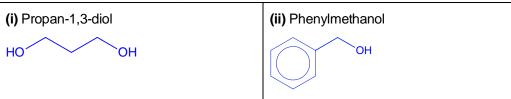
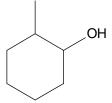


Nanyang Junior College Chemistry (9729)

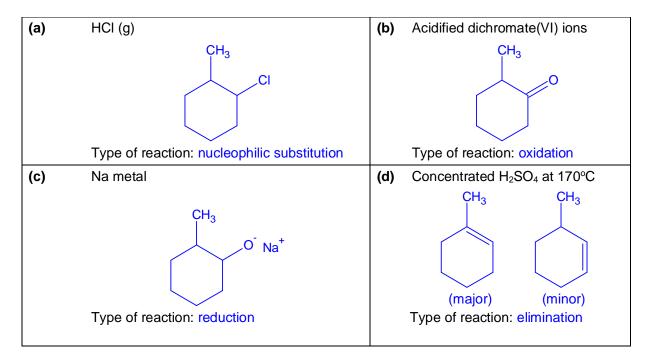
Tutorial 14 Hydroxy Compounds


H2

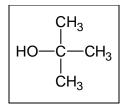
JC2/2025


Section A: Self-Check Questions

Part 1: Alcohols


1 For the following compounds given by their IUPAC name, draw their skeletal formula.

2 Below is a cyclohexane derivative.



State the type of reaction and draw the structural formula of the organic product(s) formed by the action of the reagents stated below:

3 There are four structural isomers of C_4H_9OH .

The structure of one isomer, 2-methylpropan-2-ol, a tertiary alcohol is shown below.

(i) Draw the structures and give the names of the other **three** isomers of C₄H₉OH. Classify each as either primary, secondary or tertiary.

isomer	CH ₃ CH ₂ CH ₂ CH ₂ OH	CH ₃ CH(OH)CH ₂ CH ₃	СН ₃ Н-ССН ₂ ОН СН ₃
name	butan-1-ol	butan-2-ol	2-methylpropan-1-ol
classification	primary	secondary	primary

(ii) One of the isomers gives a positive test with alkaline aqueous iodine. Identify the isomer and write a balanced equation for the reaction.

The isomer is CH₃CH(OH)CH₂CH₃, (butan-2-ol).

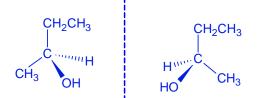
 $CH_3CH(OH) CH_2CH_3 + 4I_2 + 6NaOH \rightarrow CHI_3 + CH_2CH_3CO_2 - Na^+ + 5NaI + 5H_2O$

- (iii) 2-methylpropan-2-ol could be distinguished from the other two isomers by a simple chemical test. State the test and give the observations.
- test: To each sample, add potassium dichromate(VI), H₂SO₄ (aq) and heat

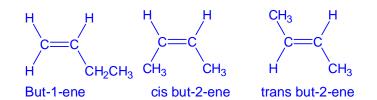
Observations:

2-methylpropan-2-ol (Tertiary alcohol): Orange potassium dichromate(VI) remains

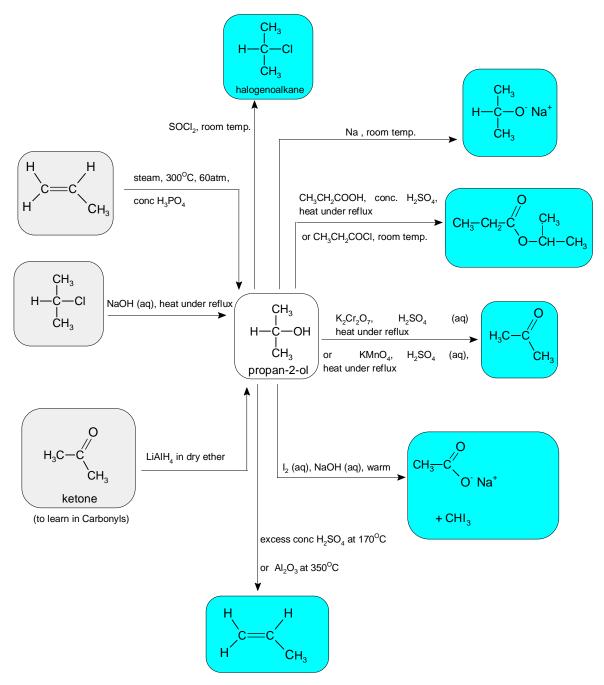
Butan-1-ol & butan-2-ol: Orange potassium dichromate(VI) turns green

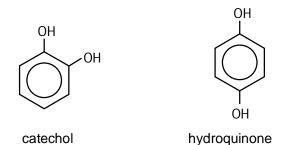

Continue on the next pg

- (iv) One of the isomers of $C_4H_{10}O$ exhibit the following:
 - It exists as a pair of isomers.


