

National Junior College 2016 – 2017 H2 Further Mathematics

Topic F7: Matrices and Linear Spaces (Tutorial Set 3 Solutions)

Basic Mastery Questions

(a) $\begin{pmatrix} 1 & 3 \\ -2 & 1 \\ 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 \\ 0 & 7 \\ 0 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$. A basis for the row space is $\{(1 \ 3), (0 \ 1)\}$; a 1 basis for the column space is $\begin{cases} 1 \\ -2 \\ 1 \end{cases}$, $\begin{pmatrix} 3 \\ 1 \\ -2 \\ 1 \end{cases}$. rank = 2. nullity = 2 - 2 = 0. The basis for the null space is $\left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$. (b) $\begin{pmatrix} 1 & 2 & -1 \\ -3 & -5 & 1 \\ 13 & 23 & -7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & -2 \\ 0 & -3 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$. A basis for the row space is $\{(1 \ 2 \ -1), (0 \ 1 \ -2)\}$; a basis for the column space is $\left\{ \begin{vmatrix} -3 \\ -3 \end{vmatrix}, \begin{vmatrix} -5 \\ -5 \end{vmatrix} \right\}$. rank = 2 nullity = 3-2=1. To find the null space, let $z = \lambda$, then $y = 2\lambda$ and $x = -3\lambda$, so a basis for the null space is $\left\{ \begin{bmatrix} -3\\ 2\\ 1 \end{bmatrix} \right\}$. (c) $\begin{pmatrix} 2 & 1 & 3 & 3 \\ 0 & -3 & 1 & -2 \\ 4 & 5 & 5 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 3 & 3 \\ 0 & -3 & 1 & -2 \\ 0 & 3 & -1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 3 & 3 \\ 0 & -3 & 1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. A basis for the row space is $\{(2 \ 1 \ 3 \ 3), (0 \ -3 \ 1 \ -2)\}$; a basis for the column space is $\left\{ \begin{pmatrix} 2\\0\\4 \end{pmatrix}, \begin{pmatrix} 1\\-3\\5 \end{pmatrix} \right\} , \text{ rank} = 2 , \text{ nullity} = 4 - 2 = 2 . \text{ To find the null space, let}$ $z = 3\lambda$, $t = 6\mu$, then $y = \lambda - 4\mu$ and $x = -5\lambda - 7\mu$, so a basis for the null space is $\left\{ \begin{array}{c|c} 1\\ 3\\ \end{array} \right|, \begin{array}{c} -4\\ 0\\ \end{array} \right\}.$

$$\begin{array}{ll} \textbf{2} & (\textbf{a}) \quad \text{Ycs.} \\ T_{i} \left(\begin{pmatrix} x_{i} \\ y_{i} \end{pmatrix} + \begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} \right) = T_{i} \begin{pmatrix} x_{i} + x_{2} \\ y_{1} + y_{2} \end{pmatrix} = \begin{pmatrix} k(x_{1} + x_{2}) \\ y_{1} + y_{2} \end{pmatrix} = \begin{pmatrix} kx_{1} \\ y_{1} \end{pmatrix} + \begin{pmatrix} kx_{2} \\ y_{2} \end{pmatrix} = T_{i} \begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix} + T_{2} \begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} .. \\ T_{i} \left(m \begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix} \right) = T_{i} \begin{pmatrix} mx_{1} \\ my_{1} \end{pmatrix} = \begin{pmatrix} kmx_{1} \\ my_{2} \end{pmatrix} = m \begin{pmatrix} kx_{1} \\ y_{1} \end{pmatrix} = mT_{i} \begin{pmatrix} x_{1} \\ y_{1} \end{pmatrix} .. \\ (\textbf{b}) \quad \text{No.} \quad T_{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, T_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

