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1iv Suppose there are n squares of lengths xi contained in the unit square. 

Their total area is 2

1

1
n

i
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By part (iii), 
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Hence, there must be more than 20 such squares. 

 

2ia 8 4 1
Number of ways 165

4 1

  
   

 

[Bijection with a string of eight 0’s (objects) and three 1’s (partitions). For example, 
the string 00100010100 would correspond to the combination of 2 A’s, 3 C’s, 1 G and 
2 T’s.] 

 

2ib 4 4 1
Number of ways 35

4 1

  
   

 

[Place one 0 in each box and the remaining four 0’s into the boxes.] 

 

2iia 8Number of sequences 4 65536    

2iib 7Number of sequences 4 3 8748     

2iic 
8 8 8 84 4 4

Number of sequences 4 3 2 1 40824
3 2 1
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Principle of 
inclusion / 
exclusion. 

3ia 1
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3ib 
From (3i(a)), 

2 2 2

1 1 1

1 1 1

2 2

n n n

i
i n i n i n

x
i n     

     . 
 



3ic 
 

1 2

1 2

2 2 2 2

2 1
1 2 12 1 2 1

2

1 1

1
...

2 2

lim lim  is unbounded.
2

n n n

n n

n

i i i i
i ii i

i in n
i i

n
x x x x x x n

n
x x



      



 
 

        

 

   

 
 

 

3iia 
Since    11 1

1i i i i i
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
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the following. 
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Alternative Solution 

Let Pn be the statement   1
1

1 1
n

i n
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a x n x 


   . 
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Assume Pk is true for some k  . 
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Since P1 is true and  1P  is true P  is truek k , Pn is true for all n  . 
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Alt. Sol. 
We first ask 
ourselves what 
is the partial 
sum from 1 to 
n, and from 
there we 
would be able 
to find the 
sum from m to 
n. 
 
By observing 
the equation 
that we need 
to show, we 
may let 1m   
so that we 
obtain Pn 
which we will 
then prove. 
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1Let . Then .
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Case 1: 0Mx  . 
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Case 2: 0Mx  . 
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4ia Let Wn be the number of such n-digit numbers having first digit 3. Then by symmetry, 

n nW Y  for all n  . 

 
If the first digit is 2, then the next digit can only be 1 or 3. 
Hence, 1 1 1 1n n n n nY X W X Y       . 

 

4ib If the first digit is 1, then the next digit can be either 1, 2 or 3. 
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4ii Let Pn be the statement  2 1 mod 4nX n n   . 

   
   

1 1 2 2 1 1 1

2 2
1 2

LHS of P 1 mod 4 LHS of P 3 mod 4

RHS of P =1 1 1 1 mod 4 RHS of P 2 2 1 3 mod 4

X X X Y W      

      
 

1 2P  and P  are true.  

Assume Pk and Pk–1 are true for some k  , 2k  . 
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Since P1 and P2 are true, and  1 1P  and P  are true P  is truek k k  , Pn is true for all 

n  . 

 

4iii      2 2
1 1 1 1 1 mod 4n n n n nT X Y W X n n n n              
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6i Let 1 2 2, ,..., nx x x  be the positions of the ( 1 )’s and ( 1 )’s. With this arrangement, we 

are able to find a consecutive pair of 1  and 1  in the clockwise direction (i.e. in the 
clockwise direction, the 1  precedes the 1 ). Remove this pair of numbers and there 
will be 2 2n  numbers left arranged in the circle. 
We will repeat this procedure by removing consecutive pairs of 1  and 1  in the 
clockwise direction until there is a final pair of 1  and 1  left. Let kx  be the position 

of this final 1 .  
We claim that kx  is the starting position for which iT  is never negative. 

 
Since the pairs of 1 ’s and 1 ’s removed were consecutive, and within each pair, the 

1  preceded the 1 , there will always be an increase of the partial sum kT  prior to a 

decrease. Hence, iT  is never negative for all 1 2i n  . 

 
Alternative Solution 
Let 1 2 2, ,..., nx x x  be the positions of the ( 1 )’s and ( 1 )’s, and let 1x  be the starting 

position. As we evaluate iT  for 1 2i n  , there exists a k  such that kT  is minimum. 

We then claim that 1kx   is a starting position for which iT  is never negative for all 

1 2i n  . 
 
Relabel 1 2 1,..., , ,...,k n kx x x x  as 1 2 2, ,..., ny y y  respectively, so 1 1ky x   is the starting 

position. To avoid confusion, we shall let iS  be the new partial sum from position 1y  

to iy . 

Since kT  is a minimum, 0i i k kS T T    for 1 2i n k   . 

With equal number of ( 1 )’s and ( 1 )’s, 2 0nT  . Hence, 2n k kS T   . 

Furthermore, 0j k k jT T T T      for all 1 j k  , we have that 

2 2 2 0i n k i n k k i n kS S T T T           for 2 1 2n k i n    . 

 

6ii Note that  (mod 2)iT i  due to the following. Enumerate iT  starting with the index 

1i  . We have 1 1 (mod 2)T   regardless of the first value, 1  or 1 . Subsequently, as 

the index i increases each time by 1, we add 1  or 1  to the value of iT , changing its 

parity. Hence, 
2 2

1 1

2 0 (mod 2)
n n

i
i i

n T n i n n n
 

        ; i.e. 
2

1

n

i
i

n T


  is even. 

