Lesson 21

Object Oriented Programming (OOP) :

Python Classes . Inheritance

LAST TIME

= abstract data types through classes
" Coordinate example

" Fraction example

TODAY

" more on classes
* getters and setters
* information hiding
* class variables

*" inheritance

IMPLEMENTING USING
THE CLASS vs THE CLASS

= write code from two different perspectives

implementing a new using the new object type in
object type with a class code
* define the class * create instances of the
» define data attributes object type
(WHAT IS the object) * do operations with them
* define methods
(HOW TO use the object)

CLASS DEFINITION

INSTANCE

OF AN OBJECT TYPE vs OF A CLASS

= class name is the type

class Coordinate (object)

= class is defined generically

* use self torefer to some
instance while defining the
class

fself.st — gelf.y) %2

* selfiS a parameter to
methods in class definition

= class defines data and
methods common across all
instances

" instance is one specific object

coord = Coordinate(l, 2)

= data attribute values vary
between instances

cl = Coordinate (1, 2)

c2 = Coordinate(3,4)

* <1 and <2 have different data
attribute values c1.xand c2.x
because they are different
objects

= instance has the structure of
the class

WHY USE OOP AND
CLASSES OF OBJECTS?

* mimic real life

* group different objects part of the same type

WHY USE OOP AND
CLASSES OF OBJECTS?

* mimic real life

* group different objects part of the same type

GROUPS OF OBJECTS HAVE
ATTRIBUTES (RECAP)

= data attributes
* how can you represent your object with data?
* what it is
* for a coordinate: x and y values
* for an animal: age, name

= procedural attributes (behavior/operations/methods)
* how can someone interact with the object?

* what it does
* for a coordinate: find distance between two
* for an animal: make a sound

HOW TO DEFINE A CLASS
(RECAP)

e
&
6o W e
RO e N X 2 \e©
e,e‘\'\“\‘ @ Qo e ket Sl W
S e N
class Animal‘(object) - 3{\’5\0 e e
N Y a3 T ®
def| init |[(self,| age) :xﬂ“a?’(\‘\}‘\a
0 A
A _
e g self age = age e
(;\3\ WO XKW ce
Q% " self.name = None R - '\0"‘3(\"&
? 6 o A X R\ p
A
{\86:,0 u, ’{\’6\.\1'6
. . “ p \
myanimal |= Animal(3) A S
86 X0 \° a2 Q’b(
\.’é(\ce ((\"NQ £ . aqer‘ -
e\ e> 0%
of i <

O

GETTER AND SETTER METHODS

class Animal (object):
def . dnit H{self, age):

self.age = age
self.name = None

def get age(self):
%gﬁﬁ return self.age
def get name (self):

return self.name

def set age(self, newage):

el self.age = newage
e
def set name (self, newname=""):
self.name = newname
det Stk Self):
return "animal:"+str(self.name)+":"+str (self.age)

= getters and setters should be used outside of class to
access data attributes

AN INSTANCE and
DOT NOTATION (RECAP)

" instantiation creates an instance of an object
a = Animal (3)

* dot notation used to access attributes (data and
methods) though it is better to use getters and setters

to access data attributes aed
.\0\)_3 ((\((\60
d.d g e ,a\:b 3‘,‘(\0& (QCO
(JQSS 6 \0\)‘ i3
a.get age () ,*“w@‘
A x i
8)
esc) e\\(; %e“e(
C N
? O
\oeize“e(s

INFORMATION HIDING

= author of class definition may change data attribute
variable names

class Animal (object) :

edﬂ@ . def init (self, age):
329 4’ 1f =
2% oy Y self.years|= age
?&ﬁwﬁg def get age(self):

return self.years

" if you are accessing data attributes outside the class and
class definition changes, may get errors

= outside of class, use getters and setters instead
use a.get age () NOT a.age

* good style
* easy to maintain code
* prevents bugs

PYTHON NOT GREAT AT
INFORMATION HIDING

= allows you to access data from outside class definition
print (a.age)

= allows you to write to data from outside class definition
a.age = 'infinite'

= allows you to create data attributes for an instance from
outside class definition

a.size = "tiny"

" it’s not good style to do any of these!

