ACJC 2023 H2 Math JC1 Promo

1 Differentiate each of the following expressions with respect to x.

(i)
$$\tan^{-1} \sqrt{x+1}$$
 [2]

(ii)
$$\ln\left(\frac{x+e^x}{3^x}\right)$$

2 (i) Sketch the graph of $y = \left| b + \frac{a}{x+b} \right|$, where 0 < a < b, stating the equations of any asymptotes and the coordinates of the points that crosses the axes. [3]

(ii) Hence solve the inequality
$$-x \le \left| b + \frac{a}{x+b} \right|$$
. [2]

- (iii) Using part (ii), given that a = 1, b = 2, solve the inequality $e^x \le \left| b + \frac{a}{b e^x} \right|$. [2]
- 3 (a) A curve with equation $\frac{(x-2)^2}{4} + y^2 = 1$ undergoes, in succession, the following transformations:

A: A stretch with scale factor $\frac{1}{2}$ parallel to the y-axis.

B: A translation of 5 units in the positive x-direction.

C: A reflection about y-axis.

Find the equation of the resulting curve.

e. [3]

(b) The diagram shows a sketch of the curve $y = \frac{1}{f(x)}$. The curve cuts the axes at (2, 0) and (0, 3). It has a stationary point at (-1, 4) and equations of asymptotes x = 3 and $y = \frac{1}{2}$.

Sketch the following curves and state the equations of the asymptotes, the coordinates of the turning points and of points where the curve crosses the axes.

(i)
$$y = f(x)$$
, [3]

(ii)
$$y = -\frac{1}{f(x)} + 4$$
. [3]

4	Do not use a calculator in answering this question.	
	A curve C has equation $y^2 + 3xy = 13 + x^2$.	
	(i) Find the coordinates of the stationary points of C .	[4]
	(ii) For the stationary point with $x > 0$, determine whether it is a maximum or min point.	imum [3]
5	(a) Functions f and g are defined by	
	$f(x) = e^{x+3} - a \text{ for } x \in , x \le 4,$	
	$g(x) = 2x + 5 \text{for } x \in .$	
	where a is a constant.	
	(i) Find $f^{-1}(x)$ and state its domain, leaving your answer in terms of a.	[3]
	(ii) It is given that the composite function $g^{-1}f$ exists and $g^{-1}f(-3)=15$. With	hout
	finding $g^{-1}f$, find the value of a.	[2]
	(b) A curve has equation $y = h(x)$, where	
	$h(x) = \begin{cases} 2^{x} & \text{for } 0 < x \le 2, \\ 6 - \frac{1}{2}x^{2} & \text{for } 2 < x \le 3, \end{cases}$	
	and that $h(x) = h(x-3)$ for all real values of x.	[1]
	(i) Find $h(9)$.	[1]
	(ii) Sketch the graph of $y = h(x)$ for $-1 \le x \le 4$.	[4]
6	Referred to the origin O , the points P and Q have position vectors \mathbf{p} and \mathbf{q} respectively. Where vector \mathbf{p} and vector \mathbf{q} are not parallel. Point A lies between P and Q , su	
	$PA:AQ=\lambda:(1-\lambda)$, where $0<\lambda<1$.	
	(i) Express \overrightarrow{OA} in terms of p, q and λ	[1]
	(ii) The point B lies between O and Q, such that $OB: OQ = 1:3$. Given that \overrightarrow{AB} is p	arallel
	to $(q-4p)$, find the value of λ .	[4]
	(iii) It is now given that p is a unit vector which is perpendicular to q and $ \mathbf{q} = 2$,	find the
	area of triangle OAQ , in terms of λ .	[4]

7 The curve C has parametric equations

$$x = 4\cos\theta$$
, $y = 3\sin\theta$, $0 < \theta \le \pi$.

(a) Point Q lies on C and is moving along C, such that its x coordinate is increasing at the constant rate of 15 units per second. Determine the exact rate of change of θ at the instant when the coordinates of Q is $\left(2, \frac{3\sqrt{3}}{2}\right)$. [3]

It is given that point P also lies on C and has parameter p where 0 .