 

7i cos sina c d    and sin cosb c d     
7ii “” Suppose on the contrary that d b , then a c d b    and  

 cos sin cos sin 2 cos
4

d c b b b
           

 
 since 

1
0 cos

2 4 2

        
 

. 

“” Choose   small enough such that  sin : min ,c a c b d     . 

Then cos sin cos sinc d c c c a           and cos sind c d b      . 

 

7iii Let 0  be the angle for which the c d  rectangle is strictly contained in the a b  

rectangle. By (i), we must have 0 0cos sinc d a    and 

0 0 0 0

π π
sin cos cos sin

2 2
c d b c d b a                

   
. 

 



 

Let  f cos sinc d    , 
π

0,
2

    
, 1 0 0

π
min ,

2
     

 
 and 

2 0 0

π
max ,

2
     

 
. Then we must have  1f a  ,  2f a   and  1 2

π
,

4
  . 

If we can prove that f is decreasing on  1 2,  , then 
π

f
4 2

c d
a

   
 

 and we are 

done. 
 

Since  f 0   and  f '' cos sin 0c d       for 
π

0,
2

    
, f has a maximum at 

max , where   1
max max max max

π
f ' sin cos 0 tan

4

d
c d

c
           . 

 
Since  f 0 c a   and f is increasing on  max0, , we must have max 1  . Since f is 

decreasing on max

π
,
2

 
  

, it is also decreasing on  1 2,   and we are done. 

7iv A c d  rectangle (with c d ) can be strictly contained in an a a  square if and only 
if a c  or 2a c d  . 
 
Proof 
  :  Suppose that a c d  rectangle (with c d ) can be strictly contained in an a a  

square. If a c , we are done. Otherwise, if a c , then by (iii), we have 2a c d  . 
 
  :  Suppose a c  or 2a c d  . 

If a c , then by (ii), a c d  rectangle can be strictly contained in an a a  square iff 
a d . But since a c d  , the rectangle can always be contained in the square. 

If 2a c d  , substituting 
π

4
   into the inequalities in (i) yields 

π π
cos sin

4 4 2

c d
c d a


    and 

π π
sin cos

4 4 2

c d
c d a


   . This shows that the 

rectangle can be contained in the a a  square. 

 

8i  

n (mod 12) 0 1 2 3 4 5 6 7 8 9 10 11 
n2 (mod 12) 0 1 4 9 4 1 0 1 4 9 4 1 

By exhaustion, the elements of S(12) are all square numbers. 

 

8ii Let 9N  . Since 24 16 7 (mod 9)  ,  7 S 9  and 7 is not a square number. Answer is not 
unique. 

8iii Since  2 2  (mod )N r r N   for all r  with 0 r N  , there are at least N  

unique r’s.  

Hence,     
2

0,1, 4,..., 1 SN N     and  S N  has at least N  elements. 

NB We use 1N    instead of N 
   to be precise, since if N is a square number, 

then 
2

N N     is not an element of  S N . 

 



8iv Suppose , ,x n    such that 2 17 2nx   , with 5n  . 

If   is even, then 2 1 2 117 2 17 (mod 2 )
2

n nx x
      

 
, i.e.  117 S 2n . 

 

If   is odd, let 
22

2

nx
 

 . Note that    since  , x  are odd and 5n  . 

 

 

 

1 2

2 2 2

21

Then 2 17 2 2 17

2 2

2 .

n n n

n n

n

x

x x

x

  





    

  

 

 

Hence,  21 12 17 (mod 2 )n nx    , i.e.  117 S 2n . 

Think: When 
is 2 17x   
(mod 2n+1)? 
Get that   is 
even. 
 
Then consider 
when   is 
odd, and try to 
find a square 
number by 
working 
backwards. 

8v Let Pn be the statement:  17 S 2 , 5n n  . 

For 5n  , 2 57 49 17 (mod 2 )  . Hence, P5 is true. 

By (iv), we have shown that    117 S 2 17 S 2n n   , i.e., 1P Pn n  for 5n  . 

By induction, Pn is true for all 5n  . 
 

From (iii), we have shown that there are at least N  numbers in  S N , where all 

these elements are square numbers. Since 17 is not a square number, and is also in 

 S 2n  for 5n  , then we must have at least 1 2n  elements in  S 2n . 

 
Alternative Solution 
Case 1: n is even 

2
1 1

2 2 22 1 2 2 1 2 1 (mod 2 )
n n n

n n  
      

 
 

Then  
2

12 2 2 21 , 2 ,...,0 2 , 2 1 S 2
n n

n       
   

, and this shows that  S 2n  has at least 

1+ 2n  elements. 
 
Case 2: n is odd 

21 3 3
12 2 22 1 2 2 1 2 1 (mod 2 )

n n n
n n

  
 

      
 

 

Then  
2

3
2 2 2 2 20 ,1 ,2 ,..., 2 ,2 1 S 2

n n
n

             
, and this shows that  S 2n  has at least 

1+ 2n  elements. 

Note that in both cases above, 
1

22 1
n

  and 

3

22 1
n

  are not square numbers. 
Suppose that 2 2 1qp    for some ,p q  , then   1 1 2qp p   . 

This implies that 1 2kp   and 1 2lp    for some ,k l   with k l q  . 

Hence,  12 1 2 1 2 2 1 2 1, 2 3k l l kp l k q            . 

 



But 
3

5 1, 4
2 2

n n
n


    , which says that 

1
22 1
n

  and 

3

22 1
n

  are not square 

numbers. 
 


