Anglo-Chinese School

(Independent)

PRELIMINARY EXAMINATION 2022

YEAR 6 IB DIPLOMA PROGRAMME

MATHEMATICS

HIGHER LEVEL

PAPER 3

Thursday, 15 September 2022

1 hour

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Answer all the questions in the answer booklet provided.
- Unless otherwise stated in the question, all numerical answers
 must be given exactly or correct to three significant figures.
- A clean copy of the **Mathematics: Analysis and Approaches formula booklet** is required for this paper.
- The maximum mark for this examination paper is [55 marks]

This question paper consists of 4 printed pages including this cover page.

Question	Marks
1	
2	
Total	/ 55

Candidate Session Number

0	0	2	3	2	9		

Answer **all** questions in the answer booklet provided. Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 25]

This question explores some interesting relationships between the Golden Ratio Φ , the arguments of complex roots on an Argand diagram and trigonometric functions.

The Golden Ratio Φ is a very special number. It can be seen almost everywhere, from nature to the human body. It has a numerical value 1.618(3sf) approximately.

Consider the equation $z^{10} = 1$, where $z \in \mathbb{C}$.

- (a) Show that $\omega = e^{i\frac{\pi}{5}}$ is a root.
- (b) Given that every integer *n* can be expressed as *n*=10*p*+*k*, where *p* ∈ Z and *k*=0, 1, 2, ..., 9, show that ωⁿ is also a root of *z*¹⁰=1 and hence explain clearly why there are 10 distinct roots.
- (c) For $0 \le k \le 5$, mark the coordinates of the roots of $z^{10} = 1$ on a unit circle in an Argand Diagram. Label each root as R_k . Explain why α , the angle between adjacent pair of roots, is equal to $\frac{\pi}{5}$. [3]
- (d) Using your Argand diagram, show that $\sin 4\alpha = \sin \alpha$, $\cos 4\alpha = -\cos \alpha$, $\sin 3\alpha = \sin 2\alpha$ and hence $\tan 3\alpha \tan 4\alpha = \tan \alpha \tan 2\alpha$. [5]

[2]

This part investigates the derivation of the exact value of the golden ratio Φ .

Consider the rectangle ABCD, with width AB < length BC. E is a point on segment AD and F is a point on segment BC such that BFEA is a square and CDEF is a rectangle.

ABCD is defined as a **golden rectangle** if CDEF and DABC are similar, such that $\frac{AD}{AB} = \frac{DC}{DE} = \Phi$.

(e) By letting AB = 1, express ED in terms of Φ . [1]

(f) Hence prove that the exact value for Φ is $\frac{1+\sqrt{5}}{2}$. [4]

This part investigates how the golden ratio Φ can be expressed as a trigonometric function of a fixed angle in radians.

- (g) Starting with $\sin 3\alpha = \sin 2\alpha$, show that $4\cos^2 \alpha 2\cos \alpha 1 = 0$. [4]
- (h) Hence show that the angle $\frac{\pi}{5}$ is related to the golden ratio Φ by the relation $\cos \frac{\pi}{5} = \frac{\Phi}{2}$.

2. [Maximum mark: 30]

This question explores finding the solutions of second order differential equations. Consider the system of linear differential equations of the form:

$$\frac{dy}{dx} = u \text{ and } \frac{du}{dx} = -u + 2y, \text{ where } y \text{ and } u \text{ are functions of } x.$$
(a) Show that $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 0.$
[3]

For the differential equation $\frac{d^2 y}{dx^2} + \frac{dy}{dx} - 2y = 0$, it is given that $y = e^{rx}$, where *r* is a constant, is a solution to this differential equation.

- (b) Show that $r^2 + r 2 = 0.$ [3]
- (c) Hence find the two values or r_1 , r_1 and r_2 , where $r_1 < r_2$. [2]
- (d) Verify that $y = Ae^{-r_1 x} + Be^{-r_2 x}$ is also a solution to $\frac{d^2 y}{dx^2} + \frac{dy}{dx} 2y = 0$, where *A* and *B* are arbitrary constants. [4]

For another differential equation $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0$, it is given that $y = e^{kx}$, where *k* is a constant, is a solution to this differential equation.

- (e) Deduce the possible value(s) of *k*.
- (f) Verify that $y = (A + Bx)e^{kx}$ is also a solution to $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = 0$, where *A* and *B* are arbitrary constants. [4]

(g) Given A = 1, B = 2 and the values of r_1 , r_2 , k found earlier, sketch the graph of

$$y = \frac{(A + Bx)e^{kx}}{Ae^{r_1x} + Be^{r_2x}}, \text{ showing clearly any asymptote(s), intercept(s) and stationary point(s).}$$

(h) With the aid of the diagram in (g), find the oblique asymptote of the graph in the form y = mx + c, justifying your conclusions. [3]

(i) Determine the general solution to
$$4\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + y = 0.$$
 [4]

[3]

[4]