DEFAULT ARGUMENTS

= default arguments for formal parameters are used if no
actual argument is given

def set name (self, newname="") :

self.name = newname

= default argument used here
a = Animal (3)

a.set name () @Wﬁ

print (a.get name())

= argument passed in is used here

a = Animal (3) W

a.set name ("fluffy") @Wﬁ

print (a.get name())

HIERARCHIES

= parent class
(superclass)

= child class

Animal

/

™~

I

(subclass)

* inherits all data
and behaviors of

Person

Cat

Rabbit

parent class
* add more info
* add more behavior
* override behavior

N\

Student

INHERITANCE:
PARENT CLASS

class Animal|(object) :

def

def

def

def

def

def

X
.e(,
__init (self, age): do&“
self.age = age ‘W%ﬁa@

B DT ™ e NG
self.name = None e\le‘ 30w o \(\o(“\
get age(self): ,c,\"’c’(\’e(oe(\‘s '\(\?\“s AN

i £ ‘
return self.age WP ,6{\0“ (-\3‘0\9’
get name (self) oo -o%\la

B . o\

return self.name
set age(self, newage):
self.age = newage
set name (self, newname=""):
self.name = newname

str: faekE)s

return "animal:"+str(self.name)+":"+str(self

.age)

INHERITANCE: oot o)

\ : :
SSl,,EB(::LJC\ESES .V@ﬁésgéﬂ éisjgixvga/
\(\ Se’ﬂ. ;&(/\\
o

class CatkAnimal):
def speak(self):

e
N A\S rint ("meow"
’666 ‘,\ O(\'b ‘\(\06 P ()
$§@'¥«@' def str (self):
Q% return "cat:"+str(self.name)+":"+str (self.age)
5\,(-
9e*
<

* add new functionality with speak ()
* instance of type Cat can be called with new methods
* instance of type Animal throws error if called with Cat’s

new method

= 1init isnot missing, uses the Animal version

WHICH METHOD TO USE?

* subclass can have methods with same name as
superclass

* for an instance of a class, look for a method name in
current class definition

* if not found, look for method name up the hierarchy
(in parent, then grandparent, and so on)

* use first method up the hierarchy that you found with
that method name

class Person (Animal) :

s
def 1init (self, name, age): /7QQ%.

3 A g " /s
Animal. init (self, age) cay gnlma
self.set name (name) C/40LW <

= Q Q
self.friends = [] ad[ﬁthjcbmw
M
def get friends (self): \ dc?,,ebjjs,het"ct "
return self.friends OEQGQbe
def add friend(self, fname): n%m@
if fname not in self.friends:
self.friends.append (fname)
def speak(self):
: " " > nel‘l/
print ("hello") /nw”
def age diff(self; other):) 0%
diff = self.age - other.age
o
print (abs (diff), "year difference") bQ%@b
S
def str (self): e
return "person:"+str(self.name)+":"+str(self.age) Yoy S

by,
import random Fro /,’é’/'n,he
z, th
57 O
class Student (Person) : in QQWC@f
def init (self, name, age, major=None) : A@W7 5s
o o 4171. Sp
Person.==init==(self, name, age) Jmize@fgo
self.major = major 3 Q%%bf
- - e
def change major (self, major): 0306 s
self.major = major qwb
def speak(self):
r =|random.random/ ()
if r < 0.25: ~//
print ("i have homework") ’ OO&&y
elif 0.25 <= r < 0.5: <, g, Yy
. . Yan, 7 op Ow,
print ("1 need sleep") /0‘91‘,' Q’o,,? aSs,-n O‘/s@
elif 0.5 <= r < 0.75: o ' h e, " the
| "y thy P
print ("i should eat") ‘ﬂgb Qﬂob
else: eséﬁufb

print ("i am watching tv")

def str (self):

return

"student:"+str (self.name)+":

