Qn	Suggested MS
1)a)	If sphere A is to move in the opposite direction, speed of sphere B will have to be
	higher than the initial speed of sphere A
	which will mean that total kinetic energy after collision has increased, which is not
	possible
b)i)	$m_{2.5}u_{2.5} + 0 = m_{2.5}v_{2.5} + m_{2.0}v_{2.0}$
	$2.5(3.6) + 0 = 2.5v_{2.5} + 2.0v_{2.0}$
	$9 = 2.5v_{2.5} + 2.0v_{2.0}$
	Relative speed of approach = relative speed of separation
	$3.6 = V_{2.0} - V_{2.5}$
	$9 = 2.5v_{2.5} + 2.0(3.6 + v_{2.5})$
	$V_{2.5} = \frac{9 - 7.2}{4.5} = 0.4$
	4.5
ii)	$F_{\text{ave},2.5kg} = \frac{\Delta p}{t} = \frac{p_f - p_i}{t} = \frac{2.5(0.4) - 2.5(3.6)}{0.5} = 16.0N$
	Using N3L, the force on the 2.0 kg crate is also 16.0 N
c)i)	$KE_i + gpe_i = KE_f + gpe_f + WD_f$
	$\frac{1}{2}(3.0)(1.5)^2 + (3.0)(9.81)(2.0) = \frac{1}{2}(3.0)v^2 + 0 + 15.0(\frac{2.0}{\sin 30^\circ})$
	$3.4 + 58.9 = 1.5v^2 + 60$
	$v = 1.24 ms^{-1}$
ii)	The crate will reach the bottom of the slope with a much higher speed
,	The will result in it experiencing a much larger vertical force as it moves from the slope
	onto the vertical surface, potentially damaging the tomatoes.

JC2 2023 Page 1 of 11

JC2 2023 Page 2 of 11

(c)(i)	sphere Q sphere Q
(ii)	Electric field strength is the negative potential gradient
	Gradient points in the direction of the greatest change of potential which is the (opposite) direction of the electric field.
	There is no component of the electric field strength (electric force) parallel to the
	equipotential line as this will cause a change in electric potential

JC2 2023 Page 3 of 11

3(a)	The magnetic flux linkage through a whole coil of N turns is the sum of the magnetic
((a)	flux through the individual turns
(b)(i)	As the coil rotates, the area of the coil perpendicular to the field changes sinusoidally
(/(/	causing the magnetic flux linkage to change sinusoidally and a sinusoidal e.m.f. is
	induced,
	Since the circuit forms a closed loop, a sinusoial current will now follow
(ii)	
	$E = -\frac{d\Phi}{dt} = -\frac{d}{dt}NBA\cos(\omega t) = \omega NBA\sin(\omega t)$
	$E_{\text{max}} = \omega NBA = 2\pi (\frac{30}{60})(6.2)(265 \times 100^{-2}) = 0.516 \text{ V}$
	$E_{\text{max}} = \omega NBA = 2\pi (\frac{1}{60})(6.2)(263 \times 100) - 0.310 \text{ V}$
	= 0.52 V
(iii)	orientation of coil seen from the top view
	direction of B field
	E/V B field
	0.52
	t/s
	- 0.52
(c)(i)	$V_{rms} = \frac{V_0}{\sqrt{2}} = \frac{0.516}{\sqrt{2}} = 0.365 \text{ V}$
	$V_{rms} = \frac{0}{\sqrt{2}} = \frac{0.365 \text{ V}}{\sqrt{2}} = 0.365 \text{ V}$
(ii)	
(")	$\frac{N_s}{N_p} = \frac{V_s}{V_p}$
	N_{p} V_{p}
	$0.25 = \frac{V_s}{V}$
	V_{ρ}
	$V_s = 0.25 \times 0.365 = 0.09125 V$
	V 0.09125
	$I_s = \frac{V_s}{R} = \frac{0.09125}{10} = 9.13 \times 10^{-3} A$

