Candidate Index Number			

Anglo - Chinese School (Independent)

FINAL EXAMINATION 2021 YEAR 3 INTEGRATED PROGRAMME CORE MATHEMATICS PAPER 1

Friday 1st October 2021 1 hour 30 minutes

Candidates answer on the Question Paper. No additional materials are required.

INSTRUCTIONS TO CANDIDATES

- Write your index number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Answer all questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- The maximum mark for this paper is 80.

For	Examiner's Use

This paper consists of 15 printed pages and 1 blank page.

[Turn over

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Answer all the questions in the spaces provided.

1.	[Maximum]	7	α
	<i>I Maximum</i>	mark.	91

(0)	Evaluate 4	[2
(a)	Evaluate $4 - \frac{3}{3}$.	[3 marks]
	$3 - \frac{3}{2}$	
	$3 - \frac{3}{}$	
	Δ	

(b)	Make q the subject of the formula,	p =	$\frac{\overline{3q-2p}}{q+5}.$	[3 marks]
------------	--------------------------------------	-----	---------------------------------	-----------

		1 -		
(c)	Factorise $12x^3 - 4x^2y - 3xz^2 + yz^2$ com	pletely.		[3 marks]
		•••••	 	• • • • • • • • • • • • • • • • • • • •
••••			 	• • • • • • • • • • • • • • • • • • • •
••••		•••••	 	
••••			 	
••••		•••••	 	
••••			 	
••••			 	
••••			 	•••••
••••			 	•••••
••••			 	
••••			 	•••••
••••			 	•••••
••••			 	•••••
••••			 	•••••
••••			 	
••••			 	
• • • • •			 	• • • • • • • • • • • • • • • • • • • •
••••			 	• • • • • • • • • • • • • • • • • • • •

......[Working may be continued next page]

[Continuation of working space for Question 1]

(b) The curve $y = x^2 - 9$ meets the line $y = 2x + 6$ at points P and Q . Find the coordinates of P and Q . [4 marks] (c) Hence, find the area of ΔPOQ where Q is the origin. [2 marks]	(a) Sketch the graph of $y = x^2 - 9$ clearly labelling the coordinates of the axespoint.	intercepts and turning [2 marks]
(c) Hence, find the area of APOQ where O is the origin. (2 marks)	(b) The curve $y = x^2 - 9$ meets the line $y = 2x + 6$ at points <i>P</i> and <i>Q</i> . Find the co	
	(c) Hence, find the area of $\triangle POQ$ where O is the origin.	[2 marks]

2. [Maximum mark: 8]

[Maximum mark: 8]	
(a) Solve $5y \ge y^2 + 6$.	[2 marks]
(b) Solve $\frac{2x+1}{2} < -4(x+2) \le 5x+19$ and hence state the integer	values of x that satisfy the inequalit
	[6 marks]

4. [*Maximum mark: 5*]

[5 marks]

Given that A is an acute angle and $\cos A = \frac{1}{3}$,	
(a) find the value of $\sin A$,	[2 marks
(b) hence, show that $\frac{2 \tan A - 1}{3 \sin A} = 2 - \frac{\sqrt{2}}{4}$.	[3 marks

6.	[Maximum	mark.	91
v.	IVI UNITIUITI	mark.	71

Given that the roots of the quadratic equation $3x^2 - 2x - 3 = 0$ are α and β .

(a)	State the value of $\alpha + \beta$ and of $\alpha\beta$.	[2 marks]
(b)	Show that $\alpha^2 + \beta^2 = \frac{22}{9}$.	[2 marks]
	Find the quadratic equation with roots $\alpha + 2\beta$ and $2\alpha + \beta$.	[5 marks]
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		

7.	[Mo	aximum mark: 8]		3	V
	thre	e points $A(-2,0)$, $B(1, 1)$ and $D(-2,0)$ evertices of a rhombus $ABCD$. E is a tof the perpendicular from A to BD .			→ B(1, 1)
	(a)	Find the equation of <i>CD</i> .	[3 marks] —	A(-2, 0)	$O \longrightarrow X$
	(b)	Find the length of <i>AE</i> , leaving your a form.	inswer in surd [3 marks]	1-(-, 3)	
	(c)	Find the area of the rhombus.	[2 marks]	D(-3, -3)	
	••••				
	••••				
	••••				

	••••				
	*****			•••••	
				•••••	

8. [*Maximum mark:* 9]

A roller coaster at an amusement park goes through an underwater tunnel. The track traveled by the roller coaster is shown in the diagram below. The height, y metres of the roller coaster above the sea level as it travels from point A to point C can be modelled by the equation $y = \frac{1}{10}x^2 - 4x + 5$, where x is the time in seconds.