(b) Show that the equation of the tangent to C at the point P, is given by

$$y = \left(-\frac{3}{4}\cot p\right)x + 3\csc p.$$
 [3]

- (c) The tangent to the curve at P meets the x-axis at the point A and the y-axis at the point B. Find the area of the triangle OAB. [2]
- (d) Let M be the mid-point of AB. Find a cartesian equation of the curve traced by M as p varies. [2]
- 8 (a) (i) The sum of the first n terms of a sequence $u_1, u_2, u_3, ...$ is given by $S_n = e^2 n^2 3n$. Show that $u_n = e^2 (2n-1) - 3$. [2]
 - (ii) Hence show that the sequence is an arithmetic progression. [2]
 - (iii) State the first 3 odd-numbered terms, u_1, u_3 and u_5 . Hence find the least value of n such that the sum of the first n odd-numbered terms is more than 500. [3]
 - (b) (i) Find the range of values of x for which the following geometric series converges,

$$e^{-\frac{1}{x}+1} + e^{\frac{2}{x}+1} - e^{\frac{3}{x}+1} + \dots$$
 [2]

(ii) Given that x = -1, find the sum of all the terms of this geometric series after, and including, the 8^{th} term. [3]

9 [It is given that the volume of a pyramid is $\frac{1}{3}$ × base area × height.]

A container in the shape of a right pyramid with vertical height H cm consists of a square base of side length x cm and four isosceles triangles, each with base x cm and perpendicular height h cm (see diagram). The pyramid has a fixed surface area A cm².

(a) Show that
$$h = \frac{A - x^2}{2x}$$
. [1]

- (b) Hence show that $36V^2 = A^2x^2 2Ax^4$, where V is the volume of the pyramid. [3]
- (c) Find, in terms of A, the value of x for which V is maximum, and show that this maximum value of V is $\sqrt{\frac{A^3}{288}}$. You do not need to show that this value is a maximum.

10 A sequence $a_1, a_2, a_3, ...$ is such that $a_n > 0$, for $n \in \mathbb{Z}^+$, $n \ge 1$.

(a) Find
$$\sum_{n=1}^{N} \ln \left(\frac{a_{n+1}}{a_n} \right)$$
, and express your answer as a single logarithm. [2]

It is also known that this sequence is defined by $\frac{a_{n+1}}{a_n} = \frac{1}{4}$.

(b) Given that
$$\sum_{n=1}^{N} (a_n - a_{n+1})^2 = \frac{k}{16} \sum_{n=1}^{N} (a_n)^2$$
, find the value of k. [2]

Hence

(i) show that
$$\sum_{n=1}^{N} \left(a_n - a_{n+1} \right)^2 = \frac{3}{5} a_1^2 \left(1 - \frac{1}{16^N} \right), \text{ for } N \in \mathbb{Z}^+, N \ge 1,$$
 [3]

(ii) find
$$\sum_{n=2}^{\infty} (a_n - a_{n+1})^2$$
, leaving your answers in terms of a_1 . [3]

The diagram shows a roof structure modelled by a prism ABCDEF with parallelogram sides. The triangular ends ABF and DCE are similar and parallel to the xz plane. The origin O is a point on the horizontal ground which is parallel to the xy plane. The coordinates of point B and M are (2,-2,11) and (-1.75,-2,8) respectively. It is given that plane ABCD has equation 48x + 5y - 60z = -574 and plane BCEF has equation 12x - y + 12z = 158.

