

National Junior College 2016 – 2017 H2 Further Mathematics Topic F6: Numerical Methods (Assignment Solutions)

Suggested Solutions

1 Let
$$f(x) = \frac{2}{x}$$
 and $h = \frac{2-1}{n} = \frac{1}{n}$,
 $f(1) = 2$,
 $f\left(1 + \frac{1}{n}\right) = \frac{2n}{n+1}$,
 $f\left(1 + \frac{2}{n}\right) = \frac{2n}{n+2}$,
:
 $f\left(1 + \frac{r}{n}\right) = \frac{2n}{n+r}$,
:
 $f\left(1 + \frac{n-1}{n}\right) = \frac{2n}{n+(n-1)}$,
 $f(2) = 1$.

Using Trapezium Rule,

$$\begin{split} &\int_{1}^{2} \frac{2}{x} \, \mathrm{d}x \\ &\approx \frac{1}{2n} \Bigg[2 + 1 + 2 \Bigg(\frac{2n}{n+1} + \frac{2n}{n+2} + \dots + \frac{2n}{n+(n-1)} \Bigg) \\ &= \frac{1}{2n} \Bigg[3 + 2 \Bigg(\frac{2n}{n+1} + \frac{2n}{n+2} + \dots + \frac{2n}{n+(n-1)} \Bigg) \Bigg] \\ &= \frac{3}{2n} + \frac{1}{n} \Bigg(\frac{2n}{n+1} + \frac{2n}{n+2} + \dots + \frac{2n}{n+(n-1)} \Bigg) \\ &= \frac{3}{2n} + 2 \Bigg(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+(n-1)} \Bigg) \\ &= \frac{3}{2n} + 2 \sum_{r=1}^{n-1} \frac{1}{n+r} \quad (\text{shown}) \end{split}$$

Since the curve $y = \frac{2}{x}$ from x = 1 to x = 2 concave upwards, applying the trapezium rule will lead to an overestimation of the actual area as the sum of the areas of the *n* trapezia given by $\frac{3}{2n} + 2\sum_{r=1}^{n-1} \frac{1}{n+r}$, is more than the actual area, $\int_{1}^{2} \frac{2}{x} dx$.

361

$$\int_{1}^{2} \frac{2}{x} dx = [2 \ln x]_{1}^{2}$$
$$= 2 \ln 2 - 2 \ln 1$$
$$= 2 \ln 2$$

Since the sum of the areas of the *n* trapezia, $\frac{3}{2n} + 2\sum_{r=1}^{n-1} \frac{1}{n+r}$, is more than the actual area,

$$\frac{3}{2n} + 2\sum_{r=1}^{n-1} \frac{1}{n+r} > 2\ln 2.$$

By considering *n* rectangles,

total area of *n* rectangles =
$$\left(\frac{1}{n}\right)\left(\frac{2n}{n+1}\right) + \left(\frac{1}{n}\right)\left(\frac{2n}{n+2}\right) + \left(\frac{1}{n}\right)\left(\frac{2n}{n+3}\right) + \dots + \left(\frac{1}{n}\right)\left(\frac{2n}{n+n}\right)$$

= $\left(\frac{2}{n+1}\right) + \left(\frac{2}{n+2}\right) + \left(\frac{2}{n+3}\right) + \dots + \left(\frac{2}{n+n}\right)$
= $2\sum_{r=1}^{n} \frac{1}{n+r}$

Since the sum of the areas of the *n* rectangles, $2\sum_{r=1}^{n} \frac{1}{n+r}$, is less than the actual area,

$$\frac{3}{2n} + 2\sum_{r=1}^{n-1} \frac{1}{n+r} > 2\ln 2 > 2\sum_{r=1}^{n} \frac{1}{n+r}.$$

From the graph of $y = \frac{2x+2}{x+2}$ and $y = -1 - e^x$, the graphs intersect exactly once. Hence, the equation $\frac{2x+2}{x+2} = -1 - e^x$ has exactly one real root. Let $f(x) = \frac{2x+2}{x+2} + 1 + e^x$, applying linear interpolation once, $\alpha_1 = \frac{(-1.9)|f(-1)| + (-1)|f(-1.9)|}{|f(-1)| + |f(-1.9)|}$ = -1.0676

 ≈ -1.1 (to 1 decimal place)

Since y = f(x) has a vertical asymptote at x = -2, f'(x) changes rapidly in the interval [-1.9, -1], α_1 is further away from α . Therefore, α_1 is not a good approximation to α .

(i) From the graph, for $\frac{1-x}{(x+1)^2} = x^2 + (-k)$ to have 2 negative roots,

$$-k > 1 \Rightarrow \therefore k < -1.$$
(ii) For $1 < k < 9\frac{1}{8}$, the graph of $y = x^{2} + (-k)$ lies between $y = x^{2} - 1$ and
 $y = x^{2} - 9\frac{1}{8}$, it will intersect $y = \frac{1 - x}{(x + 1)^{2}}$ at a point where $x = \alpha$ and $\alpha \in (1, 3)$.
If $k = 3$, $\frac{1 - x}{(x + 1)^{2}} = x^{2} - 3 \Rightarrow \frac{1 - x}{(x + 1)^{2}} - x^{2} + 3 = 0$.
Let $f(x) = \frac{1 - x}{(x + 1)^{2}} - x^{2} + 3$,
 $f'(x) = \frac{x - 3}{(x + 1)^{3}} - 2x$.

