dant terms early on can save you signi�cant time.

Example : Cancelling non-zero terms

Given y = 211−sec(2x+π
7
), �nd dy

dx
and use it to �nd the x-coordinates of the stationary

points.

First, di�erentiate the function:

dy

dx
= 211−sec(2x+π

7
) · ln 21 ·

(
−2 sec(2x+

π

7
) · tan(2x+

π

7
)
)

Since 211−sec(2x+π
7
), sec(2x+ π

7
) and ln 21 are non-zero, we can cancel these terms, leaving:

tan(2x+
π

7
) = 0

Solving tan(2x+ π
7
) = 0 gives:

x =
nπ

2
− π

14
for integers n

■
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INTEGRATION TECHNIQUES

The syllabus deals with three types of integration: integration by inspection, integration by
parts, and integration by substitution.

When approaching an expression to integrate, always try inspection before moving on to
integration by parts. If the question requires you to integrate by substitution (like u = x2),
the substitution will de�nitely be provided in the problem.

1 Integration by Inspection

Since integration is essentially the inverse operation of di�erentiation, expressions can often
be manipulated into forms that are known derivatives, allowing them to be integrated directly.
For example:

d

dx
ln(f(x)) =

f ′(x)

f(x)
⇒

∫
f ′(x)

f(x)
dx = ln |f(x)|+ C

Note that the C is a mandatory arbitrary constant for inde�nite integrals, as all constants van-
ish under di�erentiation (inde�nite integrals are integrals without upper and lower bounds).

Tips and Techniques

� Use trial and error intelligently: Integration by inspection often involves try-
ing di�erent possibilities. Make smart guesses based on common patterns and known
derivatives.

� Train your eyes for standard forms: Common integrals include chain rule expres-
sions like nf ′(x)f(x)n−1, or natural log forms like

∫ f ′(x)
f(x)

dx. Recognizing these forms
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is key to using inspection successfully.

� Play around with the expression: Isolate terms and �nd their derivatives to see
if you can match them with known forms. For example, by isolating a term like f(x)
and di�erentiating it, you can identify if the expression follows the chain rule pattern
nf ′(x)f(x)n−1.

Example : Playing around with terms

Consider the integral
∫

cotx
ln sinx

dx. By di�erentiating the denominator, we �nd:

d

dx
ln sinx = cotx

which is exactly the numerator of the given expression. This shows that the integrand
is of the form f ′(x)

f(x)
, and we can directly apply the standard result:∫

f ′(x)

f(x)
dx = ln |f(x)|+ C

Thus,
∫

cotx
ln sinx

dx = ln | ln sinx|+ C. ■

� Always try inspection before moving to integration by parts: Many integrals
that look complicated at �rst glance can often be handled quickly with inspection.
Some may require subtle manipulations like splitting or rewriting the expression in a
similar form.

Example : Try solving these integrals by inspection!∫
1

1− e−x
dx∫

2x+ 1

(x+ 1)2
dx∫

tan θ dθ

■

� Beware of the �inverse chain rule�: When we di�erentiate, byproducts often result
from the chain rule. These byproducts must be present during integration as an �inverse
chain rule�.

Example : Inverse Chain Rule

Consider d
dx

sin(x2) = cos(x2)(2x) = 2x cos(x2).

The factor 2x appears because of the chain rule. Therefore,
∫
cos(x2) dx ̸= sin(x2)+



74 Integration Techniques

C, as this neglects the chain rule. The 2x must be present to account for the �inverse
chain rule�, that is,

∫
2x cos(x2) dx = sin(x2) + C. ■

� Be cautious with higher-order terms: Standard forms can usually be applied safely
to �rst-order terms (i.e. where the power of x is 1), for instance

∫
sin(2x) dx. Extra

care is required when dealing with higher-order terms, like
∫
sin(x2) dx, which cannot

be integrated directly by inspection.

Example : A Wrong Approach!

Please note that you cannot do this:∫
cos(x2) dx =

1

2x

∫
2x cos(x2) dx =

1

2x
sin(x2) + C

While this method is valid for constants, you cannot use it to generate an x term
within the integrand, because x is not a constant in this context. ■

2 Integration by Parts

The formula for integration by parts is:∫
u
dv

dx
dx = uv −

∫
v
du

dx
dx

This formula is derived from the product rule of di�erentiation. Integration by parts involves
selecting appropriate terms for u and dv

dx
, then �nding du

dx
and v. Finally, we apply the above

formula to solve the integral.

Tips and Techniques

� Simpli�cation through by parts: The purpose of integration by parts is to simplify
the expression. If the result becomes more complicated than the original expression,
you're likely applying the technique incorrectly.

� Choosing u: Usually, we choose u to be the term that simpli�es when di�erentiated.
For example, in

∫
x2 cos(2x) dx, we set u = x2 because di�erentiating x2 reduces its

order (making it simpler). Meanwhile, cos(2x) remains a similar form after integration,
as it gives a term with sin(2x).

A bit of foresight is needed, as you should notice that picking u = x2 ultimately
reduces to du = 2dx after two steps. In contrast, cos(2x) is �unable to be simpli�ed�
since repeated operations on it result in expressions of similar form.

� The LIATE Acronym: The rule for choosing u can be summarized by the acronym
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LIATE, which stands for:

1. L: Logarithmic functions (lnx)

2. I: Inverse trigonometric functions (tan−1 x, sin−1 x, etc.)

3. A: Algebraic functions (xn, x2, x, etc.)

4. T: Trigonometric functions (sinx, cosx, etc.)

5. E: Exponential functions (ex, 2x, etc.)

1 should be picked �rst while 5 last. This serves as a general guide to select the correct
u for integration by parts.

� Reappearance of the original expression: In some cases, applying by parts leads
to the original integral reappearing. This can be useful, as it allows you to solve the
equation by isolating the original expression and solving algebraically.

Example : Reappearing Expression

Consider the integral
∫ (lnx)2

x
dx.

We set:

u = (lnx)2 and
dv

dx
=

1

x

Then:
du

dx
=

2 lnx

x
and v = lnx

Applying the integration by parts formula:∫
(lnx)2

x
dx = (lnx)3 − 2

∫
(lnx)2

x
dx

The original expression
∫ (lnx)2

x
dx reappears, and we solve by shifting terms:∫
(lnx)2

x
dx =

1

3
(lnx)3 + C

Letting the original expression reappear allows us to simplify the problem and solve
by dividing.

(Did you notice a quicker approach?) ■

3 Integration by Substitution

Integration by substitution involves expressing the integral in terms of another variable, which
is provided in the H2 syllabus. This new expression is generally easier to integrate directly
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(often by inspection), which is the purpose of substitution.

For example, when our original integral is in terms of x, and a substitution such as t = x2

is provided, we must change every single part of the integral to be in terms of t. There
should not be any x terms left. This includes the upper and lower limits, the integrand (the
expression to be integrated), and the dt term (instead of dx).

After rewriting, integrate the new expression, and �nally substitute back to the original
variable. In the above example, since we began with x, the �nal result must be expressed in
terms of x, not t.

A Systematic Approach to Substitution

� Identify the substitution: Look for a part of the expression that can simplify through
substitution. In all H2 problems, the substitution is provided (e.g. t = x2).

� Rewrite all parts of the integral: Express the entire integral, including limits (for
de�nite integrals), the integrand, and the di�erential term (dx) in terms of t. To express
dx in terms of t, this means �nding dx = dx

dt
dt because dx

dt
is in terms of t, and so is dt.

� Perform the integration: Solve the new integral, which should now be simpler.

� Substitute back: After solving the integral, revert back to the original variable if
necessary (i.e. express the �nal answer in terms of x instead of t if this is an inde�nite
integral. If it is a de�nite integral, your answer will be a constant).

It is best to express all substitutions (upper and lower limits, integrand, and di�erential
terms) before rewriting the integral in the new variable.

Example : Integration by Substitution

Evaluate the integral
∫ 1

−1

√
1− x2 dx using the substitution x = sin t.

Step 1: Identify the substitution. We are given x = sin t, so dx
dx

= cos t.

Step 2: Change the limits of integration. When x = −1, sin t = −1 implies t = −π
2
.

Similarly, when x = 1, sin t = 1 implies t = π
2
.

Step 3: Rewrite the integrand. The integrand
√
1− x2 becomes:√

1− sin2 t = cos t
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So the integral becomes:∫ 1

−1

√
1− x2 dx =

∫ π
2

−π
2

√
1− sin2 t cos t dt =

∫ π
2

−π
2

cos2 t dt

Step 4: Perform the integration. Use the identity cos2 t = 1+cos 2t
2

to rewrite the integrand:∫ π
2

−π
2

cos2 t dt =

∫ π
2

−π
2

1 + cos 2t

2
dt

Thus,
∫ 1

−1

√
1− x2 dx = π

2
. ■



CHAPTER 13

DEFINITE INTEGRALS

1 Integration as a Sum

You may be familiar with the idea of approximating the area under a curve by summing
rectangles.

x

y

y = f(x)

x

y

y = f(x)

As the rectangles get thinner, our approximation becomes more accurate, and the sum of
their areas gets closer to the true area under the curve. By taking the limit of this sum as
the width of the rectangles approaches zero, we arrive at the exact area under the graph.

This is one of the applications of integration. However, beyond simply �nding the area,
integration should be seen as a sum. Like how di�erentiation is the limit of a ratio, likewise
integration is the limit of a sum. In fact, the integration symbol is simply an elongated �S�,
which represents �sum�. Recognising integrals as sums can shed light on some of its workings.
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The mathematical de�nition of the integral can be written as:∫ x2

x1

f(x) dx = lim
∆x→0

∑
f(xi)∆x

On the right-hand side, f(xi) represents the height of a rectangle at x = xi, while ∆x
represents the constant width of the rectangles. Multiplying these gives the area of one
rectangle, and summing them gives the total area of all the rectangles, which approximates
the area under the curve.

This notion of summing re�ects the true nature of the integral. In fact, when moving on to
higher level math, integrals are no longer used merely for �nding area. They are used to sum
up very small portions of items of interest, such as the work done in Physics. Learning to
view integrals as sums would be helpful if you are interested in pursuing related �elds in the
future.
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2 Negative Areas

When we integrate a curve that lies below the x-axis, why do we get a negative result?
Consider the function y = (x− 1)2 − 1 which lies below the x-axis between x = 0 and x = 2.

x

y
y = (x− 1)2 − 1

As the curve dips below the x-axis, the area calculated between x = 0 and x = 2 appears to
be negative. ∫ 2

0

(
(x− 1)2 − 1

)
dx = −4

3

But why does this integral produce a negative result? How can an area be negative?

To understand this better, we return to the formula:∫ x2

x1

f(x) dx = lim
∆x→0

∑
f(xi)∆x

Here, f(xi) represents the height, and ∆x is the width. If the curve is below the x-axis,
f(xi) will be negative, since it is simply the output of the function when we input xi. In
simpler terms, the heights of the rectangles are �negative� because the rectangles are below
the x-axis. Since ∆x is always positive (width is always positive), each rectangle will have a
�negative area�, as f(xi)∆x is negative, thus producing an integral of negative value.

Important Note: In reality, quantities like height and area cannot be negative, so you will
de�nitely be penalised if your solution contains a negative height or area. Always convert
them to positive values, using modulus or otherwise.
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3 Area Between Two Curves

The general rule for �nding the area between two curves is to integrate the function on top
minus the function below:

Area =

∫ x2

x1

ftop(x)− fbottom(x) dx

Let's consider the case where both curves are above the x-axis.

x

y
ftop(x)

fbottom(x)

x1 x2

Here, area A represents
∫ x2

x1
ftop(x) dx, while area B represents

∫ x2

x1
fbottom(x) dx, as illustrated

below.

x

y
ftop(x)

fbottom(x)

Area A
x1 x2

x

y
ftop(x)

fbottom(x)

Area B
x1 x2

It can be observed visually that taking subtracting area B from area A gives the area between
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the two curves. Thus verifying the relationship:

Area between two curves =

∫ x2

x1

ftop(x)− fbottom(x) dx

Now let's consider the case where both curves are below the x-axis. The integral works in the
same way as before, where the result of subtracting the two areas will still give the correct
area between the curves. The function above is still chosen as ftop.

The general formula remains:

Area =

∫ x2

x1

ftop(x)− fbottom(x) dx

Let's illustrate this with an example where both curves are below the x-axis:

x

y

ftop(x)

fbottom(x)

In this case, both curves are below the x-axis, so the areas A and B are negative. However,
subtracting B from A still gives the positive area between the two curves, because while∫ x2

x1
ftop(x) dx is negative, it is less negative than

∫ x2

x1
fbottom(x) dx. A is larger as it is less

negative, and B is smaller since it is more negative, just like how −1 is larger than −10.

x

y

ftop(x)

fbottom(x)

Area A
x

y

ftop(x)

fbottom(x)

Area B
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Thus, the principle remains:

Area between two curves =

∫ x2

x1

ftop(x)− fbottom(x) dx

Even when both curves are below the x-axis, the subtraction still results in a positive area.
Subtracting a larger negative number from a smaller one results in a positive value, just like
how (−1)− (−10) = 9.

