$\begin{array}{ c c c c c } 1i & (2x+3y+6z)^2 \leq (2^2+3^2+6^2)(x^2+y^2+z^2) = 49 \\ & 2x+3y+6z \leq 7 \\ \hline 1ii & \begin{cases} 2x+3y+6z = 7 \\ x^2+y^2+z^2 = 1 \\ \\ & \text{Since } 2^2+3^2+6^2 = 7^2, \text{ by observation, } x = \frac{2}{7}, y = \frac{3}{7}, z = \frac{6}{7}. \\ \hline 1iii & \text{Suppose } \sum_{i=1}^n x_i^2 = 1. \\ & \left(\sum_{i=1}^n x_i\right)^2 = \left(\sum_{i=1}^n 1 \cdot x_i\right)^2 \leq n \sum_{i=1}^n x_i^2 = n \Rightarrow \sum_{i=1}^n x_i \leq \sqrt{n} \\ & \text{Since if we let } x_i = \frac{1}{\sqrt{n}} \text{ for all } 1 \leq i \leq n \text{ , we yield } \sum_{i=1}^n x_i^2 = n \left(\frac{1}{\sqrt{n}}\right)^2 = \\ & \sum_{i=1}^n x_i = n \left(\frac{1}{\sqrt{n}}\right) = \sqrt{n} \text{ , the maximum possible value of } \sum_{i=1}^n x_i \text{ is } \sqrt{n} \text{ .} \end{array}$	-1 and
$\begin{array}{ c c c c c }\hline 1 & & \begin{cases} 2x + 3y + 6z = 7 \\ x^2 + y^2 + z^2 = 1 \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	-1 and
$\begin{array}{ c c c c c }\hline 1 & & \begin{cases} 2x + 3y + 6z = 7 \\ x^2 + y^2 + z^2 = 1 \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	-1 and
Since $2^2 + 3^2 + 6^2 = 7^2$, by observation, $x = \frac{2}{7}$, $y = \frac{3}{7}$, $z = \frac{6}{7}$. 1iii Suppose $\sum_{i=1}^n x_i^2 = 1$. $\left(\sum_{i=1}^n x_i\right)^2 = \left(\sum_{i=1}^n 1 \cdot x_i\right)^2 \le n \sum_{i=1}^n x_i^2 = n \Rightarrow \sum_{i=1}^n x_i \le \sqrt{n}$ Since if we let $x_i = \frac{1}{\sqrt{n}}$ for all $1 \le i \le n$, we yield $\sum_{i=1}^n x_i^2 = n \left(\frac{1}{\sqrt{n}}\right)^2 = 1$	-1 and
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-1 and
Suppose $\sum_{i=1}^{n} x_i^2 = 1$. $\left(\sum_{i=1}^{n} x_i\right)^2 = \left(\sum_{i=1}^{n} 1 \cdot x_i\right)^2 \le n \sum_{i=1}^{n} x_i^2 = n \Rightarrow \sum_{i=1}^{n} x_i \le \sqrt{n}$ Since if we let $x_i = \frac{1}{\sqrt{n}}$ for all $1 \le i \le n$, we yield $\sum_{i=1}^{n} x_i^2 = n \left(\frac{1}{\sqrt{n}}\right)^2 = 1$	1 and
Since if we let $x_i = \frac{1}{\sqrt{n}}$ for all $1 \le i \le n$, we yield $\sum_{i=1}^n x_i^2 = n \left(\frac{1}{\sqrt{n}}\right)^2 = 1$	1 and
	1 and
$\sum_{i=1}^{n} x_i = n \left(\frac{1}{\sqrt{n}} \right) = \sqrt{n}$, the maximum possible value of $\sum_{i=1}^{n} x_i$ is \sqrt{n} .	
1iv Suppose there are <i>n</i> squares of lengths x_i contained in the unit square.	
Their total area is $\sum_{i=1}^{n} x_i^2 \le 1$, and their total perimeter is $18 = \sum_{i=1}^{n} 4x_i$.	
By part (iii), $\frac{18}{4} = \sum_{i=1}^{n} x_i \le \sqrt{n} \Longrightarrow n \ge 20.25$.	
Hence, there must be more than 20 such squares.	
2ia Number of ways = $\binom{8+4-1}{4-1}$ = 165	
[Bijection with a string of eight 0's (objects) and three 1's (partitions). For exa the string 00100010100 would correspond to the combination of 2 A's, 3 C's, 1 2 T's.]	