JC2 2023 Page 4 of 11

4))	T
4)a)	F = kx
	8.0 = 65x
	x = 0.123m
b)i)	$KE_{max} = PE_{max}$
	$KE_{\text{max}} = PE_{\text{max}} = \frac{1}{2}kx^2 = \frac{1}{2}(65)(0.123)^2 = 0.49J$
ii)	$KE_{\text{max}} = \frac{1}{2}mv_o^2 = \frac{1}{2}m(\omega x_o)^2 = 0.49J$
	$\frac{1}{2}(1.2)(\frac{2\pi}{T}(0.123))^2 = 0.49$
	T = 0.855s
iii)	energy / J
	0.49 — time / s 0.85 1.70
iv)	energy / J
	-0.123 0.123 displacement / m
v)	energy / J
	-0.123 0.123 displacement / m

JC2 2023 Page 5 of 11

5(a)	A photon is a quantum of electromagnetic radiation
. ,	whose energy is given by the product of the Planck's constant and its frequency.
(b)(i)	n_ h
	$p = \frac{h}{\lambda}$
	$=\frac{6.63\times10^{-34}}{656\times10^{-9}}$
	$-\frac{656 \times 10^{-9}}{}$
	$= 1.01 \times 10^{-27} \text{ kg m s}^{-1}$
(ii)	$\Delta x = c \Delta t$
	$= (3.00 \times 10^8) (9.00 \times 10^{-15})$
	$= 2.70 \times 10^{-6} \text{ m}$
	$\Delta x \Delta p \gtrsim h$
	minimum $\Delta p \approx \frac{h}{\Delta x}$
	$=\frac{6.63\times10^{-34}}{2.70\times10^{-6}}$
	$= 2.46 \times 10^{-28} \text{ kg m s}^{-1}$
(c)	When isolated gas atoms are in the excited state, electrons occupying the higher energy levels will spontaneously transit from the higher energy levels to lower energy levels.
	Each transition produces a photon whose energy is equal to the energy difference of the
	two electron energy levels involved in the transition.
	Discontinuous/discrete coloured lines are produced on a dark background implying only
	photons of specific energy/wavelength/frequency is emitted, indicating that the energy
	levels in an isolated atom are discrete.
(d)	$\Delta E = hf$
	$= (6.63 \times 10^{-34})(3.19 \times 10^{15})$
	$= 2.115 \times 10^{-18} \text{ J}$
	2.115×10 ⁻¹⁸
	$=\frac{2.115\times10^{-18}}{1.60\times10^{-19}} \text{ eV}$
	=13.22 eV
	$E_{\text{higher}} - E_{\text{lower}} = 13.22$
	$E_{\text{higher}} = 13.22 + (-13.6)$
	=-0.38 eV
(e)(i)	$\frac{hc}{\lambda} = \phi + eV_{s}$
(li)	$V hc(1) \phi$
	$V_{\rm s} = \frac{hc}{e} \left(\frac{1}{\lambda} \right) - \frac{\phi}{e}$
	Plotting V_s against $\frac{1}{\lambda}$, $\frac{hc}{e}$ is equal to the gradient.
	gradient of graph — 1.80 – 0.70
	gradient of graph = $\frac{1.80 - 0.70}{(3.00 - 2.10) \times 10^6}$
	$= 1.222 \times 10^{-6} \text{ V m}$