Things get more complicated when the curves cross the x-axis, but the principle remains the
same, and so the above formula still holds true.

Crossing Curves

However, things have to be handled di�erently when the two curves cross. We split the
integral into two or more intervals to ensure that one curve is on top of the other throughout
the entire interval.

x

y
f1(x)

f2(x)

x1 x2 x3

For example, if f2(x) is above f1(x) from x1 to x2, but below f1(x) from x2 to x3, you should
split the integral:

Total area =

∫ x2

x1

f2(x)− f1(x) dx+

∫ x3

x2

f1(x)− f2(x) dx

This ensures that you are always integrating the top curve minus the bottom curve within
each interval.

Evaluating one integral across the entire interval would cause one portion to be positive while
the other negative, so summing them cancels each other out, giving us an area lesser than
the actual.
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4 Volume of Revolution

x

y

y = f(x)

f(xi)

When asked to �nd the volume of a solid generated by revolving a curve around the x-axis,
the volume can be found using the following formula:

V =

∫ b

a

πf(x)2 dx

This formula treats the solid of revolution as a collection of many thin circular disks stacked
along the x-axis. The thickness of each disk is dx, and the radius of the disk at any point xi

is given by f(xi) (i.e. the height of the curve at xi).

dx

f(xi)

x

� f(xi) is the radius of the circular disk at any point xi.

� The area of the circular disk at point xi is π[f(xi)]
2.

� The volume of this small disk (a slice of the solid) is (π[f(xi)]
2 dx).

� Lastly, the integration is applied to sum up all volumes of discs.
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Reiterating the notion of summing, the de�nite integral from a to b adds up all these small
volumes, giving the total volume of the solid generated by the revolution.

The same method can be applied to more complex solids, where the curve might have multiple
in�ection points or intersections with the x-axis. In these cases, the integral should be broken
down into separate intervals to account for any changes in the curve's shape.

Note that this method can only be applied when revolving around the x-axis (or similarly
for the y-axis by integrating with respect to y instead). For curves being revolved around
lines other than the axes, the method can still be applied, but additional adjustments must
be made depending on the context (such as the subtraction of any extra volume).

5 Additional Tips and Techniques

� Be careful with negative areas

When integrating below the x-axis, remember that the integral gives a negative value.
If you are asked for the total area, take the absolute value of these negative integrals.

This also means that you should draw out your curve if you suspect some regions to be
negative. This helps you to recognise and partition the regions appropriately.

� Check for symmetry

If a function or region is symmetric, you can simplify the problem by integrating only
one part of the graph and multiplying by an appropriate factor. For example,∫ 4

0

|x− 2| dx = 2

∫ 2

0

2− x dx

Notice also that we took the negative part of the modulus since the interval exists
where x ≤ 2. If unsure why this is true, feel free to plot it out, or refer to the chapter
on �Modulus� to learn more.

� Watch out for discontinuities

If the function has a discontinuity in the interval of integration, split the integral at
the discontinuity points to avoid errors.

Because of the way the integral is de�ned, it cannot accommodate discontinuous curves.
Adaptations have to be made to apply the integration.



CHAPTER 14

SERIES EXPANSION

1 Maclaurin Series

In essence, the Maclaurin series aims to approximate functions as an in�nite power series by
creating a polynomial whose each derivative matches that of the function at x = 0.

It is very important to note that the Maclaurin series is only a fair approximation near x = 0,
in other words when x is small. This is because the �matching� is done exactly at x = 0. We
generally refer to �small� as |x| < 1, so numbers like −0.75 or 1√

2
work, but not x = 1.

Why Do We Use This?

Firstly, recognise that polynomials are nice functions that are very easy to deal with; we can
integrate, di�erentiate, and sketch them with ease, unlike most other functions like ln(x) or
cot(x), whose di�erentiation or integration becomes complicated after a few cycles.

Oftentimes in real-world applications, we do not require the exact value but rather one that
is simply �close enough�. For instance, if you need to estimate the value of sin(0.1) to 3
decimal places, using a series expansion can give a very quick approximation. This is where
the Maclaurin series comes in handy, since an approximate polynomial can be computed
easily.

How Does This Work?

Polynomials are very �exible functions, so we can �build our own polynomials�, customising
each derivative to match the original function. This is analogous to how an artist chooses

86
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speci�c colours to apply to di�erent regions of a painting; we choose the values for each of
our derivatives.

Suppose we have an in�nite polynomial:

f(x) = a0 + a1x+ a2x
2 + a3x

3 + . . .

and we want to customise its third derivative at x = 0 to be 12. We di�erentiate this
polynomial three times, giving:

f ′′′(x) = 3!a3 + 4(3)(2)a4x+ . . .

Notice that the 3! in front of a3 comes from di�erentiating three times. Each di�erentiation
brings down a power from xn, multiplying as we di�erentiate further.

Since we want f ′′′(0) = 12, we substitute x = 0, and all the subsequent terms containing x
disappear, leaving:

3!a3 = 12 ⇒ a3 = 2

Here, we have customised a3 to accommodate the condition f ′′′(0) = 12. This illustrates the
idea of �customisation� of the polynomial coe�cients.

We generalise this concept to write the Maclaurin series as:

f(x) = f(0) + f ′(0)x+
f ′′(0)x2

2!
+ · · ·+ f (n)(0)xn

n!
+ . . .

This represents matching every single derivative of the polynomial at x = 0 to that of the
function. The key point is that the derivatives must be evaluated at x = 0, unlike the more
general Taylor series (out of the syllabus), which can be used for any point x = a.

2 Exam Tips and Techniques

Fortunately, many Maclaurin series for di�erent functions have already been computed, so
we do not need to waste our time computing them again. In the H2 syllabus the relevant
ones are present in the MF26 formula list as the �Standard Series�. Knowledge of these is
crucial to do well in this topic.

Know How to Apply Standard Series from the MF26

This includes being aware of the range of validities, should they exist. The Maclaurin series
approximates functions near x = 0, so the approximation is only valid for small x, i.e. |x| < 1
for some cases.
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There are a few special cases where the Maclaurin series exactly equals the function for all
x-values, like sinx, cosx, and ex. These are exceptions, and you should not expect other
series to behave in the same manner.

For composite terms like ex sinx, simply expand them out separately, then multiply them
together. For example, expanding up to x3:

ex = 1 + x+
x2

2!
+

x3

3!
+ . . . , sinx = x− x3

3!
+ . . .

Multiplying these gives the combined expansion:

ex sinx =

(
1 + x+

x2

2!
+

x3

3!
+ . . .

)(
x− x3

3!
+ . . .

)
= x+ x2 +

x3

2!
− x3

3!
+ . . .

We only expand to the required powers and omit higher terms.

Be Sensitive Toward the Standard Formula

Some standard formulae require a very speci�c form before you can apply them. For instance,
the (1+x)n expansion in the MF26 requires the constant term to be 1, while x can be replaced
with other expressions. The same applies to the ln(1+x) expansion. Neglecting this condition
would result in an incorrect series.

Learn to be �exible to accommodate these conditions. For example, suppose we want to
expand (a+ bx)−1/2. We need the constant term to be 1. Simply factor out a:

(a+ bx)−1/2 = a−1/2

(
1 +

bx

a

)−1/2

Do not forget that whatever is factored out must carry the same index. In this case, a is
raised to the power −1/2.

The Order of Expansion

Consider a composite function sin(ex), which we need to expand. A common question is:
should we apply the Maclaurin series for sinx �rst, or for ex �rst?

The short answer is: it does not matter. Try and prove this by yourself!

Be Sharp About Where Series Can Be Applied

Consider an expression like 3x−1
2+x

, and the question asks you to expand it in increasing powers
up to and including x3. This may seem challenging until you realise that the expression can
be rewritten as (3x− 1)(2 + x)−1, where the series can then be applied easily.
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Sometimes, the question does not directly suggest a method. You need to be sharp to
distinguish where and how the series expansion can be applied.

Only Write Out What Is Necessary

Suppose we need to expand ex sinx up to and including x3. We only need to expand each
term up to x3 in the brackets:(

1 + x+
x2

2!
+

x3

3!
+ . . .

)(
x− x3

3!
+ . . .

)
Since higher powers do not multiply to give lower powers, special care is needed when one
bracket contains negative powers, and the other contains positive powers. Be aware of how
di�erent powers can combine, and write out only what is necessary.

Descending Powers

We are used to expanding in increasing powers, but sometimes the question asks us to expand
in decreasing powers. How is this possible? Do we start from in�nity?

Consider (1 + x)−1 expanded in decreasing powers. We factor out x from the bracket �rst:

(1 + x)−1 = x−1

(
1 +

1

x

)−1

Then, expand the bracket and multiply with the x−1 factor in front:

1

x

(
1− 1

x
+

1

x2
+ . . .

)
=

1

x
− 1

x2
+

1

x3
+ . . .

Thus, we successfully expand in decreasing powers up to x−3.

A Brief Mention of Notation

Notation is crucial in mathematics, and presenting your solutions with clear and accurate
notation is key to communicating e�ectively.

The ellipsis �. . . � is used to indicate that the pattern in the sequence or expression continues
inde�nitely. For instance:

f(x) = 1 + x+
x2

2!
+

x3

3!
+ . . .

This notation shows that the expansion continues following the same pattern. It can also
mean that there are more terms afterwards, that have not been explicitly written out.
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The approximation �≈� is used to indicate that a value is approximately equal to another.
It signals that the result is close but not exact. For instance:

sinx ≈ x for small values of x

This means that for small x, the value of sinx is very close to x, but not exactly equal.

Poor usage of such symbols will de�nitely result in penalisation.

3 A Common Question

One of the most common questions involves two parts. First, you are asked to di�erentiate
an expression multiple times to prove an equation. In the second part, you are asked to
�nd the Maclaurin series of the function. These questions often require a simpli�cation step
before di�erentiating to avoid a messy process.

Let's go through an example where this technique is applied. We will consider the function
y = ln(cosx), simplify it, and then di�erentiate implicitly.

Example : Simpli�cation and Implicit Di�erentiation

Given y = ln(cosx), prove that:

d2y

dx2
+

(
dy

dx

)2

+ 1 = 0

We start by simplifying the expression to make the di�erentiation process cleaner:

y = ln(cosx) ⇒ ey = cosx

Now, instead of di�erentiating ln(cosx) directly, we di�erentiate implicitly:

d

dx
(ey) =

d

dx
(cosx)

This gives us:

ey
dy

dx
= − sinx

Di�erentiating both sides with respect to x again:(
ey
dy

dx

)(
dy

dx

)
+ ey

d2y

dx2
= − cosx

Lastly we substitute back ey = cosx:

cosx

(
dy

dx

)2

+ cosx
d2y

dx2
= − cosx
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Dividing both sides by cosx yields the required di�erential equation.

At this point, you would be asked to derive the Maclaurin series for y. It is advisable to
begin with �At x = 0, . . . � to prompt yourself to stay on track. Then, you just need to
�nd the corresponding values of y, y′, y′′ and so on systematically. It is best to start from
y and move upwards from there. ■

Notice how we did not jump directly into di�erentiating directly, which would result in a
mess. Always keep an eye out for any available simpli�cations.



CHAPTER 15

DIFFERENTIAL EQUATIONS

Di�erential equations are equations that relate the derivatives of a function. In the H2
syllabus, there are two broad categories of questions: Formulating di�erential equations, and
solving them.

1 Formulating

In problems requiring you to formulate a di�erential equation, the question will typically
provide a story or context where you must translate the given information into mathematical
terms. This is analogous to translating a phrase from one language to another; here we are
translating from English to Math. For example, �The initial rate of change of Area is 1 cm2

per second� translates to �At t = 0, dA
dt

= 1�.

To do well in formulating di�erential equations, it is important to clearly understand the
meaning of derivatives and how they are applied in context. Below are a few common
keywords and their mathematical implications:

� �Rate of change of x�, �x increases at a rate of�: Translates to dx
dt
, the derivative of x

with respect to time.

� �Initially�, �at the start�, �starting at the reference point�: Translates to �at t = 0�.

� �Reaches a stationary value�, �momentarily at rest�, �maintained at�: Translates to
dx
dt

= 0, indicating a stationary point.
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� �A proportional to B�: Translates to A = kB for some constant k.

� �A inversely proportional to B�: Translates to A = k
B
for some constant k.

� �At time t, the distance is x�, �when t = . . ., x = . . .�: Refers to a speci�c value of t,
which can be used to �nd constants after solving. This can be thought of as a speci�c
point on the x-t graph.