- (i) Find the acute angle between plane ABCD and plane BCEF, giving your answer correct to 2 decimal places. [2]
- (ii) Without the use of the calculator, show that the equation of line BC is $x=2, \ \frac{y+2}{12}=z-11.$ [2]
- (iii) It is now given that the vertical height of point C from the horizontal ground is 11.25 metres. State the coordinates of point C. [2]
- (iv) Find the acute angle between the line BC and the horizontal ground, giving your answer correct to 2 decimal places. [2]
- (v) Given that point N lies on BF such that MN is parallel to the x-axis, find the length of MN.
- (vi) To strengthen the roof structure and minimise material cost, a steel beam MW is constructed such that point W lies on plane BCEF and is closest to point M. Find the length of the steel beam MW.
 [3]

ACJC 2023 H2 Math JC1 Promo Solutions

Qn	Solutions
1 (i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\tan^{-1}\sqrt{x+1}\right)$
	$=\frac{1}{1+\left(\sqrt{x+1}\right)^2}\left(\frac{1}{2\sqrt{x+1}}\right)$
	$=\frac{1}{2(x+2)(\sqrt{x+1})}$
(ii)	$\frac{\mathrm{d}}{\mathrm{d}x} \Big(\ln \Big(x + e^x \Big) - x \ln 3 \Big)$
	$=\frac{1+e^x}{x+e^x}-\ln 3$
2 (i)	$y = b$ $(0, b + \frac{a}{b})$ $(-b - \frac{a}{b}, 0)$ $x = -b$ $y = -x$
2 (ii)	To find intersection points, $-x = -\left(b + \frac{a}{x+b}\right)$ $x - b = \frac{a}{x+b} \implies (x-b)(x+b) = a$ $x^2 - b^2 = a$ $x^2 = a + b^2$ Since $x < 0, x = -\sqrt{a+b^2}$
	Solve

$-x \le \left b + \frac{a}{x+b} \right $		
$-\sqrt{a+b^2} \le x < -b \text{or}$		
Alternative presentation	$x \ge -\sqrt{a+b^2} ,$	$x \neq -b$

Given that a = 1, b = 2, $e^x \le b + \frac{a}{-e^x + b}$

Replace x by $-e^x$, $-\sqrt{5} \le -e^x < -2$ or $2 < e^x \le \sqrt{5}$ or $e^x < 2$ $\ln 2 < x \le \ln \sqrt{5}$

Alternative presentation $x \le \ln \sqrt{5}$, $x \ne \ln 2$

or $x < \ln 2$

(a) From $\frac{(x-2)^2}{4} + y^2 = 1$

A: A stretch with scale factor $\frac{1}{2}$ parallel to the y-axis.

$$\frac{(x-2)^2}{4} + (2y)^2 = 1 \Rightarrow \frac{(x-2)^2}{4} + 4y^2 = 1$$

B: A translation of 5 units in the positive of x-direction.

$$\frac{(x-5-2)^2}{4} + 4y^2 = 1 \Rightarrow \frac{(x-7)^2}{4} + 4y^2 = 1$$

C: A reflection about y-axis.

$$\frac{(-x-7)^2}{4} + 4y^2 = 1 \Rightarrow \frac{(x+7)^2}{4} + 4y^2 = 1$$

3b (i)

5a Let
$$y = f(x)$$

(i)
$$y = e^{x+3} - a$$

$$e^{x+3} = y + a$$

$$x = \ln(y + a) - 3$$

$$f^{-1}(x) = \ln(x+a) - 3$$

$$D_{f^{-1}} = R_f = (-a, e^7 - a]$$

5a
$$g^{-1}f(-3) = 15$$

(ii)
$$f(-3) = g(15)$$

$$e^{-3+3} - a = 2(15) + 5$$

$$1 - a = 35$$

$$a = -34$$

5b
$$h(9) = h(6+3) = h(6)$$

$$= h(3+3) = h(3)$$

$$=6-\frac{1}{2}(3)^2=\frac{3}{2}$$

$$\overline{OA} = \frac{\lambda \mathbf{q} + (1 - \lambda)\mathbf{p}}{\lambda + (1 - \lambda)} = \lambda \mathbf{q} + (1 - \lambda)\mathbf{p}$$