2ib Number of ways = $\begin{pmatrix} 4+4-1\\ 4-1 \end{pmatrix} = 35$	
[Place one 0 in each box and the remaining four 0's into the boxes.]	
2iia Number of sequences $= 4^8 = 65536$	
2iib Number of sequences = $4 \times 3^7 = 8748$	
2iic Number of sequences = $4^8 - \binom{4}{3}3^8 + \binom{4}{2}2^8 - \binom{4}{1}1^8 = 40824$	Principle of inclusion / exclusion.
3ia Given $x_1 = 1$ and $a \ge 0$.	
$x_{i+1} = \left(\frac{i+a}{i+1}\right) x_i \ge \left(\frac{i}{i+1}\right) x_i \ge \left(\frac{i}{i+1}\right) \left(\frac{i-1}{i}\right) x_{i-1} \ge \dots \ge \left(\frac{i}{i+1}\right) \left(\frac{i-1}{i}\right) \dots \left(\frac{2}{3}\right) \left(\frac{1}{2}\right) x_1 \ge \dots \ge \left(\frac{i}{i+1}\right) x_1 = \dots = \left(\frac{i}{i+1}\right) $	$=\frac{1}{i+1}$
$\therefore x_i \ge \frac{1}{i} \text{ for all } i \in \mathbb{Z}^+$	
3ib From (3i(a)), $\sum_{i=n+1}^{2n} x_i \ge \sum_{i=n+1}^{2n} \frac{1}{i} \ge \sum_{i=n+1}^{2n} \frac{1}{2n} = \frac{1}{2}$.	

$$\begin{array}{l} \begin{array}{l} \operatorname{Sic} & \sum\limits_{i=1}^{n} \sum\limits_{i=1}^{n} \sum\limits_{i=1}^{m} \sum\limits\limits_{i=1}^{m} \sum\limits\limits_{i=1}^{m} \sum\limits_{i=1}^{m} \sum\limits\limits_{i=1}^{m} \sum\limits\limits_{i$$

	$C_{asa} \geq r < 0$
	$\underline{Case \ 2}: \ x_M < 0.$
	Since $\left(\frac{M+a}{M+1}\right) \ge 0$, $x_{M+1} \le 0$.
	Consequently, for all $n > M$, since $\left(\frac{n+a}{n+1}\right) \ge 0$, $x_{n+1} = \left(\frac{n+a}{n+1}\right) x_n \le 0$.
	$\therefore x_n x_m \ge 0$ for all $n, m > M$.
4ia	Let W_n be the number of such n-digit numbers having first digit 3. Then by symmetry,
	$W_n = Y_n$ for all $n \in \mathbb{Z}^+$.
	If the first distance of the second distance entry here to a 2
	If the first digit is 2, then the next digit can only be 1 or 3. Hence, $Y_n = X_{n-1} + W_{n-1} = X_{n-1} + Y_{n-1}$.
4ib	If the first digit is 1, then the next digit can be either 1, 2 or 3.
110	$X_n = X_{n-1} + Y_{n-1} + W_{n-1}$
	$=X_{n-1}+2Y_{n-1}$
4ic	$X_{n+1} = X_n + 2Y_n \qquad \text{(by 4i(b))}$
	$= X_n + 2(X_{n-1} + Y_{n-1}) \qquad (by 4i(a))$
	$= X_n + X_{n-1} + X_n$ (by 4i(b))
	$=2X_{n}+X_{n-1}$
4ii	Let P_n be the statement $X_n \equiv n^2 - n + 1 \pmod{4}$.
	LHS of $P_1 = X_1 = 1 \pmod{4}$ LHS of $P_2 = X_2 = X_1 + Y_1 + W_1 = 3 \pmod{4}$
	RHS of $P_1 = 1^2 - 1 + 1 = 1 \pmod{4}$ RHS of $P_2 = 2^2 - 2 + 1 = 3 \pmod{4}$
	\therefore P ₁ and P ₂ are true.
	Assume P_k and P_{k-1} are true for some $k \in \mathbb{Z}^+$, $k \ge 2$.
