

PHYSICS

MARK SCHEME

9749

August/September 2022

Paper 2	
Structured Questions	

Qns	Answer	Marks
1(a)	Forces must be labelled forces clearly in full – Weight, Reaction Force, Tension	1
	Lines of action forces (including intersection of the 3 lines) must be clearly shown.	
(b)	Let T be the tension in the spring.	
	Taking moments about A, Sum of clockwise moment = Sum of anticlockwise moment	1
	mg (0.20 cos30°) = T (0.40)	
	1.2(9.81) (0.20 cos30°) = T (0.40) T = 5.10 N	1

Qns	Answer	Marks
(c)	Rx A Jor Jaor W B Jords spring	
	Let R_x and R_y be the horizontal and vertical components of the reaction force R .	
	Resolving forces horizontally, $R_x = T \cos 60^\circ$ $= 5.10 \cos 60^\circ$ = 2.55 N	1
	Resolving forces vertically, $R_y + T \sin 60^\circ = W$ $R_y + 5.10 \sin 60^\circ = (1.2)(9.81)$ $R_y = 7.36 N$	1
	magnitude of reaction force $R = \sqrt{R_x^2 + R_y^2}$ = $\sqrt{2.55^2 + 7.36^2}$ = 7.79 N	1
(c)	increase (stiffer spring so a smaller extension needed for the same elastic force, resulting in larger angle)	1

Qns	Answer	Marks
2(a)(i)	Total momentum of an isolated system of interacting bodies before	
	and after collision remains constant if no net external force acts on the	
	system.	1
(a)(ii)	Presence of external force like weight / force from the ground	1
(b)	By Conservation of Energy,	
	loss of gravitational potential energy = gain in kinetic energy	
	4 + 1 + 2	
	$mgn = -mv^2$	1
	-	
	$v = \sqrt{2gn}$	
	$=\sqrt{2(9.81)(2.0)}$	
	$= 6.26 \text{ m s}^{-1}$	
(C)	collision is elastic, total KE before and after bounce conserved	
	$\frac{1}{2}(0.8)(6.26)^2 = \frac{1}{2}(0.3)(v^2) + \frac{1}{2}(0.5)(3.2)^2$	1
	$v = 9.35 \text{ m s}^{-1}$	1

Qns	Answer	Marks
3(a)(i)	Since the direction of field strength is directed upwards at point O, the horizontal component of the electric field strength due to the 2 charges at Ω are equal in magnitude and opposite in direction	
	$\frac{q_1}{\sqrt{1-q_1^2}}\sin 30^\circ = \frac{q_2}{\sqrt{1-q_2^2}}\sin 60^\circ$	
	$4\pi\varepsilon_{o}r$ $4\pi\varepsilon_{o}r$	
	$\frac{q_1}{q_2} = \frac{\sin 60^\circ}{\sin 30^\circ} = 1.73$	1
	$q_2 = 51120$	
3(a)(ii)		
S(u)(ii)	x Y distance	
	correct shape, graph does not touch the y-axis or dotted line (else max 1)	
	E = 0 at position nearer to Y Relative field strength at X larger in magnitude than at Y	1 1
3(b)(i)	electric field strength is a vector quantity	
	Since the resultant field strength at point O is directed upwards, the resultant electric field strength is the <u>vector sum</u> of the <u>vertical</u> component of the electric field strength due to the 2 charges. $E_{\text{resultant}} = E_1 + E_2$ $= \frac{1}{4\pi\varepsilon_0} \left(\frac{q_1}{r^2}\right) \cos 30^\circ + \frac{1}{4\pi\varepsilon_0} \left(\frac{q_2}{r^2}\right) \cos 60^\circ$ $= \frac{q_2}{4\pi\varepsilon_0 r^2} \left[(1.7) \cos 30^\circ + \cos 60^\circ \right]$ $= \frac{200 \times 10^{-9}}{4\pi \left(8.85 \times 10^{-12}\right) (0.50)^2} \left[(1.7) \cos 30^\circ + \cos 60^\circ \right]$	1
	$= 1.42 \times 10^4 \text{ V m}^{-1}$	