6ii
$$\overrightarrow{OB} = \frac{1}{3}q$$

$$\overline{AB} = \overline{OB} - \overline{OA}$$

$$= \frac{1}{3} \mathbf{q} - \left[\lambda \mathbf{q} + (1 - \lambda)\mathbf{p}\right] = \frac{1}{3} \mathbf{q} - \lambda \mathbf{q} - (1 - \lambda)\mathbf{p}$$

$$= \left(\frac{1}{3} - \lambda\right) \mathbf{q} + (\lambda - 1) \mathbf{p}$$

Since \overrightarrow{AB} is parallel to (q-4p),

$$\therefore \overrightarrow{AB} = m(q-4p)$$
, where m is a scalar.

$$\left(\frac{1}{3} - \lambda\right)\mathbf{q} + (\lambda - 1)\mathbf{p} = m(\mathbf{q} - 4\mathbf{p})$$

$$\left(\frac{1}{3} - \lambda\right)\mathbf{q} + (\lambda - 1)\mathbf{p} = m\mathbf{q} - 4m\mathbf{p}$$

Since vector p and vector q are not parallel, by comparison,

$$\frac{1}{3} - \lambda = m \qquad -----(1)$$

$$\lambda - 1 = -4m \qquad ----(2)$$

$$\lambda - 1 = -4m - - - - (2)$$

Solving (1) & (2):
$$\lambda = \frac{1}{9}$$
.

6iii	Area of $\triangle OAQ = \frac{1}{2} \left \overrightarrow{OA} \times \overrightarrow{OQ} \right $			
	$=\frac{1}{2} \mathbf{a}\times\mathbf{q} $			
	$=\frac{1}{2}\Big \Big[\lambda\mathbf{q}+\big(1-\lambda\big)\mathbf{p}\Big]\times\mathbf{q}\Big $			
	$=\frac{1}{2}\left \lambda\mathbf{q}\times\mathbf{q}+(1-\lambda)\mathbf{p}\times\mathbf{q}\right $			
÷	$=\frac{1}{2} 0 + (1-\lambda) \mathbf{p} \mathbf{q} \sin 90^{\circ} $			
T 7	$=\frac{1}{2} (1-\lambda)(1)(2)(1) $			
× 1 1	$= 1 - \lambda $			
	$=1-\lambda. \left(\text{since } 0<\lambda<1\right)$			
7	$x = 4\cos\theta$			
(a)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -4\sin\theta$			
	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{\mathrm{d}\theta}{\mathrm{d}x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{1}{4\sin\theta}.(15)$			
	네트리트			
	At $\left(2, \frac{3\sqrt{3}}{2}\right)$, $\theta = \frac{\pi}{3}$			
	$\frac{d\theta}{dt} = -\frac{1}{4\sin\frac{\pi}{3}}.(15) = -\frac{5\sqrt{3}}{2} = -\frac{15}{2\sqrt{3}}$			
	$dt \qquad 4\sin\frac{\pi}{3} \qquad \qquad 2 \qquad 2\sqrt{3}$			
7	$dv = 3\cos\theta = 3$			
7 (b)	$\frac{dy}{dx} = -\frac{3\cos\theta}{4\sin\theta} = -\frac{3}{4}\cot\theta$			
11.5	At point $P(4\cos p, 3\sin p)$, $\theta = p$,			
	$y-3\sin p = -\frac{3}{4}\cot p(x-4\cos p)$			
	$y = \left(-\frac{3}{4}\cot p\right)x + 3\sin p + 3\frac{\cos^2 p}{\sin p}$			
i li f=	$y = \left(-\frac{3}{4}\cot p\right)x + 3\left(\frac{\sin^2 p + \cos^2 p}{\sin p}\right)$			
	$y = \left(-\frac{3}{4}\cot p\right)x + 3\csc p$			