	LHS of $P_{k+1} = X_{k+1} = 2X_k + X_{k-1}$
	$= 2k^{2} - 2k + 2 + (k - 1)^{2} - (k - 1) + 1$
	$\equiv 3k^2 - k + 1$
	$(1 \pmod{4}), \text{ if } k \equiv 0 \text{ or } k \equiv 3 \pmod{4}$
	$= \begin{cases} 1 \pmod{4}, \text{ if } k \equiv 0 \text{ or } k \equiv 3 \pmod{4} \\ 3 \pmod{4}, \text{ if } k \equiv 1 \text{ or } k \equiv 2 \pmod{4} \end{cases}$
	RHS of $P_{k+1} = (k+1)^2 - (k+1) + 1$
	$=k^{2}+k+1$
	$(1 \pmod{4}), \text{ if } k \equiv 0 \text{ or } k \equiv 3 \pmod{4}$
	$= \begin{cases} 1 \pmod{4}, \text{ if } k \equiv 0 \text{ or } k \equiv 3 \pmod{4} \\ 3 \pmod{4}, \text{ if } k \equiv 1 \text{ or } k \equiv 2 \pmod{4} \end{cases}$
	\therefore P _{k-1} and P _k are true \Rightarrow P _{k+1} is true.
	Since P ₁ and P ₂ are true, and (P _{k-1} and P _k are true \Rightarrow P _{k+1} is true), P _n is true for all
	$n \in \mathbb{Z}^+$.
4iii	$T_n = X_n + Y_n + W_n = X_{n+1} \equiv (n+1)^2 - (n+1) + 1 \equiv n^2 + n + 1 \pmod{4}$
L	

$$\begin{aligned} \frac{5i}{dx^2} &= \frac{du}{dx} \\ \frac{d}{dx}^2 &= t \Rightarrow \int \frac{1}{t} dt = \int 1 dx \\ \ln|t| = x + C \\ \frac{du}{dx} &= t + e^x \\ u &= \int de^x dx = Ae^x + B \end{aligned}$$

$$\begin{aligned} \frac{5i}{5i} &= u = e^{-\int f(x)yu} \Rightarrow y = -\frac{1}{f(x)u} \frac{du}{dx} \\ \frac{d^2u}{dx} &= -f(x)yu \Rightarrow y = -\frac{1}{f(x)u} \frac{du}{dx} \\ \frac{d^2u}{dx^2} &= \left(-f^*(x)y - f(x)\frac{dy}{dx}\right)u - f(x)y\frac{du}{dx} \\ &= -f^*(x)yu - f(x)u\left(f(x)y^2 + g(x)y\right) - f(x)y\frac{du}{dx} \\ &= \frac{f^*(x)}{f(x)} \frac{du}{dx} - \frac{1}{u}\left(\frac{du}{dx}\right)^2 + g(x)\frac{du}{dx} + \frac{1}{u}\left(\frac{du}{dx}\right)^2 \\ &= \left(\frac{f^*(x)}{f(x)} + g(x)\right)\frac{du}{dx} \\ &= \frac{f^*(x)}{dx^2} - \left(f^*(x) + f(x)g(x)\right)\frac{du}{dx} = 0 \text{ (shown)} \end{aligned}$$

$$\begin{aligned} \overline{5iii} &= \frac{dy}{dx^2} - \left(\frac{d^2u}{dx^2} - \left(\frac{d^2u}{dx} - \frac{1}{dx}\right)^2 + \frac{1}{dx} - \frac{1}{dx^2} - \frac{d^2u}{dx} \\ &= \frac{e^{2s}}{dx^2} - \left(\frac{d^2u}{dx} - \frac{1}{dx^2} - \frac{1}{dx^2} - \frac{1}{dx} - \frac{1}{dx} - \frac{1}{dx} - \frac{1}{dx} \\ &= \frac{e^{2s}}{dx^2} - \left(\frac{d^2u}{dx} - \frac{1}{dx}\right) = 0 \Rightarrow \frac{d^2u}{dx} = \frac{du}{dx} \\ &= \frac{e^{2s}}{dx} \left(\frac{d^2u}{dx^2} - \frac{du}{dx}\right) = 0 \Rightarrow \frac{d^2u}{dx^2} = \frac{du}{dx} \\ &= \frac{1}{g} (s^{-1}x) dx = -\ln(Ae^s + B) \Rightarrow e^{-1}y = -\frac{Ae^s}{Ae^s + B} \\ &= \int e^{-1}x^{-1}y dx = -\ln(Ae^s + B) \Rightarrow e^{-2s}y = -\frac{Ae^s}{Ae^s + B} \\ &= \frac{1}{y} (1), e^{-2s}y = -\frac{Ae^s}{Ae^s + 3A} \\ &= \frac{1}{y} (1), e^{-2s}y = -\frac{Ae^s}{Ae^s + 3A} \\ &= \frac{1}{y} (1), e^{-2s}y = -\frac{Ae^s}{Ae^s + 3A} \end{aligned}$$

6i	Let $x_1, x_2,, x_{2n}$ be the positions of the (+1)'s and (-1)'s. With this arrangement, we	
	are able to find a consecutive pair of $+1$ and -1 in the clockwise direction (i.e. in the clockwise direction, the $+1$ precedes the -1). Remove this pair of numbers and there	
	will be $2n-2$ numbers left arranged in the circle.	
