()

SENG KANG SECONDARY SCHOOL 2024 PRELIMINARY EXAMINATION

SCIENCE (CHEMISTRY) 5105/04 Secondary 4 Normal (Academic) ⁶

14

August 2024 Paper 4 Paper 3 and 4: 1 hour 15 minutes

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in.Write in dark blue or black pen on both sides of the paper.You may use a soft pencil for any diagrams, graphs or rough working.Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer **all** questions. Write your answers in the spaces provided.

Section B

Answer **one** question. Write your answers in the spaces provided.

The use of an approved scientific calculator is expected, where appropriate. In calculations, you should show all the steps in your working, giving your answer at each stage. You are advised to spend no longer than 30 minutes on Paper 3. You may proceed to answer Paper 4 as soon as you have completed Paper 3. A copy of the Periodic Table is printed on page 14.

At the end of the examination hand in your answers to Paper 3 and Paper 4 separately. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's use		
Section A	/ 22	
Section B	/ 8	
Marks Awarded	/ 30	

This document consists of 13 printed pages and 1 blank page.

Do not turn over the page until you are told to do so.

Answer all questions.

1 The formulae of some elements and compounds are listed.

$Cl_2 CO_2 K$

NO NaCl ZnO

Complete the sentences below, choosing your answers from the above list.

Each element or compound may be used once, more than once or not at

all. Identify the element or compound that:

(a) is a diatomic molecule,

.....

... (b) reacts with both dilute hydrochloric acid and sodium hydroxide,

.....

... (c) displaces iodine from sodium iodide,

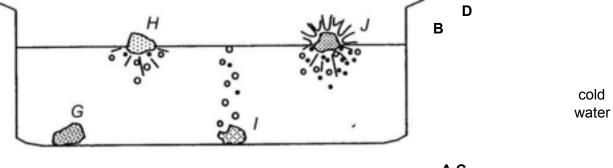
.....

... (d) dissolves in water to form a solution with pH less than seven.

.....[3]

[Total: 3]

2 (a) Table 2.1 shows data on three alloys made from tin, copper and silver.


Table 2.	1
----------	---

	alloy 1	alloy 2	alloy 3
tin content / %	95.5	96.5	99.0
copper content / %	0.7	0.5	0.7
silver content / %	3.8	3.0	0.3
melting point / °C	217	220	227

Use the data in Table 2.1 to describe the relationship between the silver content and the melting point.

(b) Fig. 2.2 shows four different metals A, B, C and D reacting with cold water.

(i) Use the observations in Fig. 2.2 to suggest an order of reactivity of these metals.

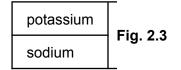
most reactive

least reactive

(ii) Draw a 'dot and cross' diagram to show the bonding of the gas evolved when metal **B** reacts with cold water.

[1] [Turn over

4

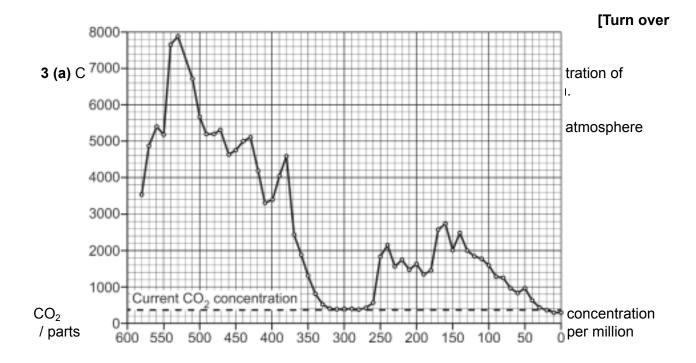

(c) Some metals are extracted from their ores by heating with carbon.

Other metals are extracted from their ores by electrolysis.

most reactive least reactive

Fig. 2.3 shows the order of reactivity of five metals, compared to carbon.

calcium	
	[carbon]
zinc	extracted by heating
copper	with carbon


A student makes this statement:

'The information in Fig. 2.3 shows that all Group 1 metals are extracted by electrolysis.'

Use information from Fig. 2.3 to explain why this statement is only partly correct.

......[2]

[Total: 5]

current CO₂ concentration

millions of years ago

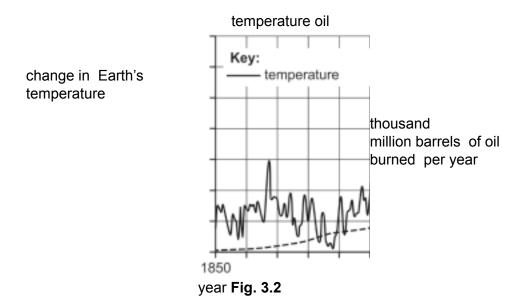
Fig. 3.1

(i) Carbon dioxide concentration was at its highest about 530 million years ago.