	When $n = 7$, $\frac{n}{2} \left[2(e^2 - 3) + (n - 1)(4e^2) \right] = 651.4$
	로 등 생물하는 것으로 가득하는 보호 성상하는 사용에 가장 보는 사람이 되었다. 당하는 것이 되었다는 것이 말하는 것이 되었다. 그렇게 되었다면 함께 함께 되었다.
	Least $n=7$
8 (b) (i)	Ratio = $r = \frac{-e^{\frac{1}{x+1}}}{e} = -e^{\frac{1}{x}}$
	For geometric series to be convergent,
	$ r < 1 \Rightarrow \left -e^{\frac{1}{x}} \right < 1 \Rightarrow -1 < e^{\frac{1}{x}} < 1$
	$e^{\frac{1}{x}} < 1$
	$\frac{1}{x} < \ln 1$ $\frac{1}{x} < 0$
	x < 0
8 (b)	Given that $x = -1$, $r = -e^{\frac{1}{-1}} = -\frac{1}{e}$
(ii)	Method 1
	$S_{\infty} - S_{7} = \frac{a}{1-r} - \frac{a(1-r^{7})}{1-r}$
	$=\frac{ar^7}{1-r}$
	$=\frac{e\left(-\frac{1}{e}\right)^7}{1-\left(-\frac{1}{e}\right)}$
	$1-\left(-\frac{1}{e}\right)$
	=-0.0018121
	=-0.00181 (to 3 s.f.)
	Method 2
	$u_{\rm g} = ar^7 = e\left(-\frac{1}{e}\right)' = -\frac{1}{e^6}$

Required sum = $\frac{u_8}{1-r}$ = $\frac{-\frac{1}{e^6}}{1-\left(-\frac{1}{e}\right)}$ = -0.00181 (to 3 s.f.)

(a)
$$A = x^{2} + \left(\frac{1}{2}xh\right)4$$
$$h = \frac{A - x^{2}}{2x}$$

(b)
$$H^{2} = h^{2} - \left(\frac{x}{2}\right)^{2}$$
Volume, V

$$= \frac{1}{3}x^{2}H$$

$$= \frac{1}{3}x^{2}\sqrt{h^{2} - \left(\frac{x}{2}\right)^{2}}$$

$$= \frac{1}{3}x^{2}\sqrt{\left(\frac{A-x^{2}}{2x}\right)^{2} - \left(\frac{x}{2}\right)^{2}}$$

$$= \frac{1}{3}x^{2}\sqrt{\left(\frac{A-x^{2}}{2x}\right)^{2} - \left(\frac{x}{2}\right)^{2}}$$

$$= \frac{1}{3}x^{2}\sqrt{\frac{A^{2} - 2Ax^{2} + x^{4} - x^{4}}{4x^{2}}}$$

$$V = \frac{1}{3}x^{2}\sqrt{\frac{A^{2} - 2Ax^{2}}{4x^{2}}}$$

$$V^{2} = \frac{1}{9}x^{4}\left(\frac{A^{2} - 2Ax^{2}}{4x^{2}}\right)$$

$$36V^{2} = A^{2}x^{2} - 2Ax^{4}$$

(c)
$$72V \frac{dV}{dx} = A^{2}(2x) - 2A(4x^{3})$$
Since V is maximum, $\frac{dV}{dx} = 0$

$$A^{2}(2x) - 2A(4x^{3}) = 0$$

$$A = 4x^{2}$$

$$x = \sqrt{\frac{A}{4}} \text{ or } x = -\sqrt{\frac{A}{4}} \text{ (rej)}$$

$$36V^{2} = A^{2}x^{2} - 2Ax^{4}$$

$$V = \sqrt{\frac{A^{2}x^{2} - 2Ax^{4}}{36}}$$

$$= \sqrt{\frac{A^{2}\left(\frac{A}{4}\right) - 2A\left(\frac{A^{2}}{16}\right)}{36}}$$

$$= \sqrt{\frac{A^{3}}{288}}$$

3b (ii)