It is useful to make a habit of using arbitrary constants (like k) to represent proportionality.
These constants may not be given to you at the start of the question, but their values must be
found by the end of the question through substitution of initial conditions or speci�c values.

Usually, when formulating the di�erential equation, you do not need to worry about the
information like �initially x = 5� at the start. These are points provided to you, (x, t) = (5, 0)
in this case, and typically only used afterward to �nd the value of certain constants (like c,
the constant of integration, or k, the constant of proportionality) via substitution. These
problems are called �initial value problems.�

Example : Initial values being used only at the end

Solve for y given that dy
dx

= sec y, and the point (0, π
2
)

So �rst we can ignore the point (0, π
2
), since it is only relevant at the end. We solve the

integral: ∫
cos y

dy

dx
dx =

∫
1 dx ⇒ sin y = x+ c

We can substitute in the initial conditions now, using (0, π
2
):

sin
(π
2

)
= (0) + c ⇒ c = 1

Thus our equation is sin y = x+ 1 which should be rewritten as y = sin−1(x+ 1). ■

Of course, you can choose to rewrite the equation as y = sin−1(x+ c) �rst, then use the point
to �nd c; I prefer the above presented way, but this is entirely up to personal preference.
Point is, the initial values presented is simply a point to help determine unknown constants,
and are only relevant towards the end. Do not let them confuse you at the start of the
question.
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2 Solving

Once the di�erential equation is formulated, solving it typically requires standard integration
techniques, which you should already be familiar with by now.

Sometimes, certain simpli�cations may be required, such as �separation of variables�, which
may be a technique new to some. It involves rearranging the equation so that all terms
containing y are on one side and all terms containing x are on the other side, allowing you
to integrate both sides separately.

Example : Separation of variables

Solve the di�erential equation dy
dt

= yt provided that y = 2 intially.

Notice that this is an unusual equation that cannot be integrated directly. So ee move all
terms involving y to one side and terms involving t to the other:

y
dy

dt
= t

Integrate both sides with respect to t, and the dt terms in the numerator and denominator
can be thought to cancel out (do not actually cancel them):∫

1

y

dy

dt
dt =

∫
t dt

This gives:

ln |y| = t2

2
+ C

First, exponentiate both sides to get rid of the logarithm:

|y| = e
t2

2
+C = e

t2

2 eC

To remove the modulus, simply add ± to the right-hand side:

y = ±eCe
t2

2

Since ±eC is just a constant, we can write it as A, so:

y = Ae
t2

2

Some students get confused over why A is used instead of ±A. The rationale will be
explained soon.
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Use the initial condition y = 2 when t = 0 to �nd A:

2 = Ae0 = A

So A = 2, and the solution is:

y = 2e
t2

2

■

3 Arbitrary Constants

We revisit the following portion of the above example:

Since ±eC is just a constant, we can write it as A, so:

y = Ae
t2

2

As mentioned earlier, there is often confusion surrounding the arbitrary constant; so we
dedicate a section to it.

First it would be helpful to understand why an arbitrary constant is necessary. When can
we leave the answer with an arbitrary constant (no speci�c value), and when must we �nd
the value of this constant?

Vertical Translation

To answer this question, we consider the graphical meaning behind a simple di�erential
equation dy

dx
= 2x. This tells us that when at any point on the graph, the gradient of the curve

is twice as large as its x-coordinate. Notice how we made no mention of the y-coordinate,
since the y-coordinate does not a�ect the gradient. We observe this graphically:

x

y

y = x2

(1, 1)

x

y

y = x2 + 1

(1, 2)

The graphs of y = x2 and y = x2+1 both have the same gradient of 2 at x = 1, even though
they di�er by a vertical translation (i.e. the +1 constant). In fact, a vertical translation
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by any amount will produce a function that still satis�es this di�erential equation! Imagine
shifting the graphs up and down; while the y-coordinates change, the gradients at each x
value does not. Therefore, all functions of the form y = x2 + c satis�es this di�erential
equation. All such functions are said to belong to the same �family�.

Of course, we all know that when we integrate dy
dx

= 2x, an arbitrary constant must be added.
This, is the graphical meaning behind the arbitrary constant.

General Solutions vs Speci�c Solutions

In the context of di�erential equations, a function satisfying the di�erential equation is called
a solution; and there are two types of solutions: General solutions and speci�c solutions.

As its name suggest, general solutions are general: You must give the general form of all
possible solutions, hence requiring an arbitrary constant c to denote that all curves in this
�family� satisfy the di�erential equation.

Likewise, speci�c solutions are speci�c: There is only one such function satisfying this di�er-
ential equation. This is often speci�ed by a point that the curve must pass through, which
generally restricts the set of solutions to one curve only. To illustrate, the only y = x2 + c
that passes through the point (1, 1) is the curve y = x2. Prove it yourself!

Now we come back to the previous problem, where because ±eC is just a constant, we can
write it as A, so:

y = Ae
t2

2

This question asks us for a speci�c solution, as inferred from the point (initial condition)
given. So instead of leaving the constant ±eC or A in the �nal answer, we must �nd its
value. Furthermore, because it is a speci�c solution (one solution only), this constant can
only have one value, meaning ±eC is either positive or negative; it cannot accommodate both
possibilities.

This justi�es replacing it with an unknown constant A which has only one value (be it positive
or negative). This makes the speci�c solution easier to �nd since A is de�nitely easier to
work with than ±eC , even though both refer to the same shift.
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4 One Important Tip

It is essential to maintain consistent units throughout the problem, especially when two
di�erent units measuring the same quantity appear in the question. Mixing units can lead to
incorrect results, so always ensure that all quantities are expressed in the same units before
performing any calculations.

For example, if dh
dt

(the rate of change of height) is given in cm per second, then h (height)
should not be measured in meters, but in centimeters.

Example : The Importance of Consistent Units

The height h of a liquid in a rectangular tank is increasing at a rate of dh
dt

= 5 cm/s. Find
the time taken for the height to increase by 1 meter.

Incorrect Approach: We mistakenly assume the units are consistent and proceed di-
rectly with the equation dh

dt
= 5:

t =
h
dh
dt

=
1

5
= 0.2 seconds

However, the answer is incorrect because h = 1m and dh
dt

is given in cm/s. The units do
not match.

Correct Approach: We must convert the height h = 1m into centimeters, so h = 100 cm:

t =
h
dh
dt

=
100

5
= 20 seconds

By ensuring that the units are consistent, we now obtain the correct answer. ■



CHAPTER 16

COMPLEX NUMBERS

1 Complex Number Representation

There are 3 ways to represent a complex number, namely the �cartesian�, �trigonometric�,
and �polar� forms

Cartesian form:

z = x+ iy

Where x is the real part of the number, and iy is the imaginary part. We represent this using
Re(z) = x and Im(z) = y.

Trigonometric form:

z = r(cos θ + i sin θ)

Where r is the modulus and θ is the argument.

Polar form:

z = reiθ

Where r is the modulus and θ is the argument.

These forms can be converted from one to another; di�erent forms have di�erent purposes
and provide us with di�erent information. For instance the cartesian form gives us the
real and imaginary parts, while the polar form gives us the modulus and argument. The
trigonometric form is usually an intermediate form when converting from cartesian to polar,
since the cartesian and polar forms are mainly used.
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2 Modulus and Argument

The modulus of a complex number z = x+ iy is its distance (length) from the origin in the
complex plane. It is denoted by |z| and calculated by the Pythagoras' Theorem:

|z| =
√

x2 + y2

Re

Im

z = x+ iy

x

y

θ

The argument of a complex number is the angle θ from the positive real axis to the line
representing z. The argument is denoted by arg(z) and is measured in radians. By de�nition,
the argument must fall within the range −π < arg(z) < π.

There are two important results for modulus and argument, and they provide many compu-
tational shortcuts. For complex numbers z and w:

|zw| = |z||w|

arg(zw) = arg(z) + arg(w)

All other results can be derived from these two, such as arg(zn) = n arg(z).

It is fundamental, yet crucial to realise that a complex number is de�ned uniquely by its
modulus and argument. For instance, a complex number with modulus

√
2 and argument π

4

must be equal to
√
2ei

π
4 , or 1 + i. These two forms represent the same number.

Knowing this unique correspondence also means that we can build a complex number if we
know its modulus and argument. This is really helpful when �nding complicated complex
numbers, since we can break it into two simpler problems of �nding the modulus, then �nding
the argument.

A typical H2 question goes like this:

Example : Building a Complex Number using the Modulus and Argument

z = 1 + i and w = 2
√
3 + 2i. Find z5

w2 .
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Let α = z5

w2 .

|α| =
∣∣∣∣ z5w2

∣∣∣∣ = |
√
2|5

|4|2
=

√
2

4

arg(α) = arg(
z5

w2
) = 5arg(z)− 2arg(w) =

11π

12

Thus, α =
√
2
4
ei

11π
12 is the answer. ■

Evidently, the concept of decomposing a complex number into its modulus and argument
serves as a handy shortcut when it comes to complicated numbers.

3 Important Theorems

Fundamental Theorem of Algebra: A polynomial of degree n has exactly n roots, which
may be complex or real, identical or distinct.

Conjugate Root Theorem: If the coe�cients of a polynomial are all real, then for any
complex root z = a+ ib, the conjugate z∗ = a− ib must also be a root.

It is crucial to ensure that the said conditions are met before applying the Conjugate Root
Theorem.
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4 Tips and Techniques

Understand when di�erent techniques are used

Rationalising : Rationalising is typically used for fractions containing a complex number in
the denominator. It helps to eliminate imaginary components in the denominator, so as to
isolate the real and imaginary parts.

Example : Rationalising

Find the real and imaginary parts of 1+i
1−i

.

To rationalise, multiply both the numerator and denominator by the conjugate of the
denominator 1 + i:

1 + i

1− i
× 1 + i

1 + i
=

(1 + i)2

(1− i)(1 + i)
=

1 + 2i− 1

12 − (−i)2
=

2i

2
= i

Thus, 1+i
1−i

= i. So the real and imaginary parts are 0 and 1 respectively. ■

Mod-Arg Decomposition: This method is helpful for determining complicated complex num-
bers, especially those made by multiplying or dividing multiple complex numbers. The
modulus and argument are found one at a time, then put together to �build� the complex
number. This has been covered in the previous section.

Let z = a + ib: This technique is typically used when there is only one complex number z,
and works by expanding out z and determining a and b by comparing real and imaginary
parts. If there are two or more complex numbers, such substitution is not advised since there
would be too many variables.

Example : Let z = a+ ib
Given that z + 1

z
= 2i, �nd z.

Let z = a+ ib. Then:

z +
1

z
= a+ ib+

1

a+ ib

Rationalise the denominator:
1

a+ ib
=

a− ib

a2 + b2

Substitute this into the equation:

a+ ib+
a− ib

a2 + b2
= 2i
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Now, separate real and imaginary parts:

Real part: a+
a

a2 + b2
= 0

Imaginary part: b− b

a2 + b2
= 2

Solve these equations to �nd a and b.

■

Quadratic Formula: Akin to its usual usage, quadratic equations with complex coe�cients
can also be solved using the quadratic formula. To illustrate the point, the above example
can also be solved using the quadratic formula.

Again, though these cover many techniques in the syllabus, it is not exhaustive. The point
here is that a �rm understanding of how and why each technique works is essential to deploy
them appropriately.

Double check that your argument falls within range

By de�nition, the argument of any complex number must fall in the interval (−π, π]. This is
to ensure that no angle is �repeated�: For instance π

5
and 11π

5
describe the same angle on the

argand diagram.

If your argument is out of range, add or subtract 2π repeatedly until the argument falls
within range.

If unsure, draw the Argand Diagram

When dealing with modulus and arguments, drawing the argand diagram can help to visualise
the modulus and argument much clearer, making them easier to be determined.

For example, it might be challenging to �gure out the argument of z = −3 − 5i. The best
method here would be to draw out the argand diagram, then use ASTC (the four quadrant
method from A Math) to solve for the argument.
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5 Conclusion

Checkpoint to Test Understanding

This is a checkpoint to see if you have any gaps in your understanding. Listed below are a
few facts; if you do not understand why they are true, consider reading some of the above
parts in further detail.

� |eiθ| = 1 for any θ

� | cos θ + i sin θ| = 1 for any θ

� z∗ = 1
z
when |z| = 1

� arg(zw) = arg(z) + arg(w)

� |zn| = |z|n

� If z = reiθ, then the conjugate z∗ = re−iθ

� cos θ = eiθ+e−iθ

2
(Not required, but you should be able to derive it)

� zz∗ = |z|2

Links and Extensions beyond the Syllabus

Complex numbers have strong ties to Vectors, Geometry, and Trigonometry, and should not
be viewed as an isolated topic.