9749/J2H2Prelim/2022

Qns	Answer	Marks
(b)(ii)	electric potential is a scalar quantity	
	total electric potential at point O is <u>sum</u> of <u>electric potential at that point</u> <u>due to the 2 charges</u> .	
	$V_{\text{resultant}} = V_1 + V_2$ $= \frac{1}{4\pi\varepsilon_0} \left(\frac{q_1}{r}\right) + \frac{1}{4\pi\varepsilon_0} \left(\frac{q_2}{r}\right)$	
	$= \frac{q_2}{4\pi\varepsilon_0 r} \Big[(1.7) + 1 \Big] = \frac{200 \times 10^{-9}}{4\pi (8.85 \times 10^{-12})(0.50)} (2.7)$ = 9710 V	1
(b)(iii)	work done $W = q \Delta V$	
	$=$ $(-2q_2)(V_{ ext{final}}-V_{ ext{initial}})$	
	$= (-2)(200 \times 10^{-9})(9710 - 0)$	1
	= -0.00388 J	1
	$= -2.43 \times 10^{16} \text{ eV}$	•

Qns	Answer	Marks
4(a)	Force per unit current unit length of wire	
	Carrying a wire that is normal to the magnetic field.	1
(b)(i)1.	direction (dots above current, crosses below current)	1
	field strength stronger when nearer wire (higher density of dots/crosses nearer the current)	1
(b)(i)2.	positive	1
(b)(ii)	Force is always perpendicular to the velocity of the particle	1
	No displacement in the direction of force, so <u>work done</u> by the force is <u>zero</u> , no change in kinetic energy so no change in speed.	1
(b)(iii)	Done in vacuum, so no loss of kinetic energy due to no collision with air particles, so no change in speed.	
	OR	
	Weight of the particle is negligible compared to the magnetic force.	1
(c)	Observe that 3 cm, 4 cm and 5 cm form a right-angle triangle. So the magnetic flux density at point Z due to currents in X and Y are perpendicular to one another.	
	X. Y	
	The magnetic flux density at Z is the vector sum of magnetic flux densities due to X and Y.	
	$B = \frac{\mu_0 I}{2\pi d}$	
	$B_{\text{resultant}} = \sqrt{B_X^2 + B_Y^2}$ $\boxed{\left[(A - a_1 A - a_1^2) (7 A) \right]^2 - \left[(A - a_1 A - a_1^2) (7 A) \right]^2}$	
	$= \sqrt{\left\lfloor \frac{(4\pi \times 10^{-7})(7.0)}{2\pi (3.0 \times 10^{-2})} \right\rfloor} + \left\lfloor \frac{(4\pi \times 10^{-7})(8.0)}{2\pi (4.0 \times 10^{-2})} \right\rfloor}$ $= 6.15 \times 10^{-5} \text{ T}$	1

Qns	Answer	Marks
5(a)(i)	At 22.5 °C, R_T = 1.6 k Ω (read from graph)	1
	Total resistance = $\left(\frac{1}{1600} + \frac{1}{1600}\right)^{-1} = 800 \Omega$	1
(a)(ii)	Using potential divider principle,	1
	$\frac{V}{V} = \frac{800}{1000}$	1
	9.0 800+1200	•
	V = 3.6 V	
(b)(i)	Using potential divider principle,	1
	$\frac{1200}{5} = \frac{5}{5}$	1
	R_{AB} 4	•
	$R_{AB} = 960 \ \Omega$	
(b)(ii)	1 = 1 + 1	
	960 1600 R_{τ}	
	$R_{\tau} = 2400 \ \Omega$	1
		1
	From graph, temperature = 10.5 °C (read to half the smallest division) OR 11 °C	•
(c)	From graph, no calibration data available between 24°C to 25°C (accept	1
	<u>"at 25 °C"O)</u> . Since graph is non-linear, honce connet extrapolate to get values of	
	temperature.	
		1
	Based on temperature range of $0 - 25 ^{\circ}$ C, V_{AB} has a range of 0.48 V to	
	3.5 v. Since only a small part of the voltage scale is used, the measurement of temperature will be less sensitive	

Qns	Answer	Marks
6(a)(i)	Progressive wave is one where <u>energy is transferred in the direction of</u> propagation of the wave.	1
	Transverse wave is one where the <u>direction of oscillations is normal to</u> <u>the direction of energy propagation</u> .	1
6(a)(i)	Polarisation is where oscillations of a wave to one direction only, in the plane normal to the direction of energy propagation.] 1
	Since the oscillations in a longitudinal wave is parallel to the direction of energy propagation,	
	longitudinal wave cannot be polarised.	1
6(b)(i)	Based on the amplitudes of the electricity field strength graphs,	
	$A = A_o \cos \theta$	
	$16 = 9\cos\theta$	1
	$\theta = 56^{\circ}$	1
6(b)(ii)	$I \propto A^2$	
	$I = \cos^2(\theta)$	
	$\frac{I}{I} = \cos^2(\theta) = \left(\frac{9}{100}\right)^2 = 0.316$	1
	I_0 (16)	1