(c)
$$0 = \begin{vmatrix} \lambda - 0 & -2 & -1 \\ 1 & \lambda - 3 & -1 \\ -2 & 4 & \lambda + 1 \end{vmatrix}$$

$$= \lambda (\lambda - 3)(\lambda + 1) - 4 - 4 - 2(\lambda - 3) + 2(\lambda + 1) + 4\lambda$$

$$= \lambda^3 - 2\lambda^2 - 3\lambda - 8 - 2\lambda + 6 + 2\lambda + 2 + 4\lambda$$

$$= \lambda^3 - 2\lambda^2 + \lambda$$

$$= \lambda (\lambda - 1)^2$$

Figenvalues: $\lambda_1 = \lambda_2 = 1$ and $\lambda_3 = 0$
When $\lambda = 1$, we solve $\begin{pmatrix} 1 & -2 & -1 \\ 1 & -2 & -1 \\ -2 & 4 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, i.e. $\begin{pmatrix} 1 & -2 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.
Let $y = \alpha, z = \beta$, then $x = 2\alpha + \beta$. $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ with $\lambda_1 = \lambda_2 = 1$
When $\lambda = 0$, we solve $\begin{pmatrix} 0 & -2 & -1 \\ 1 & -3 & -1 \\ -2 & 4 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, i.e. $\begin{pmatrix} 1 & -3 & -1 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.
Let $z = 2\gamma$, then $y = -\gamma$ and $x = -\gamma$, a corresponding vector is $\mathbf{e}_3 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$, $\lambda_5 = 0$
(i) The eigenvalue are -7 and 2 with eigenvectors $\begin{pmatrix} -4 \\ 5 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ respectively (working omiited). Thus, $\mathbf{P} = \begin{pmatrix} -4 & 1 \\ 5 & -4 \end{pmatrix}$. Then
 $\mathbf{A}^5 = \mathbf{PD^5P^{-1} = -\frac{1}{9}\begin{pmatrix} -4 & 1 \\ 5 & 1 \end{pmatrix} \begin{pmatrix} -1 & 6807 & 0 \\ 0 & 32 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ -5 & -4 \end{pmatrix}$
 $= -\frac{1}{9}\begin{pmatrix} 67068 & -67356 \\ -84195 & 83907 \end{pmatrix}$
 $= \begin{pmatrix} 7452 & -7484 \\ -9355 & 9323 \end{pmatrix}$

6

Practice Questions

8

(i) Reduce the matrix
$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 0 & 5 \\ -2 & 5 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & -6 & -4 \\ 0 & 9 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$
, so dim $(V) = 2$.
Reduce the matrix $\begin{pmatrix} 1 & 2 & 2 \\ 3 & 4 & 0 \\ -3 & -3 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 2 \\ 0 & -2 & -6 \\ 0 & 3 & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix}$, so dim $(W) = 2$.
(ii) A basis for V is $\left\{ \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 5 \end{pmatrix} \right\}$. Let $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in W$, then the rank of $\begin{pmatrix} 1 & 2 & x \\ 3 & 0 & y \\ -2 & 5 & z \end{pmatrix}$ must
remain at 2. $\begin{pmatrix} 1 & 2 & x \\ 3 & 0 & y \\ -2 & 5 & z \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & x \\ 0 & -6 & y - 3x \\ 0 & 9 & z + 2x \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & x \\ 0 & -6 & y - 3x \\ 0 & 0 & z + 2x + 1.5(y - 3x) \end{pmatrix}$.
Therefore $z + 2x + 1.5(y - 3x) = 0$, i.e. $5x - 3y - 2z = 0$.
(iii) A basis for W is $\left\{ \begin{pmatrix} 1 \\ 3 \\ -3 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \\ -3 \end{pmatrix} \right\}$, which is the null space of A, so the rank of A must

be 1.

Let $\mathbf{A} = \begin{pmatrix} a & b & c \end{pmatrix}$, substituting the vectors in this basis into $\mathbf{A}\mathbf{X} = \mathbf{0}$, we have $\begin{cases} a+3b-3c=0\\ 2a+4b-3c=0 \end{cases} \Rightarrow \begin{cases} a+3b-3c=0\\ -2b+3c=0 \end{cases}$ We need a non-trivial solution. We may c=-2, then b=-3 and a=3, so A can

be (3 -3 -2).