• 3 alkenes are formed when it is heated with Al₂O₃. Identify the alcohol, including your reasoning.

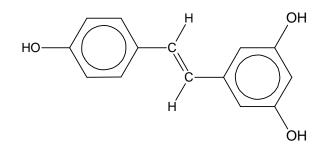
The alcohol is CH₃CH(OH)CH₂CH₃. (butan-2-ol)


• It exists as a pair of enantiomers as it contains a chiral carbon.


• It undergoes elimination with Al₂O₃ to form the 3 alkenes:

4 Complete the following summary of reactions for a secondary alcohol, propan-2-ol. (Compare this summary with the one for a primary alcohol – pg 20 of notes, how are reactions of a primary and secondary alcohol different?)

5


Catechol has a lower melting point (104 °C) than hydroquinone (169 °C). Explain this observation. [3]

Both catechol and hydroquinone have simple molecular structure. [1]

Both catechol and hydroquinone form intermolecular hydrogen bonds between molecules, but <u>catechol is also able to form intramolecular hydrogen bonds</u>. Formation of intramolecular hydrogen bonds in catechol <u>reduces the extent of intermolecular hydrogen bonding</u>. [1]

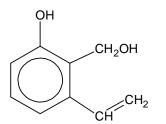
This leads to <u>weaker intermolecular forces in catechol</u> and therefore <u>less energy</u> is required to overcome these forces. [1]

6 *Reversatrol* is an insect repellent which is emitted by damaged plants. Which reagent, in its reaction with *Reversatrol*, shows both electrophilic addition and electrophilic substitution?

A bromine

B ethanoyl chloride

C hydrogen bromide


D steam

Ans: A

Bromine undergoes electrophilic addition with the alkene and electrophilic substitution on the benzene.

- (B) Ethanoyl chloride undergoes condensation reaction with the phenol.
- (C) Hydrogen bromide undergoes electrophilic addition with the alkene.
- (D) Steam undergoes electrophilic addition with the alkene.

7 Suggest the condition for the following reagents to react with the compound below, and the organic product(s) obtained. State "no reaction" if they do not react at all. [Hint: Refer to Pg 21 summary by reagent to help recall the different reactions of functional groups]

It is a good practice to identify the functional gp present in the compound:

Phenol, primary alcohol, alkene and arene

	Reagent	Condition	Organic product
(a)	sodium metal	room temp	CH ₂ O ⁻ Na ⁺ CH ₂ O ⁻ Na ⁺ CH=CH ₂
(b)	sodium hydroxide	room temp	CH=CH ₂
(c)	sodium carbonate	room temp	no reaction
(d)	phosphorous(V) chloride	room temp	CH ₂ Cl CH=CH ₂
(e)	hydrogen bromide	heat	OH CH ₂ Br CH ₂ CH ₂ H Br

	Reagent	Condition	Organic product
(f)	ethanoic acid	conc. H₂SO₄, heat under reflux	OH O CH ₃ CH ₂ CH ₂
(g)	anhydrous ethanoyl chloride	room temp	H ₃ C O O CH ₃ CH ₂ CH ₂ CH ₂
(h)	aqueous bromine	room temp	$Br \qquad CH_2OH \\ CH_2OH \\ CH_2Br \\ Br \qquad OH \\ Assume excess bromine is provided and phenol undergoes multi-substitution$
(i)	bromine in CC14	room temp	$\begin{array}{c} OH \\ Br \\ CH_2OH \\ CH \\ Br \\ Br \\ \end{array} Or \\ Or \\ H \\ Br \\ Br \\ Br \\ Br \\ Br \\ Br \\ Br$
(j)	potassium manganate(VII)	H₂SO₄(aq), heat under reflux	ОН СООН
(k)	potassium dichromate (VI)	H₂SO₄(aq), heat with immediate distillation	CHO CH ^C H ₂