"+str(self.age)+":"+str(self.major)

CLASS VARIABLES AND THE

Rabbi1t SUBCLASS

= class variables and their values are sha
instances of a class

red between all

class Rabbit (Animal) : ‘dﬁﬁ
tag|= 1 Qa(e(\
6(-\3‘0\?’ def init (self, age, parentl=None, parent2=None) :
C\ags“ Animal. init (self, age) \e (\%e‘o‘\l
self.parentl = parentl C\aS‘J \16{\3\0 \’3(\3\0\6(?:(60%\
" self.parent2 = parent?2 age‘f’ .(\%c\ 5:03‘((\3\‘

Ce“a(\a\o self. rid\ = |Rabbit .tag (e((\g(\':@oc >

\(\sx’a“ Rabbit.tag += 1 .\(?;(a\\\(\

" tag used to give unique id to each new rabbit instance

Rabbit GETTER METHODS

class Rabbit (Animal) :

tag = 1
def 1init (self, age, parentl=None, parentZ2=None) :
Animal. 1init (self, age) 09ﬂ5
self.parentl = parentl dw%xeﬁﬁ
self.parent2 = parent?2 QOQQS*NNtﬁx
self.rid = Rabbit.tag X0© “@W%Gyﬁ‘
Rabbit.tag += 1 . e‘oe%«\q\e'
(" def get rid(self): Qzﬁe@‘
retirni strifself.rid) 12£111(3) d&p
def get parentl (self): &;&e
o return self.parentl ° AR N oo
def get parefit2({self) : 6&S1§¥9%@0€§2§~?g
L return self.parent2 ',\0‘ a?\e,a(e"‘ 30¢q0\/®3‘\’
X 0§ﬁ;d@ﬁ&
@%;;ﬁp
W

WORKING WITH YOUR OWN
TYPES

def add (self, other):

returning object of same type as this class

return |Rabbit (0, self, other)

I\ s

recall Rabbit’s __init (self, age, parentl=None, parent2

AT
L N, PR
=NOInN

)

()

» define + operator between two Rabbit instances

* define what something like thisdoes: r4 = rl + r2
where r1 and r2 are Rabbit instances

* r4isanew Rabbit instance with age 0
* r4 has self as one parent and other as the other parent
*in__ init ,parentlandparent2 are oftype Rabbit

SPECIAL METHOD TO
COMPARE TWO Rabbits

* decide that two rabbits are equal if they have the same two
parents
def eq (self, other):

parents_same |= self.parentl.rid == other.parentl.rid \
¢ and self.parent2.rid == other.parent2.rid
d@ﬁ“ parents opposite|= self.parent2.rid == other.parentl.rid \
o L
© and self.parentl.rid == other.parent2.rid

return parents same or parents opposite

" compare ids of parents since ids are unique (due to class var)
" note you can’t compare objects directly
* for ex. with self.parentl == other.parentl

* this callsthe eq method over and over until call it on None and
gives an attributeError When it tries to do None .parentl

OBJECT ORIENTED
PROGRAMMING

= create your own collections of data

" organize information

= division of work

= access information in a consistent manner
= add layers of complexity

= like functions, classes are a mechanism for
decomposition and abstraction in programming

Additional help . ..

Two other special methods of Python are str and repr . These methods are

used for representing the value of an object as a string. The __str method is called when an
object 1s displayed using print (and when the stxr conversion function is used.) The repr
function is called when the value of an object is displayed in the Python shell (when interactively

using Python). This 1s demonstrated below.

\/
\/
\/

class DemoStrRepr() : s = DemoStrRepr ()

def repr (self): >>> print (s)
return ' repr called’ __str called
def str (self): >>> g

return ' str called' __repr called

