Suggested Solution

Remarks
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2x+3y+6z) <(22+3*+ 6% ) (2% + 2 +22) =49
(2x+3y+62) y
2x+3y+6z<7

lii

{2x+3y+6227

X +y +z =1

Since 2> +3* + 6> = 77, by observation, x =

3o

3.6
.Y 79 7

liii

Suppose le.z =1.

i=1

2 2
(inj :(ZI-xij Saniz =n= in <n
i=1 i=1

i=1 i=1

2
. . 1 . N
Since if we let x,=—= for all 1<i<n , we yield fo:n(ij =1 and

Jn = Jn
le. =n (%j = /n , the maximum possible value of Zn:x,. is \/n .
i=1 n

i=l1

liv

Suppose there are n squares of lengths x; contained in the unit square.

Their total area is inz <1, and their total perimeter is 18 = Z 4x; .

i=l1 i=l1

By part (iii), %: 3 x, <n = 22025
i=1

Hence, there must be more than 20 such squares.

2ia

8+4-1
Number of ways = 4-1 =165
[Bijection with a string of eight 0’s (objects) and three 1’s (partitions). For example,
the string 00100010100 would correspond to the combination of 2 A’s, 3 C’s, 1 G and
2Ts.]

2ib 4+4-1
Number of ways = =
4-1
[Place one 0 in each box and the remaining four 0’s into the boxes. ]
2iia | Number of sequences = 4* = 65536
2iib | Number of sequences = 4x 3’ = 8748
2iic o (s (Mg (4)s Principle of
Number of sequences = 4" — 3 3"+ 5 2° — . I =40824 inclusion /
exclusion.
3ia | Givenx, =l and a >0.
e = C G
i+1 i+1 i+1 i i+1 i 3)\2 i+1
SX, 21. forallieZ*
i
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From Gi@), S x> 1>3 Lo

1
i=n+1 i=n+l 1 i=n+1 2” 2




Bic | & z el z 1 n
dx= D> x4 D xtet D xH(xn4x)2axo==
i=l i=2""41 i=2"2+1 i=2+1 2 2
0 2"
in = limin > limg is unbounded.
i=1 n—>0 -1 n—>0
3ii . |+ . .
1) Since (i+1)x,, —ix, :(i+l)%xi —ix, = ax, , summing from i=m to i=n yields
i+
the following.
ay x, =Y (i+1)x,, —ix, = [(m +1)x,,, —mxm]+[(m +2)x,,,—(m +1)xm+1]
+..+ [(n + 1)xn+l —nx, :I = (n + 1)xn+1 —mx,,
Alternative Solution
Let Py be the statement a_x, =(n+1)x,,, —1.
i=1
RHS of P, = 2x, -1 = 2(”7")—1 =a=ax, =LHS of P,
. P, 1s true. Alt-—fSOL .
Assume Pr is true for some ke Z". We first as
ol . ourselves yvhat
LHS of P, =a) x, =a)_x, +ax,, is the partial
i=1 i=1 sum from 1 to
:(k+1)x,C+l -1+ax,, n, and from
there we
=(k+1+a)x., -1 would be able
k+1l+a to find the
=(k+2)x,, -1 X = ko ) sum from m to
n.
= RHS of P,
- P, is true= P, , is true. By observing
Since P is true and (Pk istrue=P,, is true), Pnistrue forall neZ". the equation
* that we need
le.:(n+1)xn+1—l ifm=1 to show, we
n p may let m=1
Hence, Zx,. =9 - so that we
- DX -Dx, :[(nJrl)an —I:I—[mxm -1 ifm>1 obtain P,
il i=l which we will
= (n + 1) X, —mx,. then prove.
3iib M +a
LetM =|-a |. Thenx,,,, = Xy,
(] Then sy, =( 34 |,
Case I: x,, 20.
. M
Since Tals 0, x,,,, =0.
M +1

Consequently, for all » > M, since (n+aj >0, x,, :(n+ajxn >0.
n+1 n+l

Soxx >0 foralln,m> M.

n--m




Case 2: x,, <0.

) M
Since ( +a

>0, x,,, <0.
M+1j M

Consequently, for all n > M, since (n+aj >0, x,,, :(n+aan <0.
n+1 n+l

~ox,x, >0 forall n,m > M.

4ia

Let W, be the number of such n-digit numbers having first digit 3. Then by symmetry,
W =Y forall neZ".