Complex numbers are very useful to describe 2D rotations, which is not surprising, consider-
ing that multiplying two complex numbers sum their arguments. Complex numbers can even
be extended to describe 3D rotations, using a type of number called �quaternions�. This is
de�nitely beyond the syllabus, but I encourage you to explore further if it interests you!



CHAPTER 17

VECTORS

1 Two Types of Vectors

Vectors can be thought of as a path between two points in space. Unlike scalars, which
only have magnitude (e.g. speed, distance), vectors have both magnitude and direction (e.g.
velocity, displacement). Vectors come in two main types: position vectors and free vectors.

Position vectors start from the origin and point towards a speci�c location in space. A
position vector describes the location of a point relative to the origin, so we only look at
them when the coordinates of a point is concerned.

Free vectors do not have a speci�c starting point. They describe a direction and magnitude
of travel, but they can be placed anywhere in space. The direction vector of a line, normal
vector of a plane, or the projection of one vector one another; these are all free vectors.
Where we put them does not matter.
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2 Magnitude and Direction

All vectors can be broken down into two components: their magnitude and their direction.
We can depict this using the trivial formula:

v = |v| v̂

The magnitude of a vector is its length and is usually denoted by |v|. Since it represents
length, it can never be negative.

The direction of a vector is described by a unit vector that points in the same direction as
the original vector but has a magnitude of 1. The notion of a unit vector is very important,
and will be covered in further detail soon.

The unit vector of v is denoted by v̂, and it is obtained by dividing the vector by its
magnitude:

v̂ =
1

|v|
v

A unique vector can be described by its magnitude and unit vector. For example, a vector
of magnitude 5 with a unit vector

〈
3
5
, 4
5
, 0
〉
must result in the vector v = ⟨3, 4, 0⟩.



106 Vectors

3 Resolving a Vector

c

a

b

Like how we can add two perpendicular vectors a and b tip-to-tail to give a vector c, likewise
we can decompose c into a and b. We call this resolving a vector, where a and b are called
the components of c. Each component is itself a vector.

We often use resolving as we are usually more concerned of one component but not the
other. For example in Physics, where we resolve a force (vector) F and into its horizontal
and vertical components to analyse them separately.

The horizontal component is given by:

F cos θ

The vertical component is given by:
F sin θ

Notice we intentionally omitted the modulus, since the components are vectors and not
lengths.

These components form the sides of a right-angled triangle with F as the hypotenuse.

F

F cos θ

F sin θ

θ

This concept of resolving will help greatly in understanding all subsequent results.
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4 Dot Product

We are all too familiar with the dot product. Given two vectors a and b separated by an
angle θ:

a · b = |a||b| cos θ

But besides knowing how to compute a dot product, do we know what it is measuring?

Consider the formula for the Body Mass Index (BMI = m
h2 ). Beyond knowing how to compute

it, we also know what it is measuring: a rough index to indicate how �t one is.

Likewise, we also ought to know what the dot product is measuring. To make things clear
we use a simple example, taking the dot product of the vector a and the unit vector i.

a

i

θ

|a|

|a| cos θ
θ

Computationally:
a · i = |a||i| cos θ = |a| cos θ

From the diagram we can clearly see that the result of the dot product, |a| cos θ, is exactly
the component of a that is in the same direction as i.

We may start to develop an intuition that the dot product represents how aligned two vectors
are. So now we look at the dot product formula again: a · b = |a||b| cos θ.

On the right-hand side, |b| simply represents the length of vector b, while |a| cos θ represents
the length of the component of vector a that is in line with b. Multiplying them gives the
product of the length of these two components.

The more aligned a is with b, the larger |a| cos θ is, hence a larger dot product. Meanwhile
if a and b are perpendicular, no component of a aligns with b, rendering a zero dot product.
Thus, dot products should be thought of as how closely two vectors align.
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5 Projections

Projections can be understood as the �shadow� one vector casts onto another. Using a similar
example as before, we project a onto b, naming this projection vector p:

a

b

θ

a

p
θ

Notice that the length of b did not a�ect the projection p in any way. b could have been
longer or shorter, but p will remain exactly the same. Only the direction of b is involved in
the projection of a onto b.

Mathematically, the projection of vector u onto vector v is given by:

Projv(u) = (u · v̂)v̂
Let's try to break down the formula to interpret the meaning of each part.

� Firstly we look at the terms: (u · v̂) is a scalar, while v̂ is a vector.

� The vector v̂ should be easier to understand, since we should expect the projection of
u onto v to have the same direction of v. This is the direction of the projection vector.

� Next, the dot product (u · v̂), like we saw earlier, simply gives the length of u that is
in line with v. This is the exact magnitude of the projection vector.

In section 2 we mentioned how a vector is composed of a magnitude and direction, so we put
them together to �nd:

Projv(u) = (u · v̂)v̂
I want to make a special emphasis on why we use v̂ for the direction, and not any other
vector like v. While both of them have the same direction, v̂ is the only such vector that has
a magnitude of 1, so multiplying it with (u · v̂) does not alter the magnitude of the projection
vector. Any other vector in the same direction will change the magnitude.

Once you grasp the concept of projections, many other parts of vectors come naturally. In the
H2 syllabus, projections are used to �nd many things, especially shortest distances between
two items, be they planes, lines or points.
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6 Cross Product

The cross product is another operation we can perform on two vectors, but unlike the dot
product, the result of a cross product is a vector rather than a scalar.

By de�nition:

a× b = |a||b| sin θ n̂

where:

� |a| and |b| are the magnitudes of the vectors,

� θ is the angle between them, and

� n̂ is a unit vector perpendicular to both a and b, following the right-hand rule.

The magnitude of the cross product |a× b| represents the area of the parallelogram formed
by the two vectors a and b.

The right-hand rule helps determine the direction of the resulting vector: curl your right
hand's �ngers from a to b, and your thumb will point in the direction of the resulting vector.

a

b

θ

Area

The cross product measures two things:

� The magnitude |a||b| sin θ gives the area of the parallelogram formed by the two vectors.
This can be thought of as two congruent triangles, each with areas 1

2
|a||b| sin θ.
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� The direction is given by the vector perpendicular to both a and b.

The cross product can be thought of as measuring the perpendicularity between two vectors;
the more perpendicular two vectors are, the larger the resultant area.

The fact that the resultant vector perpendicular to both a and b is also extremely helpful,
for example �nding the normal vector to a plane, given two (non-parallel) vectors that lie on
the plane.

The exact mechanics of how cross products work is not covered in the syllabus, but it is
rather elegant. So I will just make a brief mention of it, for those who may be interested.
An alternate way to de�ne the cross product is through the determinant of a matrix.

For example, given vectors a = ⟨1, 0, 0⟩ and b = ⟨0, 1, 0⟩:

a× b =

∣∣∣∣∣∣
î ĵ k̂
1 0 0
0 1 0

∣∣∣∣∣∣
It just so happens that the determinant of a matrix represents the area scale factor of the
linear transformation described by the matrix. Is it a coincidence that both the determinant
and the cross product deal with area? Probably not. Vectors and matrices do not just look
alike; they are intrinsically interwoven. If you are interested, 3Blue1Brown has an amazing
series covering this on YouTube! (Disclaimer: Most of it is not in the syllabus)

7 Two Types of Questions

The H2 syllabus primarily has two types of vectors questions: One that I will call �algebraic�,
while the other is �application�. A �rm understanding in all vector operations (why they are
used, how they are used, what they measure, and so on) is crucial for both question types;
however there are some key di�erences in their nature.

Application Questions

This type of question deals mainly with the applications of vectors in real-world contexts,
hence they appear together with a story most of the time.

Example : Application Question

Question: A ship is located at point A(2, 3, 5) and must travel to the line r = a + λb,

where a =

4
4
0

 and b =

 2
1
−1

. What is the length of the shortest path that the ship

can take from point A to the line? ■
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Such questions provide you with a handful of information, like the coordinates of certain
points or equations of certain lines, then has a few details you need to �nd. This could be
the shortest path from some point to another, or the coordinate of another point.

The tools required here have been covered to some degree in the preceding sections, especially
that of projections, a concept key to this question type. Needless to say, being able to utilise
projections appropriately is often key to solving these questions.

Algebraic Questions

These questions usually appear like algebra questions and require you to manipulate them
like an algebraic equation. Usually, there is no story attached to it; and the operations
are much cleaner than the �application� questions, in that less column vectors have to be
computed, etc.

Example : Algebraic Question

Given two non-parallel vectors p and q are related by (p × q) · (p × q + q) = 9. Find
|p× q|. ■

Questions like these focus more on the algebraic manipulation of vectors, rather than how
they are applied in the real world. So, vector-algebra operations are key to solving these
problems.

These concepts include, but are not limited to:

� All of the above operations like the dot and cross

� Commutative property of dot products, but a× b = −b× a

� Associativity of dot products

� Distributive property of dot and cross product

� a · a = |a|2

� a× a = 0 (Note that this is not zero, but the zero vector)

� (a× b) · a = 0 (Why is this true? Is 0 the zero vector or the scalar zero?)
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PERMUTATIONS AND COMBINATIONS

1 Overview

Permutations and combinations are fundamental concepts in counting and probability, allow-
ing us to determine how many ways objects can be arranged or grouped. The key di�erence
between them is whether order matters: order matters in Permutations, but not in Combi-
nations. This point will be expanded in later sections.

We will �rst build the intuition from the basic principles of counting and then explore various
forms of permutations and combinations.

2 Addition and Multiplication Principles

Addition Principle: If we have two tasks, and one can be done in m ways and the other in n
ways, and they are mutually exclusive (i.e. you can only do one or the other), then the total
number of ways to do either task is m+ n.

Example : Addition Principle

To go to work, John can choose between taking 2 trains or 3 di�erent buses. How many
di�erent routes can he take?

The number of choices for trains = 2.
The number of choices for buses = 3.
Since the choices are mutually exclusive, we sum them. Thus, the total number of routes
is 3 + 2 = 5. ■
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Multiplication Principle: If one task can be done in m ways and another task can be done
in n ways, and both tasks need to be done in succession, then the total number of ways to
perform both tasks is m× n.

Example : Multiplication Principle

Max can choose either a red, blue, or green shirt, and then pair it with a black or blue
pair of jeans.

The number of choices for shirts = 3.
The number of choices for jeans = 2.
Since the shirt and jeans are chosen in succession, we multiply them. Thus, the total
number of out�ts is 3× 2 = 6. ■

3 Permutations

A permutation is an arrangement of objects where the order matters. An example of a per-
mutation would be a queue, where each person in line has a speci�c position; the arrangement
of the queue would be changed if two people were to swap positions.

In the syllabus, there are only a handful of question types; we will go through them below.

Permutations with No Restrictions

If we have 6 (distinct) people and we want to arrange them in a queue, there are 6 ways to
assign the �rst position, 5 ways to assign the second position (since one person is already
assigned), and so on. The total number of ways to arrange these 6 people is:

6× 5× 4× 3× 2× 1 = 6! = 720

Now, consider the case where we don't use all of the people. Suppose we want to arrange 4
people from a group of 6 people in a queue. Using the same logic as above, we have:

6× 5× 4× 3 =
6× 5× 4× 3× 2× 1

2× 1
=

6!

(6− 4)!
= 6P4 = 360

Thus, nPr is the number of ways to arrange r objects from a set of n distinct objects and is
given by:

nPr =
n!

(n− r)!
= n× (n− 1)× · · · × (n− r + 1)

Permutations with Identical Objects

When objects are not all distinct, we would have to make slight changes to the formula.



114 Permutations and Combinations

Let's consider 6 markers: 3 red, 1 blue, 1 green and 1 yellow. To illustrate the change, we
�rst assume the red markers are labeled as distinct: R1, R2, and R3.

Since the red markers are distinct, we can arrange the 6 markers in 6! ways. Let's focus on
some permutations where only the red markers R1, R2, and R3 swap places among themselves.
Here are 6 di�erent permutations:

R1, R2, R3, B,G, Y R1, R3, R2, B,G, Y

R2, R1, R3, B,G, Y R2, R3, R1, B,G, Y

R3, R1, R2, B,G, Y R3, R2, R1, B,G, Y

Each of these arrangements is distinct because the red markers are labeled R1, R2, and R3.
So, permuting them among themselves results in di�erent permutations.

In reality, the red markers are identical, labeled simply as R, so the above 6 permutations are
actually the same arrangement R,R,R,B,G, Y . In other words, we are counting the same
arrangement multiple times because swapping the red markers among themselves does not
create a new arrangement.

We have over-counted the permutations 6 times, as there are 3! = 6 ways to arrange the
red markers among themselves. To correct this over-counting, we divide by the number of
ways the identical red markers can be arranged among themselves, which is 3!. This gives
the correct number of distinct arrangements:

6!

3!
=

720

6
= 120

This idea generalises to account for any number of identical objects.

Example : Permutations with Identical Objects

Given 3 green, 6 blue and 2 red pens, how many ways are there to arrange them in a row?