State the value of the concentration of carbon dioxide 530 million years ago.

concentration of carbon dioxide = parts per million [1]

(ii) A student says, 'Carbon dioxide concentration was always much higher in the past than it is today.'


Does the graph support this statement? Use values from the graph to explain your answer.

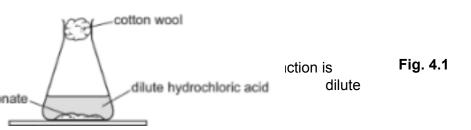
......[2]

[Turn over

6

(b) Fig. 3.2 shows the amount of oil burned and the change in the Earth's temperature between the years 1850 and 2010.

[Turn over


7

4 'Tumsoothe' is a medicine that cures indigestion. It contains 'sodium bicarbonate', NaHCO₃.

A student uses the apparatus, shown in Fig. 4.1, to study the reaction between dilute hydrochloric acid and Tumsoothe.

rubber bung

weighing machine

 $NaHCO_{3}(aq) + HCl(aq) \rightarrow NaCl(aq) + H_{2}O(l) + CO_{2}(g)$

(a) The student makes two mistakes in Fig. 4.1.

(i) Fig. 4.2 shows the top view of the weighing machine that was used in Fig. 4.1.

One mistake is the use of weighing machine to measure the mass.

Explain how this mistake will affect the experiment.

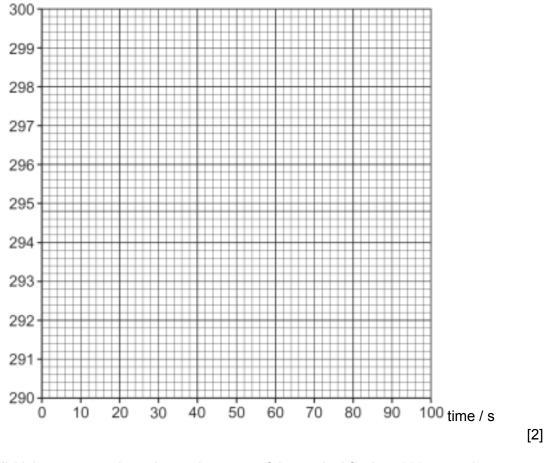
......[1] (ii)

Identify the second mistake and suggest how this mistake would be corrected.

mistake correction

......[2]

[Turn over


(b) The mistakes in Fig. 4.1 are corrected. The mass is measured every 10 seconds, as shown in Table 4.3.

Tab	le 4.3
time / s	mass / g

8

0	300.0
10	298.0
20	296.0
30	294.5
40	293.5
50	292.5
60	292.0

(i) Using Table 4.3, plot a graph of mass against time on the axes below. Draw a **curved line** of best fit taking into account all your plotted points. mass / g

(ii) Using your graph, estimate the mass of the conical flask at 100 seconds. mass

at 100 s = g [1]

[Turn over

(iii) Using the data in Table 4.3, calculate the mass of carbon dioxide gas produced at 60 seconds.

9

mass of carbon dioxide gas = g [1]

(iv) Using your answer in (b)(iii), calculate the amount, in moles, of carbon dioxide gas produced at 60 seconds.

amount of carbon dioxide gas =[1]

[Total: 8]

Answer one question from this section.

5 Table 5.1 shows information about some properties of five substances.

substance	melting point / °C	boiling point / °C			
м	-72	-10	soluble	only when dissolved	
N	-98	65	soluble	no	
0	-114	78	soluble	no	
Р	661	1304	soluble	only when molten or dissolved	
Q	3550	4830	insoluble	no	

Table	5.1

(a) Substances N and O are completely miscible with each other, at room temperature and pressure.

Name the experimental technique used to separate the mixture of substance ${\bf N}$ and substance ${\bf O}.$

.....[1]

(b) (i) A student deduces that substances **P** and **Q** are ionic compounds.

Using the information in Table 5.1, explain why the student's deduction is incorrect.

.....

......[1]

(ii) Describe a method that could be used to separate a mixture of substance **P** and substance **Q** to obtain pure samples.