Qns	Answer	Marks
7(a)(i)	Loss in electric potential energy = gain in kinetic energy	
	$\frac{1}{2}m_e v^2 = eV$	1
	2	· ·
	$\frac{1}{2} (9.11 \times 10^{-31}) v^2 = (1.60 \times 10^{-19}) (45)$	
	$v = 3.98 \times 10^{6}$	
	$\approx 4.0 \times 10^6 \text{ m s}^{-1}$	
(ii)	$p = m_e v$	
	$=$ $(9.11 \times 10^{-31})(4.0 \times 10^{6})$	
	$= 3.644 \times 10^{-24}$ kg m s ⁻¹	1
	$\lambda = \frac{h}{h}$	
	х ⁻ р	
	= <u>6.63 × 10⁻³⁴</u>	
	3.644×10^{-24}	
	$= 1.82 \times 10^{-10}$ m	1
	•	
(b)(i)	Spacing between the crystals is of the same order of magnitude as the de	1
	Broglie wavelength of electron (so diffraction effect is significant).	
	The crystal acts as a <u>diffraction grating</u> for the beam of electrons.	1
	Dright anota choose and whom constructive interference takes place	
	Bright spots observed when constructive interference takes place.	1
(ii)	As the accelerating potential increase, the de Broglie wavelength of the electron decreases	1
	are de Dregne nationigar et ale obolion <u>acoreases</u> .	
	Hence, the angle of diffraction <u>decreases</u>	1
	so spacing between bright spots decrease	
	•	

Qns	Answer	Marks
8(a)(i)	$V_y = V \cos \theta$	
	$=(536)\cos(90^\circ-86.7^\circ)$	1
	= 535 m s ⁻¹	A0
(a)(ii)	$8 = ut + \frac{1}{at^2}$	
	2	
	$-50.4 = (535)t + \frac{1}{2}(-9.81)t^2$	1
	<i>t</i> = 109 s	1
(a)(iii)	$v^2 = u^2 + 2as$	
	$0 = 535^2 + 2(-9.81)s_{max}$	
	$s_{max} = 14588 \text{ m}$	1
	height = $14588 + 50.4$	1
	≈14600 m	
(b)(i)	$p_{actual} = 9300$ 0.007	_
	$\frac{1}{mgh_{ideal}} = \frac{1}{14600} = 0.637$	1
(b)(ii)	Larger	1
	Drag force increases with larger relative velocity	1
	Traditional rockets start off stationary and hence experience less drag	•
	across the ascend process	
(c)(i)	2π 2π 7.27×10^{-5} red c^{-1}	
	$\omega = \frac{1}{T} = \frac{1}{24 \times 60 \times 60} = 7.27 \times 10^{-1} \text{ rad s}$	1
(c)(ii)	Towards east.	1
	Launching projectile in the same direction as Earth's rotation reduces	1
	the amount of kinetic energy that the accelerator has to transfer to the	•
	projectile for the projective to achieve the desired speed.	
(d)(i)	(θ)	
	$V = r\omega = r\left(\frac{1}{t}\right)$	
	$=(50.0)\left(\frac{2\pi(450)}{100000000000000000000000000000000000$	
		1
	= 2300	
	$= 2360 \text{ m s}^{-1}$	

Qns	Answer	Marks
(d)(ii)	$V_{\text{at launch}} = \frac{8000 \times 10^3}{60 \times 60} = 2220 \text{ m s}^{-1}$	
	ratio = $\frac{\frac{1}{2}mv_{at aunch}^2}{\frac{1}{2}mv_{before}^2} = \left(\frac{2220}{2360}\right)^2 = 0.880 \text{ (accept 0.890)}$	1
(d)(iii)	Minimise loss of (kinetic) energy as heat due to work done against air resistance	1
(e)(i)	KE just before launch = $\frac{1}{2}mv^2$	
	$=\frac{1}{2}(200)(2360)^2$	
	$= 5.57 \times 10^8 $ J	
	time needed = $\frac{5.57 \times 10^8}{100 \times 10^3}$ = 5570 s = 92.8 min	
(e)(ii)	$\frac{a_c}{g} = \frac{r\omega^2}{g}$	
	$= (50.0) \left(\frac{450(2\pi)}{60}\right)^2 \frac{1}{9.81}$	1
	= 11300	
	No. They were subject to more than 10 000 g for more than an hour.	1
(f)(i)	Work by per unit mass in bringing a small test mass from infinity to that point	1