$$x = 3$$

$$y=\frac{7}{2}$$

$$2y\frac{\mathrm{d}y}{\mathrm{d}x} + 3x\frac{\mathrm{d}y}{\mathrm{d}x} + 3y - 2x = 0$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x - 3y}{3x + 2y}$$

when
$$\frac{dy}{dx} = 0$$
, $y = \frac{2x}{3} - - - - (2)$

sub into (1), we have,

$$\left(\frac{2x}{3}\right)^2 + 3x\left(\frac{2x}{3}\right) = 13 + x^2$$

$$13x^2 = 117$$

$$x = 3$$
 or $x = -3$

sub into (2),

$$y = 2$$
 or $y = -2$

Stationary points: (3,2), (-3,-2).

(ii)
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x - 3y}{3x + 2y}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{\left(2 - 3\frac{dy}{dx}\right)\left(3x + 2y\right) - \left(3 + 2\frac{dy}{dx}\right)\left(2x - 3y\right)}{\left(3x + 2y\right)^{2}}$$

sub (3,2) and $\frac{dy}{dx} = 0$,

$$\frac{d^2y}{dx^2} = \frac{26}{169} = \frac{2}{13} > 0$$

(3,2) is a minimum point.

10 b (i)	$\sum_{n=1}^{N} (a_n - a_{n+1})^2 = \frac{9}{16} \sum_{n=1}^{N} (a_n)^2$
(1)	$= \frac{9}{16} \left[a_1^2 + a_2^2 + a_3^2 + \ldots + a_N^2 \right]$
	$= \frac{9}{16} \left[a_1^2 + \left(a_1 \left(\frac{1}{4} \right) \right)^2 + \left(a_1 \left(\frac{1}{4} \right)^2 \right)^2 + \dots + \left(a_1 \left(\frac{1}{4} \right)^{N-1} \right)^2 \right]$
F: 1	$= \frac{9}{16} \left(a_1^2 \right) \left[1 + \left(\frac{1}{4} \right)^2 + \left(\frac{1}{4} \right)^4 + \dots + \left(\frac{1}{4} \right)^{2N-2} \right]$
	$= \frac{9}{16} \left(a_1^2 \right) \frac{\left(1 \right) \left(1 - \left[\left(\frac{1}{4} \right)^2 \right]^{V} \right)}{1 - \left(\frac{1}{4} \right)^2}$
	$=\frac{9}{15}(a_1^2)\left[1-\left(\frac{1}{4}\right)^{2N}\right]$
N S	$=\frac{3}{5}a_1^2\left[1-\frac{1}{16^N}\right]$
10 b	As $N \to \infty$, $\frac{1}{16^N} \to 0$, $\therefore \sum_{n=1}^N (a_n - a_{n+1})^2 \to \frac{3}{5} (a_1^2)$
(ii)	$\therefore \sum_{n=1}^{\infty} \left(a_n - a_{n+1} \right)^2 = \frac{3}{5} a_1^2$
9_	$\sum_{n=2}^{\infty} \left(a_n - a_{n+1} \right)^2 = \sum_{n=1}^{\infty} \left(a_n - a_{n+1} \right)^2 - \sum_{n=1}^{1} \left(a_n - a_{n+1} \right)^2$
	$= \sum_{n=1}^{\infty} (a_n - a_{n+1})^2 - [a_1 - a_2]^2$
	$= \frac{3}{5} a_1^2 - \left[a_1 - \frac{1}{4} a_1 \right]^2$
	$= \frac{3}{5} a_1^2 - \left[\frac{3}{4} a_1 \right]^2$
	$=\frac{3}{5}a_1^2-\frac{9}{16}a_1^2$
	$=\frac{3}{80} a_1^2$

11 Let θ be the acute angle between plane *ABCD* and plane *BCEF*.

Plane ABCD:
$$r[\begin{bmatrix} 48 \\ 5 \\ -60 \end{bmatrix} = -574$$
.
Plane BCEF: $r[\begin{bmatrix} 12 \\ -1 \\ 12 \end{bmatrix} = 158$.