If the first digit is 2, then the next digit can only be 1 or 3.
Hence, ¥ =X +W _ =X ,+Y ..

n-1

4ib

If the first digit is 1, then the next digit can be either 1, 2 or 3.
X, =X +Y  +W

=X, + 2Yn—l
dic | X,,, =X, +27, (by 4i(b))
=X, +2(X,,+Y,,)  (by4i)
=X +X,,+X, (by 4i(b))
=2X,+X,,
4il | Let P, be the statement X, =n" —n+1 (mod 4).
LHS of P, = X, =1 (mod 4) LHS of P, = X, = X, +Y, + W, =3 (mod 4)

RHS of P=1°-1+1=1 (mod4) ~ RHSof P, =2°-2+1=3 (mod 4)
. P and P, are true.

Assume Py and Py are true for some keZ", k>2.
LHS of P,,, = X, =2X,+X, ,

=2k =2k +2+(k=1) —(k-1)+1
=3k’ —k+1
1 (mod 4),if k=0 or k=3 (mod 4)
5{3 (mod 4), if k =1 or k =2 (mod 4)
RHS of P, =(k+1)" —(k+1)+1
=k’ +k+1
1 (mod 4),if k=0 or k=3 (mod 4)
5{3 (mod 4), if k=1 or k =2 (mod 4)
~.P,_, and P, are true = P, is true.
Since P1 and P are true, and (P,_, and P, are true=P,_, is true), P» is true for all

nelZ".

4iii

T,=X,+Y,+W,=X,,=(n+1) —(n+1)+1=n>+n+1 (mod 4)

n+l
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By (5ii), e > ——(—2e ™ +e 7 -3)—
y i), e ( ) -

_ e—nydx
=0, whereu=¢ ]

:_
dx*  dx dx*  dx
By (51), u = Ae* + B

ezx[dzu duj_o d’u  du
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Let x,,x,,...,x,, be the positions of the (+1)’s and (—1)’s. With this arrangement, we
are able to find a consecutive pair of +1 and —1 in the clockwise direction (i.e. in the
clockwise direction, the +1 precedes the —1). Remove this pair of numbers and there
will be 2n—2 numbers left arranged in the circle.

We will repeat this procedure by removing consecutive pairs of +1 and —1 in the
clockwise direction until there is a final pair of +1 and —1 left. Let x, be the position
of this final +1.

We claim that x, is the starting position for which 7, is never negative.

Since the pairs of +1’s and —1’s removed were consecutive, and within each pair, the
+1 preceded the —1, there will always be an increase of the partial sum 7, prior to a

decrease. Hence, T, is never negative forall 1<i<2n.

Alternative Solution
Let x,x,,...,x,, be the positions of the (+1)’s and (—1)’s, and let x, be the starting

position. As we evaluate 7, for 1<i<2n, there exists a k such that 7, is minimum.
We then claim that x,,, is a starting position for which 7, is never negative for all
1<i<2n.

Relabel x,,,...,x,,,X,....X, @S ¥, V,,...,V,, respectively, so y, =x,,, is the starting
position. To avoid confusion, we shall let S; be the new partial sum from position y,
to y,.

Since 7, is aminimum, S, =7, -7, 20 for 1<i<2n—k.

With equal number of (+1)’s and (-1)’s, 7,, =0. Hence, S,, , =T, .

Furthermore, 7, > T, = -7, +T, 20 forall 1< j <k, we have that

S=8,,+T ,,..=-T+T >0 for 2n—k+1<i<2n.

i-2n+k —

6ii | Note that 7, =i (mod 2) due to the following. Enumerate 7, starting with the index
i=1.Wehave T, =1 (mod 2) regardless of the first value, +1 or —1. Subsequently, as
the index i increases each time by 1, we add +1 or —1 to the value of 7,, changing its
2n 2n 2n
parity. Hence, n+27; = n+2i =n+n=2n=0(mod2);i.e. n+ZT[ is even.
i=1 i=1 i=l1
71 | a>ccos@+dsinf and b>csinf+dcosb
7ii | “=" Suppose on the contrary that d > b, then a>c>d >b and

dcost9+csint92b(cos€+sin€):bﬁcos(e—%j>b since

T T 1
0<l<—= 0—— |>—.
5 cos( 4) NG

“<" Choose @ small enough such that csinf < ¢ := min(a—c,b—d).
Then ccos@+dsin@<ccos@+csinf<c+&<a and dcos@+csinf@<d+&<bh.

7iii

Let 6, be the angle for which the ¢xd rectangle is strictly contained in the axb

rectangle. By (1), we must have ccos @, +dsin6, <a and

csin 6, +d cos 6, <b:ccos(g—ﬁoj—kdsin(g—%]<b£a.