Total no. of objects = 3 + 6 + 2 = 11
No. of ways = 11!

3!6!2!
■

Permutations in a Circle

For circular arrangements, the arrangement is considered the same even when rotated.

Consider 4 people P1, P2, P3, and P4 seated around a circle. Rotating the circle does not
produce a new arrangement, as everyone simply shifted but retain the same relative positions.
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P1

P2

P3

P4

Original Arrangement

P2

P3

P4

P1

Rotated Arrangement

As we can see, the second arrangement is just a rotation of the �rst one. Since everyone main-
tained the same relative positions (e.g. P1 is still to the right of P2), the two arrangements
are considered identical.

This suggests that the original permutation formula nPr has to be modi�ed slightly again
to prevent over-counting rotations of the same arrangement. There are two perspectives to
understand this change.

Perspective 1: Suppose we arrange 6 people in a circle. We �rst permute them without
accounting for the rotation of the table, e�ectively arranging them in a line, which means
there are 6! arrangements.

Now accounting for rotation, each rotation of the circle results in the same arrangement. This
means we have to divide by the number of times we can rotate (since that is the number of
times we have over-counted rotations of the same arrangement). This is equal to the number
of seats, since everyone can be moved down by this number of times before moving back to
the starting arrangement. Hence, the number of distinct circular permutations is:

6!

6
= 5!

In general, the number of ways to arrange n distinct objects in a circle of r spots is
nPr

r
.

Perspective 2: There is only 1 way to assign the seat to the �rst person, since all seats are
identical when nobody is seated yet.

After the �rst person sits down, the seats now become distinct, since they di�er in relative
position to the �rst person. Thus we permute everyone else normally, where number of ways
is 5!.

In general, the number of ways to arrange n distinct objects in a circle is (n− 1)!.
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What happens when we only require r objects from n to be arranged? We would have to
choose r objects �rst, then permute them. The general formula is nCr × (r − 1)! which is
mathematically identical to the formula in Perspective 1. The idea of choosing is covered
later on.

Permutations with Restrictions

Restrictions are essentially added conditions that forbid certain permutations, so we have to
�nd a systematic approach to exclude these forbidden arrangements. Restrictions can come
in any form; some restrictions include:

� Two objects cannot be adjacent.

� Two objects must be adjacent.

� Certain objects must take on certain positions.

� Two objects cannot appear in the same arrangement.

� At least x number of objects of a type must appear.

In most cases, restrictions will appear in conjunction with conditions like identical objects
and arrangement in a circle. To e�ectively tackle these questions, we must equip ourselves
with appropriate strategies. These techniques will be covered in a later section.

4 Combinations

A combination is a selection of objects where the order does not matter. This is di�erent
from permutations because we do not care about the arrangement, only the group itself. An
example of a combination would be a bag of marbles; even if two marbles swapped position
in the bag, it is still the same bag of marbles.

Like Permutations, the syllabus only has a handful of question types on Combinations.

Combinations with No Restrictions

To understand Combinations, we �rst consider Permutations. Suppose we want to know how
many ways we can group 3 people from a set of 6 people.

We �rst calculate the permutations (as if the order mattered):

6× 5× 4 = 6P3 = 120

For illustration, consider the 6 following permutations:
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P1, P2, P3 P1, P3, P2

P2, P1, P3 P2, P3, P1

P3, P1, P2 P3, P2, P1

Notice that even though these are 6 di�erent permutations, they are in fact the same combi-
nation since the members in the group are the same. This means that for every 1 combination
we have 6 permutations. More generally, for every group of r distinct members we have r!
permutations, since there are r! number of ways to permute these r distinct members within
the group.

Hence, we must divide by the number of ways to arrange these 3 people among themselves
(which is 3!):

6P3

3!
=

120

6
= 20

By the above explanation we have that:

nPr = r!× nCr

since for every 1 combination of r distinct objects we have exactly r! permutations.

It follows that:
nCr =

nPr

r!
=

n!

r!(n− r)!

This formula gives the number of ways to choose r objects from a set of n distinct objects
where the order does not matter.

Important Note: There are two situations where combinations can be applied:

1. Choosing r objects out of n distinct objects to form a group.

2. In a row of n objects, choose r objects to be of one type, while all remaining objects
are another type by default. There must be exactly two types.

Example : Choosing in a Row

In a row of 12 red and blue balls, how many arrangements contain exactly 7 blue balls?

No. of arrangements = 12C7

This is because out of 12 balls, we choose 7 to be blue while the rest are red by default.

Alternatively, no. of arrangements = 12C5

Since we can also choose 5 balls out of 12 to be red, while the rest are blue by default.

Notice that both methods produce the same result: they are mathematically identical,
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hence the result:
nCr =

nCn−r

Choosing r objects to include in a group is the same as choosing (n−r) objects to exclude
from the group. ■

Forming Groups

Combinations often involve arranging objects into di�erent groups. Special care must be
taken when considering if the groups are distinct or identical.

Consider the grouping of 9 distinct books.

Example : Groups of 2, 3, and 4

Number of ways = 9C2 × 7C3 × 4C4

Because after choosing 2 books for the �rst group, we are left with 7, and so on.

Also, notice that the order of grouping does not matter (i.e. we can pick the group of 4
�rst as well):
Number of ways = 9C4 × 5C2 × 3C3

This yields the same result.

Chronology does not matter when grouping in this manner. ■

In the above case, the groups are clearly distinct, since a group of 4 is di�erent from a group
of 2. Now we consider identical groups.

Example : Three groups of 3

Number of ways = (9C3 × 6C3 × 3C3)÷ (3!)

Let's see why the ÷(3!) is necessary:
Treating all 3 groups as distinct initially, there would be (9C3 × 6C3 × 3C3) ways to group
the 9 books into 3 distinct groups. However, the groups are identical in reality, so we have
actually over-counted the number of ways 3! times, which is the number of ways the 3
groups can be permuted among themselves. Thus we divide by 3!. ■

This is the same way we accounted for identical objects. In some sense, groups are also
objects that should be accounted for when they are identical.

Choosing in Succession
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A binary number is where each digit is either a 0 or 1; how many binary numbers of 16 digits
can we form?

Perspective 1: We take a walk down the line, starting from the �rst digit. At each digit, we
have exactly 2 choices, either a `0' or `1'. So for the �rst digit we have 2 choices, for the
second digit we also have 2 choices. This repeats till the last digit where we have 2 choices.

These 16 rounds of choosing occurred in succession, so we have 2 × 2 × · · · × 2 = 216 such
binary numbers.

Perspective 2: We consider mutually exclusive cases, that is, where there is exactly zero
`1's, where there is exactly one `1', where there is exactly 2 `1's, and so on.

For the case of zero `1's, no. of ways = 16C0

For the case of one `1', no. of ways = 16C1

For the case of two `1's, no. of ways = 16C2

This is repeated for all 17 cases, afterwards we sum to get:
Total number of ways = 16C0 +

16C1 +
16C2 + · · ·+ 16C16 = 216

Notice the previous line where the binomial coe�cients summed up to yield a neat result. It
is no coincidence.

nC0 +
nC1 + · · ·+ nCn =

(
n

0

)
(1)0 +

(
n

1

)
(1)1 + · · ·+

(
n

n

)
(1)n = (1 + 1)n

In fact, the principles that de�ne combinations is the very backbone of the Binomial Theorem.

Combinations with Restrictions

Restrictions are essentially added conditions that forbid certain groupings, so we have to �nd
a systematic approach to exclude these forbidden combinations. Restrictions can come in
any form; some restrictions include:

� Two objects cannot appear in the same group.

� Two objects must appear in the same group.

� At least x number of objects of a type must appear in the group.

In most cases, restrictions will appear in conjunction with conditions like forming groups or
choosing in succession, or even together with any of the conditions from Permutations. To
e�ectively tackle these questions, we must equip ourselves with appropriate strategies. These
techniques will be covered very soon.
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5 Solving Techniques

When faced with more complex problems, especially those involving restrictions, the following
techniques can be used to simplify the problem and arrive at a solution more e�ciently. These
methods allow us to break down problems into more manageable parts.

Complements

Complements is an extremely useful technique, especially when it is easier to �nd the exact
opposite (or complement) of a situation. Instead of calculating the total number of ways
directly, we calculate the number of ways for the opposite scenario, and subtract it from the
total possible number of outcomes.

Example : Complements

Suppose we want to count how many 5-digit numbers can be formed using the digits 1
through 9, where 7 appears in at least one position. Instead of directly calculating the
valid numbers, we can �nd the total number of possible 5-digit numbers without any
restrictions and then subtract the cases where the digit 7 does not appear.

Total number of 5-digit numbers without restrictions:
95 = 59049

Number of 5-digit numbers where 7 is not used:
85 = 32768

Thus, the number of 5-digit numbers where 7 appears at least once is:

59049− 32768 = 26281

■

The complement approach is especially useful when the complement (the opposite case) is
easier to compute than the desired case itself.

Grouping

Grouping is a powerful technique to tackle questions with restrictions where certain objects
must remain together. For example, if two or more objects must stay adjacent, we treat these
objects as a single �group�.

Example : Grouping

Consider a problem where 6 people need to be arranged in a row, but person A and person
B must sit next to each other. Instead of treating them as individuals, we group A and
B together as one group, so now we are arranging 5 objects: 4 individuals and one group
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(containing A and B). The number of ways to arrange these 5 objects is:

5! = 120

Within the group, the 2 people can swap positions, so we multiply the number of arrange-
ments by 2! (since there are 2 ways to arrange them within the group):

120× 2! = 240

Thus, there are 240 ways to arrange the people such that the two speci�c individuals are
adjacent. ■

Notice that by grouping them, we are guaranteed to satisfy the condition of the question
where they must stay together. At the same time, do not forget that objects within a group
can also be permuted.

Slotting

Slotting is a technique useful for problems where two or more objects must not be adjacent.
We �rst arrange one group (usually the non-restricted group) and then �slot� the second
group into available spaces to ensure that the restriction is satis�ed.

Example : Slotting

Suppose we need to arrange 4 boys and 3 girls in a row, but the boys and girls must
alternate. First, we arrange the 4 boys, which gives us:

4! = 24 ways

Next, we slot the 3 girls into the spaces between the boys (there are exactly 3 slots available
between 4 boys). The number of ways to arrange the girls in these slots is:

3! = 6 ways

Thus, the total number of ways to arrange the boys and girls alternately is:

24× 6 = 144 ways

■

Slotting is particularly useful when you need to prevent certain objects from being adjacent,
since you manually separate the objects.

Cases

When the number of ways to achieve a solution isn't consistent, it's helpful to split the
problem into cases. We break down the problem into mutually exclusive cases and then sum
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the number of ways for each scenario.

Example : Cases

Suppose we need to select a committee of 3 people from a group of 8 men and 5 women,
but the committee must include at least 1 woman. To solve this, we split the problem into
cases based on the number of women selected:

Case 1: 1 woman and 2 men (
5

1

)
×
(
8

2

)
= 5× 28 = 140

Case 2: 2 women and 1 man (
5

2

)
×
(
8

1

)
= 10× 8 = 80

Case 3: 3 women (
5

3

)
= 10

Total number of ways to select the committee:

140 + 80 + 10 = 230

■

Using cases allows us to break down the problem into manageable parts where the conditions
are consistent within each case.

Combining Techniques

Often, these techniques are used in conjunction with one another to solve more complex prob-
lems. For instance, we may use grouping alongside slotting, or we may use the complement
technique in conjunction with cases to exhaust all possibilities.

Example : Combining Techniques

8 people are to be seated in a row, but A and B must sit next to each other, while X and
Y cannot sit next to each other.

Step 1: Use grouping to treat A and B as a single group, so now we are arranging 7 objects
(6 individuals and the group).
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Step 2: Use slotting to ensure that X and Y do not sit next to each other. First, arrange
the remaining objects, and then slot the restricted individuals to satisfy the condition.

By combining these techniques, we ensure that the restrictions are met. ■

More Advanced Techniques (That the syllabus does not exactly require)

� Symmetry: Useful for simplifying problems by recognizing symmetrical cases that can
be grouped together.

� Recursion: Some problems can be broken down into smaller sub-problems that follow
the same structure. This is often useful in advanced counting problems.

� Inclusion-Exclusion Principle: In situations where objects have overlapping re-
strictions, this principle helps to calculate the total number of ways by adding and
subtracting the cases appropriately.

These techniques (complements, grouping, slotting, and cases) cover a large portion of solving
strategies for permutations and combinations problems. Do also remember that most prob-
lems have multiple approaches, but we want to �nd the most e�cient one. Problem-solving
often requires �exibility and creativity.

With these core techniques in hand, you should be well-prepared to tackle most combinatorial
problems in your syllabus.