(iv) For a vector **u** to be in $V \cap W$, i.e. in both V and W,

$$\mathbf{u} = \lambda \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 0 \\ 5 \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 3 \\ -3 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ 4 \\ -3 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & -1 & -2 \\ 3 & 0 & -3 & -4 \\ -2 & 5 & 3 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & -2 \\ 0 & -6 & 0 & 2 \\ 0 & 9 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & -2 \\ 0 & -6 & 0 & 2 \\ 0 & 0 & 1 & 2 \end{pmatrix}. \text{ Let } \beta = t \text{, then}$$
$$\alpha = -2t \text{. Thus } \mathbf{u} = -2t \begin{pmatrix} 1 \\ 3 \\ -3 \end{pmatrix} + t \begin{pmatrix} 2 \\ 4 \\ -3 \end{pmatrix} = t \begin{pmatrix} 0 \\ \alpha \\ \beta \end{pmatrix} \text{, so a basis for } V \cap W \text{ is } \left\{ \begin{pmatrix} 0 \\ -2 \\ 3 \end{pmatrix} \right\}.$$

9 (a) We can say
$$\begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 is in the column space of $\begin{pmatrix} 3 & -2 & 1 \\ 2 & -2 & -2 \\ 1 & 1 & 7 \end{pmatrix}$, consider
 $\begin{pmatrix} 3 & -2 & 1 & a \\ 2 & -2 & -2 & b \\ 1 & 1 & 7 & c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 7 & c \\ 2 & -2 & -2 & b \\ 3 & -2 & 1 & a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 7 & c \\ 0 & -4 & -16 & b - 2c \\ 0 & -5 & -20 & a - 3c \end{pmatrix}$
 $\rightarrow \begin{pmatrix} 1 & 1 & 7 & c \\ 0 & -4 & -16 & b - 2c \\ 0 & 0 & a & -3c - 1.25(b - 2c) \end{pmatrix}$

Thus a-3c-1.25(b-2c) = 0, i.e. 4a-5b-2c = 0.

- (b) (i) For any vector $\mathbf{b} \in \text{column space of } \mathbf{PQ}$, then $\mathbf{PQx} = \mathbf{b}$ has a solution. Now $\mathbf{Py} = \mathbf{b}$ also has a solution, $\mathbf{y} = \mathbf{Qx}$, so $\mathbf{b} \in \text{column space of } \mathbf{P}$. Therefor the column space of \mathbf{PQ} is a subspace of the column space of \mathbf{P} .
 - (ii) The row space of **PQ** is a subspace of the row space of **Q**. (Since the column space of $(\mathbf{PQ})^{T} = \mathbf{Q}^{T}\mathbf{P}^{T}$ is a subspace of the column space of \mathbf{Q}^{T}).
 - (iii) From (i), we know the rank of PQ cannot exceed the rank of P; from (ii), we know the rank of PQ cannot exceed the rank of Q. Therefore, rank (PQ) cannot exceed the smaller of rank (P) and rank (Q).
- 10 The elements of the matrices **A** and **B** are given by

$$\mathbf{AB} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & \dots & \dots \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & \dots & \dots \\ a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{31} & \dots & \dots \end{pmatrix}$$

Its first column
$$\begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{32} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{32} \\ a_{31}b_{11} + a_{32}b_{21} + a_{33}b_{32} \end{pmatrix} = b_{11}\mathbf{c}_{1} + b_{21}\mathbf{c}_{2} + b_{31}\mathbf{c}_{3}$$
. Similarly, its second and

third columns are $b_{12}\mathbf{c}_1 + b_{22}\mathbf{c}_2 + b_{32}\mathbf{c}_3$ and $b_{13}\mathbf{c}_1 + b_{23}\mathbf{c}_2 + b_{33}\mathbf{c}_3$ respectively.