Let £(6)=ccosf+dsin6, ee{o,ﬂ, 0, =min(00,g—00j and

0, =max(<90,g—6’oj. Then we must have f(6)<a, f(6,)<a and %e[@l,é’z].

If we can prove that f is decreasing on [6,,6,], then a > f (%) _cvd and we are

NG

done.

Since f(0)>0 and f"(0)=-ccos@—dsind <0 for 96[0, }, f has a maximum at

o

where f'(0,,,)=—csinf,, +dcosf,, =0=0,. = an'L<T

max
C

6,

max ?

Since (0)=c>a and fis increasing on [0,6,, |, we must have 6, <#,. Since fis

m

. L .
decreasing on {9 ax,z} , it is also decreasing on [6’1,6’2] and we are done.

7iv

A ¢xd rectangle (with ¢ >d ) can be strictly contained in an axa square if and only
if a>c or aN2>c+d.

Proof
(:>) : Suppose that a ¢xd rectangle (with ¢>d ) can be strictly contained in an axa

square. If a > ¢, we are done. Otherwise, if a <c, then by (iii), we have a~/2 >c+d.

(<): Suppose a>c or av2>c+d.
If a>c, then by (ii), a ¢xd rectangle can be strictly contained in an axa square iff
a>d . Butsince a >c>d , the rectangle can always be contained in the square.

If aJ2>c+d , substituting 9:% into the inequalities in (i) yields

b . c+d . T i
ccosz+dsmzz—<a and csin—+dcos—=

c+d
2 4 4 2

rectangle can be contained in the axa square.

<a . This shows that the

o n (mod 12) O0[1]2]3]4[5][6|7[8[9]10][11
n(mod12) [0 [1[4[9]4]1]0]1]4]9]4 |1
By exhaustion, the elements of S(12) are all square numbers.
8ii Answer is not

Let N=9.Since 4°=16=7 (mod 9), 7 € S(9) and 7 is not a square number.

unique.

8iii

Since (N + r)2 =7? (mod N) forall reZ with 0<r<~/N , there are at least /N

unique 7’s.

Hence, {0, 1,4,...,(L N—lJ)z} = S(N) and S(N) has at least JN elements.
NB We use L N —IJ instead of Lx/ﬁ J to be precise, since if N is a square number,

then L\/ﬁf = N is not an element of S(N).




81v

Suppose 3x,n,A € Z such that x> =17+2"1, with n>5.
If A is even, then x*> =17 +2""! (%) = x* =17 (mod 2""),i.e. 17€S(2"").

A+x+2"72

If 4 isodd,let = . Note that e Z since A, x areodd and n>5.

Then 2" u+17=2"(A+x+2"7)+17
=x"+2"x+2"7
:(x+2”")2.
Hence, (x+2"') =17 (mod 2", i.e. 17 $(2"").

Think: When
is x> =17
(mod 2"1)?
Get that A is
even.

Then consider
when 4 is
odd, and try to
find a square
number by
working
backwards.

v

Let P, be the statement: 17 S(2" ),n >5.
For n=5, 7 =49=17(mod?2’) . Hence, Ps is true.
By (iv), we have shown that 17 € S(2") =17€ S(2”+1), ie, P =P  forn>5.

n+l

By induction, Px is true forall n > 5.

From (iii), we have shown that there are at least \/ﬁ numbers in S(N ), where all
these elements are square numbers. Since 17 is not a square number, and is also in
S(Z") for n > 5, then we must have at least 1+ \/2_” elements in S(Z" )

Alternative Solution
Case 1: nis even

2
(22 +1J —27 122" 41=22" 41 (mod 2")
Then {12,22,...,0=(22) ,25+1 +1}c S(2”), and this shows that S(2") has at least

1+\/27 elements.
Case 2: nis odd

n+l 2 n+3 n+3
(2 2 +1} =2""422 41=22 +1(mod 2")

2
n n+3
Then 02,12,22,...,&22J] 22 +1rc S(2"), and this shows that S(Z") has at least

1+\/2—” elements.

n+3

Note that in both cases above, 22" {1and 2% +1 are not square numbers.
Suppose that p* =27 +1 for some p,q €Z", then (p+l)(p —1) =27,

This implies that p+1=2* and p—1=2' forsome k,/ e Z" with k+I=gq .
Hence, 2 -1=p=2'+1=2(2"+1)=2" = /=Lk=2=¢=3.




But n25:>§+1,

numbers.

n+3

>4 | which says that 22

n+3

1 -
+1 and 2 % +1 are not square