By Newton-Raphson Method, $x_0 = 2$,

3

$$x_1 = 2 - \frac{f(2)}{f'(2)} = 1.72477 \approx 1.725$$
 (to 3 decimal places).

$$f''(x) = \frac{(x+1)^3 - 3(x-3)(x+1)^2}{(x+1)^6} - 2$$
$$= \frac{-2x+10}{(x+1)^4} - 2$$
$$= -2\left[\frac{x-5}{(x+1)^4} + 1\right]$$

For $x \in (1,3)$, f'(x) < 0 and f''(x) < 0.

The curve strictly decreases and concave downwards for $x \in (1,3)$. The tangent line at $x_0 = 2$ cuts the x-axis at x_1 which is on the right of α . Therefore, α is smaller than x_1 .

4

Let $f(x) = x^4 - 2$, $f'(x) = 4x^3$. By Newton-Raphson method, $\alpha_2 = \alpha_1 - \frac{f(\alpha_1)}{f'(\alpha_1)}$ $= \alpha_1 - \frac{(\alpha_1^4 - 2)}{4\alpha_1^3}$ $= \alpha_1 - \frac{\alpha_1}{4} + \frac{1}{2\alpha_1^3}$ $= \frac{3\alpha_1}{4} + \frac{1}{2\alpha_1^3}$ (shown) Taking $\alpha_1 = 1$, $\alpha_2 = \frac{3\alpha_1}{4} + \frac{1}{2\alpha_1^3} = \frac{5}{4}$ $\alpha_3 = 1.1935$ $\alpha_4 = 1.18923$ $\alpha_5 = 1.18921$ $\therefore x \approx 1.189$ (to 3 decimal places)

$$x^{4} - 2 = 0 \Longrightarrow x = 2^{\frac{1}{4}}$$
$$\therefore 2^{\frac{1}{4}} \approx 1.189$$

Taking $\alpha_1 = 1$,

$$x_{2} = \left(\frac{2}{x_{1}}\right)^{\frac{1}{3}} = 1.25992, \quad x_{3} = \left(\frac{2}{x_{2}}\right)^{\frac{1}{3}} = 1.16653,$$

$$x_{4} = \left(\frac{2}{x_{3}}\right)^{\frac{1}{3}} = 1.19686, \quad x_{5} = \left(\frac{2}{x_{4}}\right)^{\frac{1}{3}} = 1.18667,$$

$$x_{6} = \left(\frac{2}{x_{5}}\right)^{\frac{1}{3}} = 1.19006, \quad x_{7} = \left(\frac{2}{x_{6}}\right)^{\frac{1}{3}} = 1.18892,$$

$$x_{7} = \left(\frac{2}{x_{6}}\right)^{\frac{1}{3}} = 1.18930,$$

$$\therefore 2^{\frac{1}{4}} \approx 1.189$$

5

(i) Rate at which the pollutants enter the vessel =
$$\frac{qx}{100}$$
 litres/min.
Rate at which the pollutants leave the vessel = $\frac{py}{100}$ litres/min.

Let *U* be the volume of pollutant in the vessel at time *t*, then $\frac{dU}{dt} = \frac{qx - py}{100}$.

d*t*

V

Also,
$$\frac{dV}{dt} = x + w - y$$
 and $p = \frac{U}{V} \times 100$.
Thus,
 $\frac{dU}{dt} = \frac{qx - py}{100}$
 $\Rightarrow \frac{d}{dt} \left(\frac{pV}{100}\right) = \frac{qx - py}{100}$
 $\Rightarrow p \frac{dV}{dt} + V \frac{dp}{dt} = qx - py$
 $\Rightarrow p(x + w - y) + V \frac{dp}{dt} = qx - py$
 $\Rightarrow \frac{dp}{dt} = \frac{qx - py - px - pw + py}{W} \Rightarrow \frac{dp}{dt} = \frac{qx - (w + x)p}{W}$ (shown)

V

d*t*

(ii) When
$$x = y = w = 1000$$
, and $q = 40$,

$$\frac{dV}{dt} = x + w - y = 1000 \implies V = 1000t + C.$$

Using $V = 10000$ when $t = 0$, we get $C = 10000$
Thus, $V = 1000t + 10000$.

n	<i>t</i> _n	<i>p</i> _n , approx	dp/dt
0	0.0	10.0000	2.0000
1	1.0	12.0000	1.4545
2	2.0	13.4545	1.0909
3	3.0	14.54545	

$$\frac{\mathrm{d}p}{\mathrm{d}t} = \frac{40(1000) - (1000 + 1000)p}{V} = \frac{40000 - 2000p}{1000t + 10000} = \frac{40 - 2p}{t + 10}.$$

Overestimate, because gradient is positive but decreasing.

(i) Exact solution is $y(t) = \frac{1}{1+t^2}$. So exact/true value of y(2) = 0.2.

Using Euler's method to approximate this solution over the interval $0 \le t \le 2$ for step size $\Delta t = 0.2$, we obtain $y_{approx} = 0.1858$. The approximation is an under-estimate of the true value of y(2), and has an error $e_1 = 0.0142$.

Using Euler's method to approximate this solution over the interval $0 \le t \le 2$ for step size $\Delta t = 0.1$, we obtain $y_{approx} = 0.1933$. The approximation is an under-estimate of the true value of y(2), and has an error $e_2 = 0.0067$.

Observe that $\frac{e_1}{e_2} \approx 2.12$.

(ii) Using improved Euler's method with a step size of $\Delta t = 0.1$, we obtain $y_{approx} = 0.200695$ which differs from the true value by $e_3 = 6.95 \times 10^{-4}$.

Observe that $\frac{e_2}{e_3} \approx 9.5$.

Thus, we can say that the improved Euler's method is about 10 times more accurate than the Euler's method.