6 Tips and Ideas

� Understand Each and Every Operation

It is essential to understand both how to apply the formulae, and why we apply them in
a particular way. For instance, why do we multiply in certain cases and add in others?
Why do we choose in some situations and permute in others?

Each step in a permutations or combinations problem involves selecting objects from a
set and arranging or grouping them in a particular way. At each step, you need to ask
yourself: How many objects am I picking? How many options am I picking from?

Memorizing formulas is not enough�many problems require adapting the logic behind
a formula to a new context. For example, a problem might require selecting items from
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a group but involve a condition that modi�es how they are arranged. Knowing the why
behind each formula will allow you to adapt your approach in novel situations.

� Approach Questions Like You Are Telling a Story

One way to ensure that your approach is logical is to approach each problem as if you
are telling a story. Each step of the story may be associated with a number of ways.

Example : Selecting and Arranging People for a Movie

From a group of 5 men and 7 women, 2 men and 4 women are selected to watch a
movie. The two men must not sit next to each other. How many ways can this be
done?

First, we select 2 men from 5 and 4 women from 7:

5C2 =
5× 4

2× 1
= 10, 7C4 =

7× 6× 5× 4

4× 3× 2× 1
= 35

Total number of ways to select 2 men and 4 women = 10× 35 = 350.

We now arrange the 4 women in a row. Since no restrictions are placed on their
seating:

4! = 24

Total number of ways to arrange the women = 24.

The 4 women create 5 available slots (one before the �rst woman, between the
women, and one after the last woman). Since the two men must be separated, we
choose 2 of these 5 slots to place the men:

5C2 =
5× 4

2× 1
= 10

Now, we multiply all the steps together:

350× 24× 10 = 84000

Thus, there are 84,000 ways to select and arrange the men and women such that the
two men are not sitting next to each other. ■

If the story makes sense and �ows logically, it is likely that your method is correct.
If something feels o�, there may be a logical gap in your reasoning. This storytelling
approach helps to break down complex problems into simpler, logical steps and ensures
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that no steps are skipped or done out of order.

� Be Sensitive Toward the Nuances

Many problems in permutations and combinations hinge on subtle distinctions. For
example, are the objects distinct or identical? Does the order of selection matter? Is
this a case where we are choosing or permuting?

Example : Choosing Representatives

From a class of 6 boys and 4 girls, a representative has to be chosen for Maths,
English, and Science. How many ways can the representatives be chosen such that
there is at least one boy and one girl?

What are the nuances here? What is distinct and what is identical? What requires
choosing and what requires permuting? ■

Before even starting to solve a problem, identify these conditions clearly. Misunder-
standing a single condition�such as whether the objects are distinct�can completely
change the outcome. Techniques like grouping, slotting, or using cases rely on these
nuances, so ensuring that you understand the precise nature of the problem is crucial.

� Do Not Isolate Permutations from Combinations

Permutations and combinations are often intertwined. Many problems require both in
a single solution. For instance, a problem may �rst require you to select objects (a
combination), and then arrange those selected objects (a permutation).

Don't think of them as separate topics but as di�erent tools to solve counting problems.
The key is knowing when to choose and when to arrange. Misapplying a permutation
when a combination is needed�or vice versa�can lead to incorrect answers, so always
double-check what is being asked: Am I selecting? Or am I arranging?

� Always Verify with Smaller Numbers

If you ever feel unsure about a solution, verify it with smaller numbers. For example,
if you're working on a problem with a large number of objects, try solving a simpler
version with just 2 or 3 objects. This helps you see whether the logic you've applied
holds in the simpli�ed version. If it does, you're likely on the right track.

Simplifying the numbers makes it easier to visualize or count the arrangements manu-
ally, which can help build con�dence in the approach.



126 Permutations and Combinations

� Break Down Large Problems into Sub-Problems

Sometimes a single problem can seem overwhelming due to the number of objects or
conditions. In such cases, break the problem into smaller sub-problems.

For example, if you're arranging objects with multiple restrictions, deal with one re-
striction at a time, and use techniques like grouping or slotting. Then, gradually build
up to the full solution.

� Look for Symmetry and Redundancy

Some problems can be made easier by identifying symmetrical cases or redundant com-
putations. For instance, when arranging identical objects, be mindful that di�erent
permutations may result in the same arrangement. This insight helps you avoid over-
counting.

Similarly, problems involving circular arrangements often have rotational symmetry,
meaning that di�erent rotations of the same arrangement are identical. Use this to
reduce the complexity of your calculations.

� Pay Attention to Special and Boundary Cases

Always consider special or boundary cases that can change the outcome of a problem.
For example, when choosing or arranging objects, ask yourself: What happens when
the number of objects chosen is 0 or the maximum number possible?

Example : Where a Special Case is to be Neglected

How many non-empty subsets of the set {1, 2, 3, 4, 5}?

Here the answer is 25 − 1 where 1 is subtracted since the subset cannot be empty.
■

By thinking about the extremes, you ensure that your solution covers all possibilities.

� Check for Double-Counts

A common mistake in permutations and combinations is accidentally counting the
same arrangement multiple times. This happens frequently when there are overlapping
conditions or when the problem involves identical objects. To avoid this, it's crucial to
ensure that each combination or arrangement is counted only once.
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Let's consider the following example:

Example : Checking for Double-Counting

A committee of 7 people is to be formed from a group of 4 women and 5 men. The
requirement is that the committee must have at least 3 women and at least 3 men.

Incorrect Approach:

One might attempt to solve this by:
1. Choosing 3 women from the 4 women:

4C3 = 4

2. Choosing 3 men from the 5 men:

5C3 = 10

3. Then choosing the 7th member from the remaining 3 people (1 woman and 2
men):

3C1 = 3

Multiplying these together:
4× 10× 3 = 120

While this looks correct at �rst glance, it is actually over-counting the scenarios.

Let's take a speci�c example:
Suppose the 3 women chosen are W1,W2,W3.
The 3 men chosen are M1,M2,M3.
Now, choosing W4 as the 7th member will give one valid committee.

However, if you had �rst chosen W1,W2,W4 as the 3 women and M1,M2,M3 as the
men, and then chosen W3 as the 7th member, you would have ended up with the
exact same committee.

This means the same committee is being counted more than once, which leads to an
over-count.

Correct Approach:

Instead of the above, we can break the problem into two cases:
1. Case 1: Choose 3 women and 4 men.

4C3 ×5 C4 = 4× 5 = 20
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2. Case 2: Choose 4 women and 3 men.

4C4 ×5 C3 = 1× 10 = 10

Adding the two cases together:

20 + 10 = 30

Thus, the total number of ways to form the committee is 30.

By considering both cases separately and avoiding the extra step of choosing one
more member from the remaining group, we prevent the problem of double-counting.

■

Being able to generate examples like the above W1,W2,W3,M1,M2,M3,W4 is helpful
in picking out faults in your method. This is a skill that can help you visualise the
validity of your logic.
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Connecting The Dots
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CHAPTER 19

POLYNOMIALS

1 Overview

Algebra and polynomials are foundational to the H2 syllabus, yet they are not covered explic-
itly since they do not hold much content in themselves, that are relevant to the H2 syllabus.
Thus I dedicated a chapter here to run through all the important bits that you and I use
every so often.

I personally love polynomials, as they are one of the easiest functions to deal with. They are
easy to di�erentiate and integrate, we can easily �nd the output of a speci�c input, and we
know its behaviour at extreme values.

Consider a polynomial f(x) = 4x3 + 5x− 2, and another function like g(x) = csc(x). Which
is easier to �nd? f(3) or g(3)? f ′(x) or g′(x)?

∫
f(x) dx or

∫
g(x) dx? The answer is clear.

In all, polynomials are just easy to manipulate and predict.

This is also the exact purpose of the Maclaurin Series, or more generally the Taylor Series.
That is, to express complicated functions as polynomials, simply because polynomials are
much easier to work with.

Small angle approximations also exploit the proximity of trigonometric functions with lower-
order polynomials at small values to get approximations precise to a few decimal places.

You get the idea. Polynomials encompass great potential and applications, thus we de�nitely
need to look at it in more detail.

130
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2 Factorising

Factorising to polynomials is like a pen to a piece of paper, whatever that may mean. Without
a pen, a piece of paper can only do so much.

Factorising is crucial in determining roots, inequalities, cancelling unwanted terms, simplify-
ing expressions, comparing factors, and so much more. It just makes expressions nice to look
at. The question should be �how�, not �why� we factorise. Below I summarise some tools to
help you factorise your expressions.

Common Factorisations

These are the ones ought to be committed to memory, and should be recognised at the �rst
opportunity.

a2 + 2ab+ b2 = (a+ b)2

a2 − 2ab+ b2 = (a− b)2

a2 − b2 = (a+ b)(a− b)
a3 + b3 = (a+ b)(a2 − ab+ b2)
a3 − b3 = (a− b)(a2 + ab+ b2)

Grouping

Look for terms that share common factors or structures. Group terms together, factor out
the common factors, and simplify.

Example : Factor by Grouping

Consider the expression x3 − x2 + x− 1. We can group the terms:

(x3 − x2) + (x− 1) = x2(x− 1) + 1(x− 1)

Then, factor out (x− 1):
(x− 1)(x2 + 1)

■

Completing the Square

Completing the square is a method used to simplify quadratic expressions and is especially
useful for solving quadratic equations. We can also use it to determine the factors of a
quadratic equation.
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For example, to complete the square for x2 + 6x+ 5:

x2 + 6x+ 5 = (x+ 3)2 − 9 + 5 = (x+ 3)2 − 4

Example : Solving by Completing the Square

Solve x2 + 6x+ 5 = 0 by completing the square.

x2 + 6x+ 5 = (x+ 3)2 − 4 = 0

(x+ 3)2 = 4

x+ 3 = ±2

x = −3± 2

∴ x = −1 or x = −5

■

Alternatively, we can apply the a2 − b2 formula to get the factorisation (x+ 5)(x+ 1).

To use this e�ciently, please be clear on how �completing the square� works. You are literally
creating a square by inserting (adding or subtracting) a term required to complete the square.
Of course, you must make up for this elsewhere (subtracting or adding).

This is important so I use one more example. We all know that (x+ 1)2 = x2 + 2x+ 1.

Consider the expression x2 + 2x− 3. We want to create the term x2 + 2x+ 1 because it is a
square. So we add 1 (and to make up for it we need to subtract 1).

x2 + 2x− 3 = (x2 + 2x+ 1)− 1− 3 = (x+ 1)2 − 4

Only complete the square by adding and subtracting constants! While you can technically
complete the square with variables, the �nal expression often serves you no use.

x2 + 2x− 3 = (x2 + 2x+ 2x+ 4)− 2x− 4− 3 = (x+ 2)2 − 2x− 7

Evidently, this expression has only brought us further from the solution, since we cannot
determine any factors from it. We do not want variables outside the square, since they are
very messy to deal with.

Quadratic Formula

The quadratic formula is a method for solving any quadratic equation ax2 + bx+ c = 0.

x =
−b±

√
b2 − 4ac

2a

This formula is a byproduct of completing the square; a shortcut derived from it.
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Example : Solving by Quadratic Formula

Solve 2x2 + 3x− 5 = 0 using the quadratic formula.

Here, a = 2, b = 3, and c = −5.

x =
−3±

√
32 − 4(2)(−5)

2(2)
=

−3±
√
9 + 40

4
=

−3±
√
49

4

x =
−3± 7

4

∴ x =
4

4
= 1 or x =

−10

4
= −2.5

■

The discriminant, ∆ = b2 − 4ac, plays a crucial role in determining the nature of the roots:

� If ∆ > 0, the equation has two distinct real roots.

� If ∆ = 0, the equation has one real root (a repeated root).

� If ∆ < 0, the equation has no real roots.

The above conditions are often taken for granted. Do we know why they are true?

The discriminant appearing within the square root is no coincidence. Notice that if the
discriminant is negative, the square root is in trouble; it is unable to produce any real values
to x, rendering there no real solutions.

When the discriminant is zero, the square root disappears, leaving only x = − b
2a

as the only
solution. The last case is trivial.

Polynomial Long Division

Polynomial long division works exactly like the long division we are all used to. It is critical
when dealing with complex algebraic fractions, providing a quick method of simpli�cation
when dividing one polynomial by another.

For example, dividing:
x3 − 6x2 + 11x− 6

x− 1

yields a quotient of:
x2 − 5x+ 6

with no remainder, which can be done using long division.
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Long division is often used in conjunction with the factor theorem to determine the roots of
a cubic polynomial.

Remainder and Factor Theorems

The Remainder Theorem states that if a polynomial f(x) is divided by x− c, the remainder
is f(c). The Factor Theorem builds on this, stating that if f(c) = 0, then x− c is a factor of
f(x).