$$\begin{bmatrix} 48 \\ 5 \\ -60 \end{bmatrix} \cdot \begin{bmatrix} 12 \\ -1 \\ 12 \end{bmatrix}$$

$$\cos \theta = \frac{\begin{vmatrix} 48 \\ 5 \\ -60 \end{bmatrix} \cdot \sqrt{12^2 + (-1)^2 + 12^2}$$

$$\cos \theta = \frac{|-149|}{\sqrt{5929}\sqrt{289}}$$

$$\cos \theta = \frac{149}{(77)(17)}$$

$$\theta = \cos^{-1}\left(\frac{149}{1309}\right)$$

 $\theta = 83.5^{\circ} (1d.p)$

Thinding direction vector of time Be.
$$\begin{pmatrix} 48 \\ 5 \\ -60 \end{pmatrix} \times \begin{pmatrix} 12 \\ -1 \\ 12 \end{pmatrix} = \begin{pmatrix} 60 - 60 \\ -(576 + 720) \\ -48 - 60 \end{pmatrix} = \begin{pmatrix} 0 \\ -1296 \\ -108 \end{pmatrix} = -108 \begin{pmatrix} 0 \\ 12 \\ 1 \end{pmatrix}$$

Line BC: $\mathbf{r} = \begin{pmatrix} 2 \\ -2 \\ 11 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 12 \\ 1 \end{pmatrix}$, where $\lambda \in \square$.

Let
$$\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
,

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ 11 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 12 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ -2 + 12\lambda \\ 11 + \lambda \end{pmatrix} \Rightarrow \lambda = \frac{y+2}{12}$$

$$\lambda = z - 11$$

Hence line BC is x = 2, $\frac{y+2}{12} = z-11$. Line BC: x = 2, $\frac{y+2}{12} = z-11$

When z = 11.25,

$$\frac{y+2}{12} = 11.25 - 11$$

Hence C(2, 1, 11.25).

Let α be the acute angle between horizontal ground and line BC. 11

iv

Normal vector of horizontal ground is $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

$$\sin \alpha = \frac{\begin{pmatrix} 0 \\ 12 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}}{\sqrt{0^2 + 12^2 + 1^2} \sqrt{1^2}}$$

$$\sin \alpha = \frac{1}{\sqrt{145}}$$

$$\alpha = \sin^{-1} \left(\frac{1}{\sqrt{145}}\right)$$

$$\alpha = 4.76^{\circ} \text{ (2d.p)}$$

Method 2:

$$\cos(90^{\circ} - \alpha) = \frac{\begin{pmatrix} 0 \\ 12 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}}{\sqrt{145}\sqrt{1^{2}}}$$

$$90^{\circ} - \alpha = \cos^{-1}\frac{1}{\sqrt{145}}$$

$$\alpha = 90^{\circ} - \cos^{-1}\frac{1}{\sqrt{145}} = 4.76^{\circ} \text{ (2d.p)}$$

Method 3:

$$\alpha = \tan^{-1}\left(\frac{1}{12}\right)$$
$$= 4.76^{\circ} (2 \text{ d.p})$$

Line MN:
$$\mathbf{r} = \begin{pmatrix} -1.75 \\ -2 \\ 8 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, where $\mu \in \square$. ----- (1)

Plane BCEF: $\mathbf{r} = \begin{pmatrix} 12 \\ -1 \\ 12 \end{pmatrix} = 158$. ----- (2)

Since N lies on the line MN,

$$\overline{ON} = \begin{pmatrix} -1.75 \\ -2 \\ 8 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \text{ for } \underline{\text{some}} \ \mu \in \square.$$