	We will repeat this procedure by removing consecutive pairs of $+1$ and -1 in the	
	clockwise direction until there is a final pair of +1 and -1 left. Let x_k be the position	
	of this final +1. We claim that x_k is the starting position for which T_i is never negative.	
	v_k is the static product for v_k is the static gradient of v_k is the static product of v_k	
	Since the pairs of $+1$'s and -1 's removed were consecutive, and within each pair, the	
	+1 preceded the -1, there will always be an increase of the partial sum T_k prior to a	
	decrease. Hence, T_i is never negative for all $1 \le i \le 2n$.	
	Alternative Solution	
	Let $x_1, x_2,, x_{2n}$ be the positions of the (+1)'s and (-1)'s, and let x_1 be the starting	
	position. As we evaluate T_i for $1 \le i \le 2n$, there exists a k such that T_k is minimum.	
	We then claim that x_{k+1} is a starting position for which T_i is never negative for all	
	$1 \le i \le 2n .$	
	Relabel $x_{k+1}, \dots, x_{2n}, x_1, \dots, x_k$ as y_1, y_2, \dots, y_{2n} respectively, so $y_1 = x_{k+1}$ is the starting	
	position. To avoid confusion, we shall let S_i be the new partial sum from position y_1	
	to y_i .	
	Since T_k is a minimum, $S_i = T_{i+k} - T_k \ge 0$ for $1 \le i \le 2n - k$.	
	With equal number of (+1)'s and (-1)'s, $T_{2n} = 0$. Hence, $S_{2n-k} = -T_k$.	
	Furthermore, $T_j \ge T_k \Longrightarrow -T_k + T_j \ge 0$ for all $1 \le j \le k$, we have that	
	$S_i = S_{2n-k} + T_{i-2n+k} = -T_k + T_{i-2n+k} \ge 0 \text{ for } 2n-k+1 \le i \le 2n.$	
6ii	Note that $T_i \equiv i \pmod{2}$ due to the following. Enumerate T_i starting with the index	
	$i = 1$. We have $T_1 \equiv 1 \pmod{2}$ regardless of the first value, $+1$ or -1 . Subsequently, as	
	the index <i>i</i> increases each time by 1, we add +1 or -1 to the value of T_i , changing its	
	parity. Hence, $n + \sum_{i=1}^{2n} T_i \equiv n + \sum_{i=1}^{2n} i \equiv n + n = 2n \equiv 0 \pmod{2}$; i.e. $n + \sum_{i=1}^{2n} T_i$ is even.	
7i	$\frac{1}{a > c \cos \theta + d \sin \theta} \text{ and } \frac{b > c \sin \theta + d \cos \theta}{b > c \sin \theta + d \cos \theta}$	
7ii	" \Rightarrow " Suppose on the contrary that $d \ge b$, then $a > c \ge d \ge b$ and	
	$d\cos\theta + c\sin\theta \ge b(\cos\theta + \sin\theta) = b\sqrt{2}\cos\left(\theta - \frac{\pi}{4}\right) > b$ since	
	$0 < \theta < \frac{\pi}{2} \Rightarrow \cos\left(\theta - \frac{\pi}{4}\right) > \frac{1}{\sqrt{2}}.$	
	" \Leftarrow " Choose θ small enough such that $c \sin \theta < \varepsilon \coloneqq \min(a - c, b - d)$.	