- (a) Express $y = \frac{1}{10}x^2 4x + 5$ in the form of $y = a(x-h)^2 + k$. [3 marks]
- (b) (i) State the height of the roller coaster above sea level at point A. [1 mark]
 - (ii) State the time when the roller coaster reaches the lowest point at B. [1 mark]
- (c) Hence, solve y = 0, leaving your answers in the surd form and state what the answers represent.

 [4 marks]

......[Working may be continued next page]

[Continuation of working space for Question 8]	
3 61 3 2 3	

9.	[Maximum mark: 10]	
	(a) Find $\log_2 r$ if $r^x = 16$ and $3^x = 81$.	[3 marks]
	(b) Given that $3^p = 8$ and $8^q = 81$, find the value of pq .	[3 marks]
	(c) Solve for x if $(\ln x)^2 - 3(\ln 5)^2 = 2(\ln 5)(\ln x)$.	[4 marks]

[Continuation of working space for Question 9]

real values of x .	[4 marks
b) Given that $a-b=22$ and $\sqrt{a}+\sqrt{b}=11$, find the value of \sqrt{ab} .	[5 marks

10. [Maximum mark: 9]

[Continuation of working space for Question 10]

Answer k	ev
1 (a)	11
	$\frac{1}{5}$
(b)	
	$q = \frac{-2p - 5p^2}{p^2 - 3}$
(a)	$p \rightarrow 3$
(c)	(2x+z)(2x-z)(3x-y)
2 (a)	$y = x^2 - 9$
	(-3, 0) O $(3, 0)$ $(3, 0)$
	(0, -9)
(b)	The coordinates of P and Q are (5, 16) and (-3, 0).
(c)	Area of triangle $POQ = 24$ units ²
3 (a)	$2 \le y \le 3$
(b)	$\therefore -3 \le x < -1.7$
	The integer values are -3 and -2.
4	$H = 1 + \sqrt{2}$ units
	The height of the cuboid is equal to the length of its square base. Hence it is a cube.
5 (a)	
	$\sin A = \frac{\sqrt{8}}{3} / \frac{2\sqrt{2}}{3}$
(b)	3 3
(b)	$\frac{2\tan A - 1}{3\sin A} = \frac{4\sqrt{2} - 1}{3\left(\frac{2\sqrt{2}}{2}\right)}$
	$3\sin A = 3\left(2\sqrt{2}\right)$
	$\left(\frac{3}{3}\right)$
	1 /2
	$=2-\frac{1}{4\sqrt{2}} \text{or} 2-\frac{\sqrt{2}}{4} \text{ (shown)}$
	4√2 4
6 (a)	$\alpha + \beta = \frac{2}{3}, \alpha\beta = -1.$
(b)	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$
	$=\left(\frac{2}{3}\right)^2-2(-1)$
	(3)
	$=\frac{22}{9}$ (shown)
	- 9 (SHOWII)
(c)	$x^2 - 2x - \frac{1}{2} = 0/9x^2 - 18x - 1 = 0$
	Quadratic equation, $x^{2}-2x-\frac{1}{9}=0/9x^{2}-18x-1=0$
7 (a)	Equation of CD, $y = \frac{1}{x} + 2$
	Equation of CD, $y = \frac{1}{3}x - 2$
(b)	Distance of AE = $\sqrt{2}$ units
(c)	Area of rhombus $= 8 \text{ units}^2$

8 (a)	$y = \frac{1}{10}(x-20)^2 - 35$
(bi)	The height of the roller coaster above sea level at point A is 5 m.
(ii)	The time when the roller coaster reaches the lowest point at B is 20 seconds.
(c)	$x = 20 \pm \sqrt{350}$ or $x = 20 \pm 5\sqrt{14}$
	$20\pm\sqrt{350}$ or $20\pm5\sqrt{14}$ seconds are the time when the roller coaster is at the sea level.
9 (a)	$\log_2 r = 1$
(b)	pq = 4
(b)	$x = 125$ or $x = \frac{1}{5}$
10 (a)	
	k < -4 or $k > 0$
(b)	$\sqrt{ab} = \frac{117}{4}$