
Solutions to 2023 Measurement Self-Review Questions

0.4	
S1.	Density, $\rho = \frac{1.00 \times 10^{-3}}{1.00 \times 10^{-6}} = 1.00 \times 10^{3} \text{ kg m}^{-3}$
S2.	(A) ohm, newton and volt are not base units.
S3.	Speed of car = $\frac{90.0 \times 10^3}{60 \times 60}$ = 25.0 m s ⁻¹
S4.	1 light-year = $3.0 \times 10^8 \times (365 \times 24 \times 60 \times 60) = 9.46 \times 10^{15}$ m
	Distance to star = $\frac{4.0 \times 10^{16}}{9.46 \times 10^{15}} = 4.2 \text{ light-years}$
S5.	(C). Stopping the stopwatch requires judging the correct timing of the end of the sprint. The stopwatch may be stopped too early or too late by the timekeeper (due to the fast speed). The other options constitute systematic errors.
S6.	
	Graph A B C D
	Precise ✓ ✓
	Not Variation
	precise
	Not V
	accurate
S7.	$F = \frac{1}{2}C_{1}\alpha AV^{2}$
	2
	$F = \frac{1}{2}C_D \rho A v^2$ $v = \sqrt{\frac{2F}{C_D \rho A}} = \sqrt{\frac{2(22)}{(0.88)(1.2)(0.32)}} = 11.411 \text{ m s}^{-1}$
	$VC_D \rho A V(0.88)(1.2)(0.32)$
	AV. 1 A.F. 1 A.C. 1 A.A.
	$\frac{\Delta V}{V} = \frac{1}{2} \frac{\Delta F}{F} + \frac{1}{2} \frac{\Delta C_D}{C_D} + \frac{1}{2} \frac{\Delta \rho}{\rho} + \frac{1}{2} \frac{\Delta A}{A}$
	$\frac{\Delta v}{11.411} = \frac{1}{2} \left(\frac{2}{22} + \frac{0.01}{0.88} + \frac{0.1}{1.2} + \frac{0.02}{0.32} \right)$
	$\Delta v = 1.416$
	$v = 11 \pm 1 \text{ m s}^{-1}$
	The uncertainty must be expressed to 1 sf, which is in the ones place. Hence the value is expressed to the ones place too.