7iii	Then $c \cos \theta + d \sin \theta \le c \cos \theta + c \sin \theta < c + \varepsilon \le a$ and $d \cos \theta + c \sin \theta < d + \varepsilon \le b$. Let θ_0 be the angle for which the $c \times d$ rectangle is strictly contained in the $a \times b$	
,	rectangle. By (i), we must have $c \cos \theta_0 + d \sin \theta_0 < a$ and	
	$c\sin\theta_0 + d\cos\theta_0 < b \Rightarrow c\cos\left(\frac{\pi}{2} - \theta_0\right) + d\sin\left(\frac{\pi}{2} - \theta_0\right) < b \le a$.	
L		

	Let $f(\theta) = c\cos\theta + d\sin\theta$, $\theta \in \left[0, \frac{\pi}{2}\right]$, $\theta_1 = \min\left(\theta_0, \frac{\pi}{2} - \theta_0\right)$ and	
	$\theta_2 = \max\left(\theta_0, \frac{\pi}{2} - \theta_0\right). \text{ Then we must have } f(\theta_1) < a, f(\theta_2) < a \text{ and } \frac{\pi}{4} \in [\theta_1, \theta_2].$	
	If we can prove that f is decreasing on $[\theta_1, \theta_2]$, then $a > f\left(\frac{\pi}{4}\right) = \frac{c+d}{\sqrt{2}}$ and we are	
	done.	
	Since $f(\theta) > 0$ and $f''(\theta) = -c \cos \theta - d \sin \theta < 0$ for $\theta \in \left[0, \frac{\pi}{2}\right]$, f has a maximum at	
	θ_{\max} , where $f'(\theta_{\max}) = -c \sin \theta_{\max} + d \cos \theta_{\max} = 0 \Longrightarrow \theta_{\max} = \tan^{-1} \frac{d}{c} \le \frac{\pi}{4}$.	
	Since $f(0) = c \ge a$ and f is increasing on $[0, \theta_{\max}]$, we must have $\theta_{\max} < \theta_1$. Since f is	
	decreasing on $\left[\theta_{\max}, \frac{\pi}{2}\right]$, it is also decreasing on $\left[\theta_1, \theta_2\right]$ and we are done.	
7iv	A $c \times d$ rectangle (with $c \ge d$) can be strictly contained in an $a \times a$ square if and only if $a > c$ or $a\sqrt{2} > c + d$.	
	$\frac{\text{Proof}}{(\Rightarrow)}$. Sumpose that a suid meetangle (with $a > d$) can be strictly contained in an $a > d$	
	(⇒): Suppose that a $c \times d$ rectangle (with $c \ge d$) can be strictly contained in an $a \times a$ square. If $a > c$, we are done. Otherwise, if $a \le c$, then by (iii), we have $a\sqrt{2} > c + d$.	
	square. If $u > c$, we are done. Otherwise, if $u \ge c$, then by (iii), we have $u \sqrt{2} > c + u$.	
	(\Leftarrow) : Suppose $a > c$ or $a\sqrt{2} > c + d$.	
	If $a > c$, then by (ii), a $c \times d$ rectangle can be strictly contained in an $a \times a$ square iff $a > d$. But since $a > c \ge d$, the rectangle can always be contained in the square.	
	If $a\sqrt{2} > c + d$, substituting $\theta = \frac{\pi}{4}$ into the inequalities in (i) yields	
	$c\cos\frac{\pi}{4} + d\sin\frac{\pi}{4} = \frac{c+d}{\sqrt{2}} < a$ and $c\sin\frac{\pi}{4} + d\cos\frac{\pi}{4} = \frac{c+d}{\sqrt{2}} < a$. This shows that the	
8i	rectangle can be contained in the $a \times a$ square.	
01	n (mod 12) 0 1 2 3 4 5 6 7 8 9 10 11	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
8ii	Let $N = 9$. Since $4^2 = 16 \equiv 7 \pmod{9}$, $7 \in S(9)$ and 7 is not a square number.	Answer is not unique.
8iii	Since $(N+r)^2 \equiv r^2 \pmod{N}$ for all $r \in \mathbb{Z}$ with $0 \le r < \sqrt{N}$, there are at least \sqrt{N}	
	unique r's.	
	Hence, $\left\{0, 1, 4, \dots, \left(\left\lfloor\sqrt{N-1}\right\rfloor\right)^2\right\} \subseteq S(N)$ and $S(N)$ has at least \sqrt{N} elements.	