These theorems can be used to quickly factor polynomials and �nd roots. For example,
consider the polynomial:

f(x) = x3 − 6x2 + 11x− 6

By evaluating f(1), we �nd:

f(1) = 13 − 6 · 12 + 11 · 1− 6 = 0

So, x− 1 is a factor, and the polynomial can be factored as (x− 1)(x2 − 5x+ 6).

The factor theorem is often utilised by trial-and-error with simple integer values like x =
0,±1,±2, or sometimes simple fractions like 1

2
. For more complex values, the problem would

provide relevant hints in the context.

Using Substitution

At times, the equation at hand might seem tricky to factorise. An appropriate substitution
can simplify polynomials, or even non-polynomial terms. For example, solving x4+4x2−5 = 0
can be simpli�ed by letting y = x2, reducing the polynomial to a quadratic in y.

To illustrate that substitution can be utilised beyond polynomials, consider e4x + 6e2x + 9

using the substitution y = e2x. Or an equation in the 2022 SMO,
√

x+ 2− 2
√
x+ 1 +√

4x2 + 5− 4
√
x+ 1 using the substitution y =

√
x+ 1.

3 Symmetry

The symmetries in polynomials are frequently overlooked. In the H2 syllabus, there is
one symmetry that can frequently provide shortcuts; that is, the re�ection symmetry of
all quadratics.

For those interested, all cubics also possess rotational symmetry about their point of in�exion,
though this is rarely touched on in the syllabus. This section focuses more on the former
symmetry.
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Re�ection Symmetry in Quadratics

For a quadratic function f(x) = ax2 + bx+ c, the vertex of the parabola occurs at x = − b
2a
.

Why is that?

We begin with the parent function y = x2 which is symmetrical in the line x = 0. By
completing the square, ax2 + bx+ c can be rewritten as:

a

(
x+

b

2a

)2

+
4ac− b2

4a

Looking at the transformation on x, only, this is a shift by b
2a
units in the negative x direction.

y transformations can be neglected, since they only shift or stretch the graph vertically, which
does not change the line of symmetry.

This symmetry allows us to reduce the amount of calculation needed when solving problems
involving quadratics.

An Alternate Way to �nd Roots

One common application of symmetry is when solving quadratic equations or inequalities. If
we know one root of the equation, we can use the symmetry to immediately �nd the other.

Example : Using Symmetry to Find Roots

Consider the quadratic equation f(x) = x2 − 6x + 8 = 0. We solve for one root using
factor theorem:

f(2) = 22 − 6(2) + 8 = 0

We now know that x = 2 is a root. Since the vertex of the quadratic is located at:

xvertex = − −6

2(1)
= 3

the other root must be symmetrically located on the other side of the vertex, i.e., at
x = 4. Therefore, the roots are x = 2 and x = 4, without needing to factor the quadratic
explicitly. ■

This method is usually more helpful in verifying roots, since we have easier ways to determine
the roots of quadratics. The above relationship implies that the midpoint of the two roots
always lies on the line of symmetry. This provides a quick way to check if your roots are
correct.

Shortcut in �nding Maxima and Minima

We know that all quadratics only have one vertex, and by symmetry this vertex must lie
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on the line of symmetry. This means we can �nd the coordinates of the vertex (maxima or
minima) simply by inputting the x-coordinates of the line of symmetry into the function.

Example : Finding the Minimum Value

Consider the quadratic function f(x) = 2x2 − 8x+ 5. We are asked to �nd the minimum
value of the function.

Since the quadratic opens upwards (because a = 2 > 0), the minimum occurs at the
vertex. The vertex is located at:

xvertex = − −8

2(2)
= 2

To �nd the minimum value, we substitute x = 2 into the function:

f(2) = 2(2)2 − 8(2) + 5 = 8− 16 + 5 = −3

Thus, the minimum value of the function is −3, without needing to complete the square
or use di�erentiation. ■

It is also worth noting that the polarity of the leading coe�cient (coe�cient of the highest x
power) determines if the quadratic has a maxima or minima.

4 The Fundamental Theorem of Algebra

We are familiar with the Fundamental Theorem of Algebra, yet we often overlook its impli-
cations.

The Fundamental Theorem states that every non-constant polynomial of degree n has exactly
n roots (real or complex), counting multiplicities.

This means that for any polynomial, such as 2x5 − 4x3 + 7x− 9, we can rewrite it as:

k(x− x1)(x− x2) · · · (x− x5)

where x1, x2, . . . , x5 are the roots of the polynomial, and k is a constant. These roots may
be real or complex. This factorised form allows us to explore several properties of the roots
themselves.

Sum of Roots and Product of Roots

For example, most of us know the following formulae for a quadratic polynomial:

Sum of roots = − b

a
, Product of roots =

c

a
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for a quadratic polynomial ax2 + bx + c. These formulae can be derived from a simple case
of the theorem, by writing the quadratic as:

ax2 + bx+ c = a(x− x1)(x− x2)

Expanding this, we get:

a(x2 − (x1 + x2)x+ x1x2)

From here, by comparing coe�cients, we see that:

Sum of roots = −(x1 + x2) = − b

a
, Product of roots = x1x2 =

c

a

This is only one of the many cases out there. In fact, this notion is further generalised into
the �Vieta's Formula�, a concept widely used in math competitions. It is still somewhat useful
for the H2 syllabus nonetheless, providing a shortcut or two at times.

Though this idea is more commonly seen in mathematical Olympiads and less so in the H2
syllabus, understanding the implications of the Fundamental Theorem of Algebra provides
deeper insight. It helps clarify certain links, such as why polynomials of higher degrees also
follow these properties in more complex forms, extending beyond quadratics.

5 The Behavior of Polynomials

End Behavior

The end behaviour of a graph refers to how it behaves as x → ∞ or x → −∞. For a
polynomial, this is dictated by the leading term, since it dominates all other terms as x
becomes very large (in both the positive and negative direction).

Example : End Behavior of a Cubic Polynomial

Consider the cubic polynomial:

f(x) = x3 − 6x2 + 11x− 6

As x → ∞, the x3 term dominates, so the graph goes to +∞. As x → −∞, the graph
goes to −∞, indicating that the polynomial has opposite end behavior. ■

Stationary Points

A polynomial of degree n can have at most n− 1 stationary points (where the derivative is
zero). This can be easily deduced since a polynomial of degree n would have a derivative of
degree n− 1.

Example : Turning Points of a Quartic Polynomial
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Consider the quartic polynomial:

f(x) = x4 − 4x3 + 6x2 − 4x+ 1

This polynomial has 3 turning points, which can be found by solving f ′(x) = 0. ■

6 A Common Pitfall

When it comes to factorising polynomials, I see that many students embrace the shortcut
of the �polynomial solver� function in their calculators. While this is de�nitely helpful and
e�cient in �nding and checking your roots, I have seen many students overlook one step,
thereby losing unnecessary marks.

I will �rst put out the shortcut, then address the said pitfall. As a side note, I personally
do not utilise this shortcut, since I see value in factorising polynomials independently. This
shortcut is still useful to most, nonetheless.

Say we have a polynomial to be factorised, like x3−6x2+11x−6. While the traditional method
is to trial-and-error with integer roots, divide with long-division, then use the quadratic
formula to factorise; the shortcut provides us with the roots instantly.

For older calculators like the Casio fx-96SG PLUS, this has famously been named �mode-3-
3�, referring to the buttons you press to access the �polynomial root �nder�; contemporary
calculators share the same feature.

Simply typing in your coe�cients and hitting �=�, you will get the 3 roots of this equation,
x = 1, 2, 3.

What most students will do here is to immediately plug each root into a di�erent bracket, in
a form like this:

x3 − 6x2 + 11x− 6 = (x− 1)(x− 2)(x− 3)

Or if the root is a fraction like 3
2
, they will write the factor as (2x− 3).

Most of the time, this happens to be correct. This is merely a coincidence, though one of
great probability.

Now we consider another polynomial 5x3 − 30x2 + 55x − 30 which gives x = 1, 2, 3 again
using the polynomial-�nder. At this juncture many students will immediately write:

5x3 − 30x2 + 55x− 30 = (x− 1)(x− 2)(x− 3)

Is this really correct though?
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If we take the time to multiply out the right-hand side, we will see that it gives us x3−6x2+
11x− 6. We are actually short by a factor of 5.

This is because the root-�nder simply gives you the roots; it does not give you the factorisation
directly. Thus we always have to ensure that the coe�cients are equal on both sides. The
easiest way is to check the coe�cient of the leading term (term with the highest power).

Consider again 5x3− 30x2+55x− 30 = (x− 1)(x− 2)(x− 3), the incorrect equation. We see
that the leading term on the left has a coe�cient of 5, while that on the left is 1. So we just
multiply the left side by 5 to account for this. This, is the step that many students miss out.



CHAPTER 20

TRIGONOMETRY

1 The Pythagorean Identity

Trigonometry is intrinsically related to geometry. In this chapter we explore some of these
links.

Consider the equation of a circle with radius r and center at the origin, given by:

x2 + y2 = r2

This equation describes the relationship between the coordinates of any point (x, y) on the
circle and the radius r.

r
x

y

O

(x, y)

x2 + y2 = r2

r

x

y

Does this equation look familiar? In fact, it is a direct application of the Pythagorean
Theorem! If we consider a right triangle with sides x and y, and the hypotenuse as the radius
r, we see that:

x2 + y2 = r2

140
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This relationship de�nes the circle. Imagine one end of the radius r stuck to the origin, while
the other end is free to rotate. At any instance during this rotation, there is a right triangle
with width x and height y, meaning the other end of the radius must lie at (x, y), hence
de�ning the coordinates of the circle using Pythagoras' Theorem.

A special case of the circle is the unit circle, which has a radius r = 1. The unit circle is
centered at the origin and has the equation:

x2 + y2 = 1

This circle is fundamental in trigonometry because it simpli�es many relationships. We
construct an arbitrary radius that forms an angle θ with the positive x-axis.

1

x

y

θ

O cos θ

sin θ

On the unit circle, the coordinates of any point (x, y) can be interpreted as (cos θ, sin θ) using
the trigonometric ratios, where θ is the angle formed with the positive x-axis.

Visually, cos θ is the width while sin θ is the height of the right triangle at any point on the
unit circle. This illustrates the periodicity of sin and cos, since the angle (2π + θ produces
the same right triangle as θ, since it takes 2π radians to go around the circle once.

This also gives us the famous Pythagorean identity:

sin2 θ + cos2 θ = 1

This relationship holds for all angles θ, making it one of the key identities in trigonometry.

Now notice what happens when we divide throughout by cos2 θ:

sin2 θ

cos2 θ
+

cos2 θ

cos2 θ
=

1

cos2 θ

tan2 θ + 1 = sec2 θ
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Repeating for sin2 θ:
sin2 θ

sin2 θ
+

cos2 θ

sin2 θ
=

1

sin2 θ

1 + cot2 θ = csc2 θ

Two more equations can be derived from the Pythagorean Identity, thus it su�ces to remem-
ber that sin2 θ + cos2 θ = 1.

2 Visualizing the Tangent

By de�nition, the tangent of an angle θ is the ratio of the opposite and adjacent sides of a
right triangle, which means that using the de�nitions of sin and cos, we have that tan θ = sin θ

cos θ
.

But the tangent is also de�ned a straight line that only touches a curve at one point. Why
do they share the same name?

Again we construct a unit circle, this time extending the radius slightly beyond the circle,
intersecting the tangent at a point, labelled (1, tan θ). The x-coordinate here is 1 since it has
the same length as the radius, while the y-coordinate is tan θ by the de�nition of the tangent
function (i.e. ratio of opposite side to adjacent side).

1

x

y

θ

(1, tan θ)

cos θ

sin θ

Notice the pair of similar right triangles above. The smaller has a width of cos θ, while the
larger has a width of 1. The smaller has a height of sin θ, while the larger has a height of
tan θ. Comparing the ratio of sides of similar triangles:

tan θ

1
=

sin θ

cos θ
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Thus we arrive at tan θ = sin θ
cos θ

.

This beautifully illustrates how tan θ is indeed the tangent of a circle. Yet this is only the
tip of the iceberg; similar illustrations and reasoning exist for sec, cot, and csc! For starters,
the word �secant� is de�ned as a straight line that cuts a curve at two points. Feel free to
look up similar visualisations!

3 Tangent as a Gradient

One of the most fundamental yet often overlooked properties of the tangent function is its
direct relationship to the gradient of a straight line passing through the origin. Speci�cally,
the gradient of such a line is simply tan θ, where θ is the angle the line makes with the
positive x-axis.