JC2 2023 Page 6 of 11

$$\frac{hc}{e} = 1.222 \times 10^{-6}$$

$$h = \frac{(1.222 \times 10^{-6})(1.60 \times 10^{-19})}{3.00 \times 10^{8}}$$

$$= 6.52 \times 10^{-34} \text{ J s}$$

JC2 2023 Page 7 of 11

6(a)(i)	The light is polarised in the same direction as the filter's polarising direction / polarised
	in the vertical direction.
(a)(ii)	<u></u>
	I_0 I_0
	180° 360°
	100 300
(a)(iii)	$\cos \theta = \sqrt{0.179} \implies \theta = 65.0^{\circ}$
	$I_0 \cos^2(65.0^\circ - 30^\circ) = 0.67I_0$
(b)(i)	Light from both slits arrive in phase, it would result in constructive interference; if arrive
(6)(1)	in $_{\pi}$ rad out of phase, it would result in destructive interference.
	This corresponds to maximum voltage for constructive and minimum for destructive.
	As the train moves, it would detect alternating high and low voltages / interference
	pattern.
(b)(ii)4	Peak decreases due to diffraction.
(b)(ii)1.	$x = \frac{\lambda D}{d}$
	$=\frac{\left(630\times10^{-9}\right)(5.0)}{1.5\times10^{-3}}$
	$x = 2.1 \times 10^{-3} \text{ m}$
(b)(ii)2.	
(6)(11)2.	Time between two peaks = $\frac{0.01}{5}$ = 2×10 ⁻³ s
	$v = \frac{2.1 \times 10^{-3}}{2 \times 10^{-3}}$
	$v = 1.05 \text{ m s}^{-1}$
(c)(i)	$\frac{\lambda}{\lambda} = \frac{0.13}{1.00}$
	$\overline{b} = \overline{5.0}$
	$b = (630 \times 10^{-9}) \left(\frac{5.0}{0.13}\right)$
	$b = 2.4 \times 10^{-5} \text{ m}$
(c)(ii)	Peak voltages will be higher.
(0)(11)	Width of the central bright fringe will be smaller.
(d)	output voltage
	output voltage
	time
	Reflected waves and incidence waves interfere.

JC2 2023 Page 8 of 11

Same frequency, opposite direction, hence a stationary wave is formed.

JC2 2023 Page 9 of 11

7(a)	Work done to move the masses
7 (α)	from infinity to the distance of separation/to that point.
(b)(i)	A geostationary orbit is one where the satellite will remain in the same position in the
(~)(.)	sky relative to the Earth's surface
(b)(ii)	The orbital period of the moon is not 24 hours
(b)(iii)	$T = 27.3 \times 24 \times 60 \times 60 = 2358720 \text{ s}$
(-/(/	
	$\omega = \frac{2\pi}{T} = \frac{2\pi}{2358720} = 2.66 \times 10^{-6} \text{ rad s}^{-1}$
(b)(iv)	The gravitational force by the Earth on the Moon provides for the centripetal force.
(8)(14)	
	$\frac{GM_{Earth}M_{Moon}}{r^2} = M_{Moon}a_{Moon}$
	$\frac{GM_{Earth}}{r^2} = r\omega^2$
	$M_{Earth} = \frac{r^3 \omega^2}{G}$
	3 2
	$M_{Earth} = \frac{r^3 \omega^2}{G}$
	$M_{Earth} = \frac{(3.84 \times 10^8)^3 \times (2.6638 \times 10^{-6})^2}{(6.67 \times 10^{-11})}$
	(6.67×10^{-11})
	$M_{Earth} = 6.02 \times 10^{24} \text{ kg}$
(b)(v)1	The gravitational force by the Earth on the Moon provides for the centripetal force.
	$\frac{GM_{\rm e}M_{\rm m}}{\chi^2} = M_{\rm m}\frac{v^2}{\chi}$
	$GM_{e}M_{m}$ 1.4.2
	$\frac{GM_{\rm e}M_{\rm m}}{2x} = \frac{1}{2}M_{\rm m}v^2$
	Kinetic energy = $\frac{GM_eM_m}{2x}$
	Kinetic energy = $\frac{1}{2x}$
(b)(v)2	Gravitational potential energy = $-\frac{GM_eM_m}{x}$
	Gravitational potential energy = $-\frac{x}{x}$
	Total energy = $-\frac{GM_eM_m}{x} + \frac{GM_{eh}M_m}{2x}$
	$\frac{1}{x}$ $\frac{1}{2x}$
	Total energy = $-\frac{GM_eM_m}{2x}$
	24
(b)(v)3	When the total energy is zero (or more), this implies the Moon is able to escape from
(1.) (-1) 4	the Earth's gravitational field.
(b)(vi)1	As the Moon moves further from the Earth, its orbital radius/x increases
	The total energy increases.
(b)(vi)2	The potential energy will increase more than the decrease in kinetic energy
(b)(vi)2	Since this is an Earth-Moon system, the Earth loses energy while the Moon gains
(b)(vi)3	energy. As the Earth loses energy, the orbital speed about the Earth axis decreases. Since
(6)(41)3	angular velocity is smaller, the period will be longer.
(b)(vi)	The position where the maximum gravitational potential is between M and N
(~/(*')	The direction of the gravitational field strength at N will be towards the moon
	a action of the grantational hold delonger acts will be towards the moon

JC2 2023 Page 10 of 11

It will accelerate towards the Moon instead.

JC2 2023 Page 11 of 11