	NB We use $\lfloor \sqrt{N-1} \rfloor$ instead of $\lfloor \sqrt{N} \rfloor$ to be precise, since if N is a square number,	
	then $\left\lfloor \sqrt{N} \right\rfloor^2 = N$ is not an element of $S(N)$.	

8iv	Suppose $\exists x, n, \lambda \in \mathbb{Z}$ such that $x^2 = 17 + 2^n \lambda$, with $n \ge 5$.	Think: When
	If λ is even, then $x^2 = 17 + 2^{n+1} \left(\frac{\lambda}{2}\right) \Longrightarrow x^2 \equiv 17 \pmod{2^{n+1}}$, i.e. $17 \in S(2^{n+1})$.	is $x^2 \equiv 17$ (mod 2^{n+1})? Get that λ is
	If λ is odd, let $\mu = \frac{\lambda + x + 2^{n-2}}{2}$. Note that $\mu \in \mathbb{Z}$ since λ , x are odd and $n \ge 5$.	even.
		Then consider
	Then $2^{n+1}\mu + 17 = 2^n \left(\lambda + x + 2^{n-2}\right) + 17$	when λ is odd, and try to
	$= x^{2} + 2^{n} x + 2^{2n-2}$	find a square number by
	$= \left(x + 2^{n-1}\right)^2.$	working
	Hence, $(x+2^{n-1})^2 \equiv 17 \pmod{2^{n+1}}$, i.e. $17 \in S(2^{n+1})$.	backwards.
8v	Let P_n be the statement: $17 \in S(2^n), n \ge 5$.	
	For $n = 5$, $7^2 = 49 \equiv 17 \pmod{2^5}$. Hence, P ₅ is true.	
	By (iv), we have shown that $17 \in S(2^n) \Longrightarrow 17 \in S(2^{n+1})$, i.e., $P_n \Longrightarrow P_{n+1}$ for $n \ge 5$.	
	By induction, P_n is true for all $n \ge 5$.	
	From (iii), we have shown that there are at least \sqrt{N} numbers in S(N), where all	
	these elements are square numbers. Since 17 is not a square number, and is also in	
	$S(2^n)$ for $n \ge 5$, then we must have at least $1 + \sqrt{2^n}$ elements in $S(2^n)$.	
	Alternative Solution Case 1: <i>n</i> is even	
	$\left(2^{\frac{n}{2}}+1\right)^2 = 2^n + 2^{\frac{n}{2}+1} + 1 \equiv 2^{\frac{n}{2}+1} + 1 \pmod{2^n}$	
	Then $\left\{1^2, 2^2,, 0 \equiv \left(2^{\frac{n}{2}}\right)^2, 2^{\frac{n}{2}+1}+1\right\} \subseteq S(2^n)$, and this shows that $S(2^n)$ has at least	
	$1+\sqrt{2^n}$ elements.	
	Case 2: <i>n</i> is odd	
	$\left(2^{\frac{n+1}{2}}+1\right)^2 = 2^{n+1}+2^{\frac{n+3}{2}}+1 \equiv 2^{\frac{n+3}{2}}+1 \pmod{2^n}$	
	Then $\left\{0^2, 1^2, 2^2, \dots, \left(\left\lfloor 2^{\frac{n}{2}} \right\rfloor\right)^2, 2^{\frac{n+3}{2}} + 1\right\} \subseteq S(2^n)$, and this shows that $S(2^n)$ has at least	
	$1+\sqrt{2^n}$ elements.	
	Note that in both cases above, $2^{\frac{n}{2}+1} + 1$ and $2^{\frac{n+3}{2}} + 1$ are not square numbers. Suppose that $p^2 = 2^q + 1$ for some $p, q \in \mathbb{Z}^+$, then $(p+1)(p-1) = 2^q$.	
	This implies that $p+1=2^k$ and $p-1=2^l$ for some $k, l \in \mathbb{Z}^+$ with $k+l=q$.	
	Hence, $2^k - 1 = p = 2^l + 1 \Longrightarrow 2(2^{l-1} + 1) = 2^k \Longrightarrow l = 1, k = 2 \Longrightarrow q = 3.$	

But $n \ge 5 \Longrightarrow \frac{n}{2} + 1, \frac{n+3}{2} \ge 4$, which says that $2^{\frac{n}{2}+1} + 1$ and $2^{\frac{n+3}{2}} + 1$ are not square	
numbers.	