Consider a straight line passing through the origin at an angle θ with the positive x-axis.
The equation of such a line can be written as:

y = mx

where m is the gradient of the line, and c is neglected since the y-intercept is 0. The
relationship m = tan θ then holds.

x

y

y = mx

θ

O

(x1, y1)

We are of course familiar with the de�nition of gradient as rise over run. Considering the
line segment from the origin (0, 0) to (x1, y1), the rise is (y1 − 0) while the run is (x1 − 0),
thus giving:

m =
y1
x1
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Now we turn out attention to θ, the angle formed between the straight line and the positive
x-axis. By de�nition, the tangent of an angle is the ratio of the opposite side to the adjacent
side in a right triangle. Here, the opposite side is y1, and the adjacent side is x1. So we get:

Thus, the gradient tan θ is:

tan θ =
y1
x1

We see that the two above equations imply their equality:

m = tan θ

It should be noted that this method is not limited to straight lines passing through the
origin. In general, m = tan θ is true for every straight line, where θ is the angle with the
horizontal (any arbitrary straight line parallel to the x-axis). At times, this helps to solve
tedious questions really quickly.

Example : Find the equation of tangents to the circle x2 + y2 = 5, where the

tangents pass through the point (−4, 3).

(0, 0)

(−4, 3)

x2 + y2 = 5

x

y

Method 1: Brute Force

The most obvious method would be to label one point of tangency as (a,
√
5− a2) and

�nd the distance to the point (−4, 3) in terms of a. Utilising the properties of tangents
to circles would give us that both red lines have length 2

√
5, which should be equated to

the expression in a above. The two solutions for a can be found after intensive algebraic
manipulation. With these two coordinates we can then �nd the two tangent lines using
the gradient and their coordinates.
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Method 2: Variation of Gradient

We know that the line must be in the form y−3 = m(x+4) because of the given condition,
so we manipulate it slightly such that y = m(x + 4) + 3. This can then be substituted
into the equation of the circle to give a quadratic in x.

In order for there to be exactly one point of tangency, the discriminant must equal to
0, which gives a quartic in m. This can be solved to give exactly two possible values of
m. Compared to the above, this method is slightly less tedious, but still algebraically
intensive nonetheless.

Method 3: Taking Advantage of Trigonometry

Firstly we can �nd the distance between (0, 0) and (−4, 3) to be 5, and by Pythagoras'
Theorem �nd the sides of the right triangle, as labelled in red.

(0, 0)

2
√
5

5 √
5

(−4, 3)

x2 + y2 = 5α

θ
x

y

We then label the two angles of interest, θ and α. Notice that the two tangents di�er from
the center line by ±α.

θ = tan−1

(
3

−4

)
, α = tan−1

( √
5

2
√
5

)

It follows that the two gradients of the two tangents are:

m = tan(θ ± α) = tan

(
tan−1

(
3

−4

)
± tan−1

( √
5

2
√
5

))

=
(−3

4
)± (1

2
)

1∓ (−3
4
)(1

2
)
= − 2

11
or − 2
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Thus the two equations are:

y − 3 = − 2

11
(x+ 4)

y − 3 = −2(x+ 4)

Evidently, this method is way quicker and neater than the previous two. This illustrates
potential shortcuts by exploiting trigonometry in coordinate geometry. ■

Next we consider a quick and simple solution to a question in the 2023 Singapore Mathemat-
ical Olympiad.

Example : Q14 SMO 2023

Consider the set of all possible pairs (x, y) of real numbers that satisfy (x−4)2+(y−3)2 = 9.
If S is the largest possible y

x
, �nd the value of ⌊7S⌋.

(4, 3)

(0, 0)

θ

This question is basically asking us to �nd the gradient of the steepest tangent to the
circle that passes through the origin, given by

S =
y − 0

x− 0

so we draw in this tangent in blue, along with another line connecting the origin to the
center of the circle.

The angle θ can be found using tan θ = 3
4
since 3

4
is the gradient.
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Using the property of tangents at an external point, we can conclude that the gradient of
the blue tangent is given by

S = tan 2θ =
2 tan θ

1− tan2 θ
=

24

7

Thus, ⌊7S⌋ = ⌊7(24
7
)⌋ = 24. ■

4 Interconnectedness in Trigonometry

The topic of trigonometry is elegantly interconnected within itself in many ways. In this
section, we explore how various trigonometric relations can be deduced from geometric con-
structions and graphical representations. The aim here is not to be exhaustive but to highlight
the general essence of deriving these relations using geometry and graphs.

Geometrical Deduction of sinx = cos(π
2
− x)

Considering an arbitrary right-angled triangle.

x

π
2
− x

adj

opp
hyp

According to the de�nitions of trigonometric ratios:

sinx =
opp

hyp
and cos

(π
2
− x
)
=

opp

hyp

Thus,

sinx = cos
(π
2
− x
)

Similar methods can be used to derive:

tanx = cot
(π
2
− x
)

and secx = csc
(π
2
− x
)

Notice the special naming: �sine and cosine�, �tangent and cotangent�, �secant and cosecant�.
Here, �co� can be thought of as �complementary�, since their angles complement each other.
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Graphical Deductions

We can also derive this relationship from the graphs of sinx and cosx.

π
2

π 3π
2

2π

−1

1

α

x

sinx

π
2

π 3π
2

2π

−1

1

α

x = π
2

x

cosx

Notice that moving α steps to the right on the sine graph produces the same result (y-value)
as moving α steps to the left on the cosine graph, starting from the dashed line x = π

2
. This

visually con�rms the relationship sinx = cos(π
2
− x).

Similarly, many other relationships, such as − sinx = sin(π + x), can be deduced using the
same method: by considering the output of a function as taking a number of steps on its
graph. The symmetries in trigonometry allow for many such relationships to be derived,
often providing convenient computational shortcuts.

Example : A Computational Shortcut

Solve cos 4θ = cos θ for 0 ≤ θ ≤ π.

cos 4θ = cos θ ⇒ 4θ = 2kπ ± θ ⇒ 3θ = 2kπ or 5θ = 2kπ

Thus,

θ =
2kπ

3
or

2kπ

5

∴ θ = 0,
2π

3
,
2π

5
,
4π

5
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which satis�es the given domain of θ.

In this example, we have utilised the properties of cosine:

cos θ = cos(−θ) and cos θ = cos(2π + θ)

to determine the solutions quickly. This means we did not need to expand out cos 4θ into
a quartic in cos θ which saved us considerable time.

If you did not notice, we could also have used the factor formula to solve this quickly. This
is the focus of the next section. ■

Of course, this can also be viewed as a series of graph transformations, for instance the
transformation of the sine graph to represent the equation sin(π + x): A horizontal shift
of the sine graph by π, followed by re�ecting the graph in the x-axis. But in my personal
opinion, the idea of taking steps is a more intuitive approach to this concept.

5 Factor Formula

One of the key methods for simplifying trigonometric equations involves using factor formulae.
Factor formulae come in two forms: �sum-to-product� and �product-to-sum�, and can help
simplify certain expressions signi�cantly.

We begin by deriving one of the sum-to-product identities:

cosA− cosB = −2 sin

(
A+B

2

)
sin

(
A−B

2

)
It is called �sum-to-product� because it transforms a sum of terms into a product of terms.

First, we rewrite the angles A and B within the brackets:

cosA− cosB = cos

(
A+B

2
+

A−B

2

)
− cos

(
A+B

2
− A−B

2

)

Then we expand them using the addition angle formula:

cos

(
A+B

2
+

A−B

2

)
− cos

(
A+B

2
− A−B

2

)

=

[
cos

(
A+B

2

)
cos

(
A−B

2

)
− sin

(
A+B

2

)
sin

(
A−B

2

)]
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−
[
cos

(
A+B

2

)
cos

(
A−B

2

)
+ sin

(
A+B

2

)
sin

(
A−B

2

)]

The two cos terms cancel out, leaving the sin terms:

cosA− cosB = −2 sin

(
A+B

2

)
sin

(
A−B

2

)

A similar method is used to derive the other sum-to-product formulae. Product-to-sum
formulae can be derived in a similar manner.

We solve the same example as above, now using the factor formula.

Example : Factor Formula

Solve for the general solutions of cos 4x = cosx.

cos 4x− cosx = −2 sin

(
4x+ x

2

)
sin

(
4x− x

2

)

= −2 sin

(
5x

2

)
sin

(
3x

2

)
We equate each factor to zero:

sin

(
5x

2

)
= 0 or sin

(
3x

2

)
= 0

From sin
(
3x
2

)
= 0, we get:

3x

2
= kπ ⇒ x =

2kπ

3

From sin
(
5x
2

)
= 0, we get:

5x

2
= kπ ⇒ x =

2kπ

5

Thus, the general solutions are:

x =
2kπ

3
or x =

2kπ

5

■



CHAPTER 21

BINOMIAL THEOREM

1 Overview

The binomial theorem provides a method for expanding powers of binomials (binomial means
two terms), such as (a+ b)n. It is given by the formula:

(a+ b)n =
n∑

r=0

(
n

r

)
an−rbr

where
(
n
r

)
is the binomial coe�cient, also written as nCr, and represents the number of ways

to choose r items from a set of n items.

There are multiple ways to arrive at the binomial formula, each with its own intuitive inter-
pretation. In this chapter we will explore two of these approaches, and how the Binomial
Theorem is related to similar concepts that we know.

2 Combinatorial Approach

We often see the symbol nCr in binomial expansions, resembling choose in the topic of
Permutations and Combinations. But do we know why it appears? What does this symbol
represent in the context of binomials? What are we choosing, and where are we choosing
from?

Consider a simpler example of multiplying two binomials:

(3x2 + 3)(2x− 1) = 6x3 − 3x2 + 6x− 3

Notice that each individual term on the right-hand side is a product of two speci�c terms
from the left-hand side, one chosen from each bracket. For example, the term −3x2 is the
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product of 3x2 from the �rst bracket and −1 from the second bracket. This idea generalizes
to binomial expansion: whenever we multiply brackets, we are selecting one term from each
bracket and summing up all such possible combinations.

Now, let's apply this idea to (a + b)n, which is shorthand for multiplying (a + b) with itself
n times:

(a+ b)n = (a+ b)(a+ b) · · · (a+ b)

To form a term containing bn, we need to choose b from all n brackets. The number of
ways to do this is nCn, which equals 1, since there is only one way to choose all n b's from
n brackets. Notice that since we have chosen b from all brackets, we would not be able to
choose a from any bracket, since we can only choose exactly one term from each bracket.
The corresponding term is nCna

0bn = bn.

Also notice that here we intentionally did not multiply by nC0 to represent choosing a from
0 brackets. This is because there are only two options from each bracket. The act of not
choosing b means that we are de�nitely choosing a, since each bracket must provide exactly
one term: if it is not b, then it must be a. In fact, this is also why nCn = nC0 and

nCr =
nCn−r

for that matter, since the number of ways to choose r objects that I want is the same as
choosing n− r objects that I do not want. Hence we only need to account for the choosing
once.

Now consider the term abn−1. This term arises by choosing b from n− 1 brackets and a from
exactly one bracket. The number of ways to do this is nCn−1 = nC1, as we are choosing
1 a from n brackets. Thus our term is nCn−1a

1bn−1 = nC1a
1bn−1, where both forms are

mathematically equivalent.

This reasoning continues for all terms in the expansion. The binomial coe�cient nCr repre-
sents the number of ways to choose r b's (or equivalently n− r a's) from n brackets. This is
why each term in the expansion has the form nCra

n−rbr.

3 Maclaurin Series Approach

We can also use the Maclaurin series to arrive at the Binomial expansion. The Maclaurin
series for a function f(x) is given by:

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·

Applying this to (1 + x)n, we obtain:

(1 + x)n = 1 + nx+
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + · · ·
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which matches the binomial expansion when a = 1 and b = x.

In this case, the expansion is �nite even though it may appear to go on inde�nitely. This
is because at some point, the coe�cient becomes n(n−1)(n−2)···(n−n)

(n+1)!
where the (n− n) implies

that the whole term equals zero. From this point onwards, all terms are zero by similar
reasoning, thus giving a �nite expansion which matches the Binomial Theorem exactly.

A caveat however, is that this series is only valid where |x| < 1 to ensure convergence. This
is due to the inner mechanisms of the Maclaurin series, which is simply an approximation
for small x. This is covered in the chapter of Series Expansions.

4 Binomial Distribution

The binomial distribution is closely related to the concepts of the binomial theorem. In
fact, it applies the same idea of choosing from a set, but in the context of probability and
random experiments. It models the probability of obtaining a �xed number of successes in
a sequence of independent experiments, where each experiment has two possible outcomes
(usually called �success� and �failure�).

The binomial distribution formula is:

P (X = r) =

(
n

r

)
pr(1− p)n−r

where:
� n is the total number of trials (or experiments),

� r is the number of successes you want to observe,

� p is the probability of success on each trial,

� 1− p is the probability of failure on each trial.

The binomial coe�cient
(
n
r

)
appears here because we are �choosing� r successes from n trials.

The key idea is similar to that of the binomial expansion, where we were choosing terms from
di�erent brackets. In the binomial distribution, we are choosing speci�c outcomes (successes)
from multiple independent trials.
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