Since N also lies on the plane BCEF, we must have

$$\begin{pmatrix} -1.75 + \mu \\ -2 \\ 8 \end{pmatrix} \begin{pmatrix} 12 \\ -1 \\ 12 \end{pmatrix} = 158$$
$$-21 + 12\mu + 2 + 96 = 158$$

$$\mu = \frac{81}{12} = 6.75$$

Sub.
$$\mu = \frac{81}{12} = 6.75$$
 into (1):

$$\overline{ON} = \begin{pmatrix} -1.75 \\ -2 \\ 8 \end{pmatrix} + (6.75) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 5 \\ -2 \\ 8 \end{pmatrix}$$

$$\overline{MN} = \overline{ON} - \overline{OM} = \begin{pmatrix} 5 \\ -2 \\ 8 \end{pmatrix} - \begin{pmatrix} -1.75 \\ -2 \\ 8 \end{pmatrix} = \begin{pmatrix} 6.75 \\ 0 \\ 0 \end{pmatrix}$$

$$\left| \overrightarrow{MN} \right| = 6.75$$

Alternative method:

$$\overline{MN} = k \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\overline{ON} - \overline{OM} = k \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\overline{ON} = \begin{pmatrix} -1.75 \\ -2 \\ 8 \end{pmatrix} = k \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\overline{ON} = \begin{pmatrix} -1.75 + k \\ -2 \\ 8 \end{pmatrix} - \dots$$
(3)
$$Sub (3) into (2): \begin{pmatrix} -1.75 + k \\ -2 \\ 8 \end{pmatrix} \begin{pmatrix} 12 \\ -1 \\ -1 \\ 8 \end{pmatrix} = 158$$

$$k = 6.75$$

$$|\overline{MN}| = k \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 6.75 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = 6.75.$$

$$|\overline{MN}| = k \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1.75 \\ -2 \\ 8 \end{pmatrix} - \begin{pmatrix} 2 \\ -2 \\ 11 \end{pmatrix} = \begin{pmatrix} -3.75 \\ 0 \\ -3 \end{pmatrix}$$

$$WM = |\overline{BM}| = \overline{OM} - \overline{OB} = \begin{pmatrix} -1.75 \\ -2 \\ 8 \end{pmatrix} - \begin{pmatrix} 2 \\ -2 \\ 11 \end{pmatrix} = \begin{pmatrix} -3.75 \\ 0 \\ -3 \end{pmatrix}$$

$$WM = |\overline{BM}| = \frac{12}{12} = \frac{12$$

 $=\frac{\left|-45+0-36\right|}{\sqrt{12^2+\left(-1\right)^2+12^2}}=\frac{81}{\sqrt{289}}=\frac{81}{17}=4.76$

Alternative method

Since W lies on the line MW which must be perpendicular to the plane BCEF, we have

Since W lies on the line MW which must be perpe
Line MW:
$$\mathbf{r} = \begin{pmatrix} -1.75 \\ -2 \\ 8 \end{pmatrix} + \mu \begin{pmatrix} 12 \\ -1 \\ 12 \end{pmatrix}$$
 for some $\mu \in \square$.
Since W lies on the line MW.

Since W lies on the line MW,

$$\therefore \overline{OW} = \begin{pmatrix} -1.75 \\ -2 \\ 8 \end{pmatrix} + \mu \begin{pmatrix} 12 \\ -1 \\ 12 \end{pmatrix} \text{ for } \underline{\text{some }} \mu \in \square.$$

Since W also lies on the plane BCEF, we must have

$$\begin{pmatrix} -1.75 + 12\mu \\ -2 - \mu \\ 8 + 12\mu \end{pmatrix} \begin{pmatrix} 12 \\ -1 \\ 12 \end{pmatrix} = 158$$

$$-21+144\mu+2+\mu+96+144\mu=158$$

$$\mu = \frac{81}{289}$$

Length of steel beam

$$=\left|\overrightarrow{MW}\right|$$

$$=\left|\overline{OW}-\overline{OM}\right|$$

$$= \mu \begin{pmatrix} 12 \\ -1 \\ 12 \end{pmatrix} = \frac{81}{289} \begin{pmatrix} 12 \\ -1 \\ 12 \end{pmatrix} = \frac{81}{\sqrt{289}} = 4.76$$