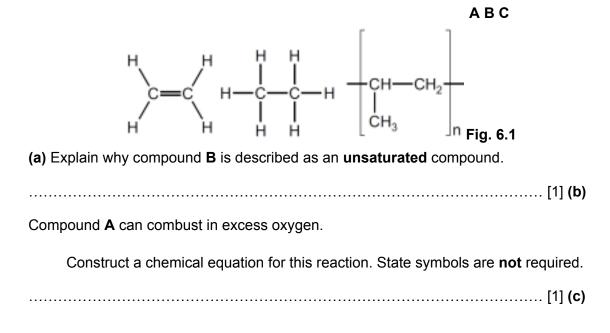
[3]

11

(c) Substance M is identified to be sulfur dioxide.
Sulfur dioxide gas can dissolve in rainwater to form acid rain.
(i) Describe a simple test to confirm the presence of acid in a sample of rainwater.

......[1]

(ii) The acid rain can acidify the soil, and this may make it unsuitable for the growth of many crops.


Suggest a substance that can be added to increase the pH of the soil. Explain how it works.

 	 [2]

[Total: 8]

[Turn over

6 The structures of three organic compounds are shown in Fig. 6.1.

Both compounds **A** and **B** are colourless liquids.

Describe a chemical test to differentiate between compounds **A** and **B**.

test		 	 	 	
observati	ons	 	 	 	
		 	 	 	[2]

(d) (i) Suggest the chemical name for compound **C**, which is a polymer.

[1]

(ii) Draw the full structural formula (displayed formula) of the monomer from which this compound **C** (polymer) is formed.

	[1]
(iii) Describe one physical method and one chemical method used to recycle compound C.	
physical method	
chemical method	[2]
[Tota	l: 8]

[Turn over

13

BLANK PAGE

		Group									
1	2										
				Key			1 H hydrogen 1				
3 Li ^{lithium} 7	4 Be ^{beryllium} 9			oton (atom ımberatom symbol _{nam} relative atomic mass							
11 Na ^{sodium} 23	12 Mg ^{magnes} ium 24	3	4	5	6	7	8	9	10	11	12
19 K potassium 39	20 Ca ^{calcium} 40	21 Sc scandium 45	22 Ti titanium 48	23 V vanadium 51	24 Cr chromium 52	25 Mn ^{mangan} ese 55	26 Fe iron 56	27 Co _{cobalt} 59	28 Ni ^{nickel} 59	29 Cu _{copper} 64	30 Zn ^{zinc} 65
37 Rb ^{rubidium} 85	38 Sr strontium 88	39 Y yttrium 89	40 Zr ^{zirconium} 91	41 Nb ^{niobium} 93	42 Mo ^{molybde} num 96	43 Tc technet ium —	44 Ru ^{ruthenium} 101	45 Rh ^{rhodium} 103	46 Pd palladium 106	47 Ag ^{silver} 108	48 Cd ^{cadmium} 112
55 Cs _{caesium} 133	56 Ba ^{barium} 137	57–71 lanthanoi ds	72 Hf ^{hafnium} 178	73 Ta ^{tantalum} 181	74 W ^{tungsten} 184	75 Re ^{rhenium} 186	76 Os ^{osmium} 190	77 Ir ^{iridium} 192	78 Pt ^{platinum} 195	79 Au ^{gold} 197	80 Hg ^{mercury} 201
87 Fr ^{francium} -	88 Ra ^{radium}	89–103 actinoids	104 Rf rutherfor dium —	105 Db ^{dubnium} –	106 Sg seaborg ium –	107 Bh ^{bohrium}	108 Hs ^{hassium} –	109 Mt meitner ium —	110 Ds darmstadt ium –	111 Rg roentgen ium –	112 Cn coperni cium –

lanthanoids actinoids

57 La ^{Ianthanum} 139	58 Ce ^{cerium} 140	59 Pr ^{praseody} ^{mium} 141	60 Nd ^{neodym} ium 144	61 Pm prometh ium -	62 Sm ^{samarium} 150	63 Eu ^{europium} 152	64 Gd ^{gadolin} ium 157	65 Tb ^{terbium} 159	66 Dy ^{dyspros} ium 163	(hol 1
89 Ac actinium -	90 Th ^{thorium} 232	91 Pa ^{protactin} ium 231	92 U ^{uranium} 238	93 Np neptunium -	94 Pu plutonium –	95 Am americium –	96 Cm curium –	97 Bk ^{berkelium}	98 Cf californ ium –	ein iu

The volume of one mole of any gas is 24 dm² at room temperature and pressure (r.t.p.). The Avogadro constant, $L = 6.02 \times 10^{23} \text{ mol}^{-1}$