The rank of **AB** is the dimension of the column space of **AB**, consider any vector in this column space:

 $\mathbf{u} = k_1 (b_{11}\mathbf{c}_1 + b_{21}\mathbf{c}_2 + b_{31}\mathbf{c}_3) + k_2 (b_{12}\mathbf{c}_1 + b_{22}\mathbf{c}_2 + b_{32}\mathbf{c}_3) + k_3 (b_{13}\mathbf{c}_1 + b_{23}\mathbf{c}_2 + b_{33}\mathbf{c}_3), k_1, k_2, k_3 \in \mathbb{R}$ Since **u** is a linear combination of $\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3$, it must be in the column space of **A**. Therefore, The column space of **AB** is a subspace of the column space of **A**, and rank (**AB**) \le rank (**A**).

(i)
$$\begin{pmatrix} 1 & \alpha & \beta \\ 2 & 2\alpha + \beta - 1 & \alpha + 2\beta \\ 5 & 5\alpha + 3\beta - 3 & 3\alpha + 5\beta \end{pmatrix} \rightarrow \begin{pmatrix} 1 & \alpha & \beta \\ 0 & \beta - 1 & \alpha \\ 0 & 3\beta - 3 & 3\alpha \end{pmatrix} \rightarrow \begin{pmatrix} 1 & \alpha & \beta \\ 0 & \beta - 1 & \alpha \\ 0 & 0 & 0 \end{pmatrix}$$
 The row

space has at most two vectors in its basis, thus, its rank cannot exceed 2.

(ii) When $\alpha = 0$ and $\beta = 1$, the 2nd row in the row-echelon form is 0's. rank $(\mathbf{A}) = 1$. For all 3×3 matrix **B**, rank $(\mathbf{AB}) \le \operatorname{rank}(\mathbf{A}) = 1$. Since rank $(\mathbf{AB}) + \operatorname{nullity}(\mathbf{AB}) = 3$, nullity $(\mathbf{AB}) \ge 2$. There are at least two vectors in its null space. Therefore, there are at least two linearly independent solutions for **x** of the equation $\mathbf{ABx} = \mathbf{0}$. $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

11 Observe that
$$\mathbf{A} \begin{bmatrix} 0\\0\\0 \end{bmatrix} = \begin{bmatrix} 3\\4\\11 \end{bmatrix}, \mathbf{A} \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 2\\4\\9 \end{bmatrix}$$
 and $\mathbf{A} \begin{bmatrix} 0\\1\\0 \end{bmatrix} = \begin{bmatrix} 3\\9\\17 \end{bmatrix}$, so a particular solution
 $\mathbf{A}\mathbf{x} = p \begin{bmatrix} 1\\3\\4\\11 \end{bmatrix} + q \begin{bmatrix} 2\\4\\9 \end{bmatrix} + r \begin{pmatrix} 2\\3\\9\\7 \end{bmatrix}$ is $\mathbf{x}_p = p \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} + q \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} + r \begin{pmatrix} 0\\1\\0\\0 \end{bmatrix} = \begin{bmatrix} p\\q\\r\\0 \end{bmatrix}$.
For the complementary solution, we need to solve $\mathbf{A}\mathbf{x} = 0$.
 $\begin{pmatrix} 1 & 1 & 2 & 3\\3 & 2 & 3 & 13\\4 & 4 & 9 & 7\\11 & 9 & 17 & 36 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 & 3\\0 & 1 & -5\\0 & -2 & -5 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 & 3\\0 & 1 & -5\\0 & 0 & 1 & -5\\0 & 0 & 1 & -5\\0 & 0 & 1 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 2 & 3\\0 & 1 & 3 & -4\\0 & 0 & 1 & -5\\0 & 0 & 0 & 0 \end{bmatrix}$.
Let $x_4 = \lambda$, then $x_3 = 5\lambda$, $x_2 = 4x_4 - 3x_3 = -11\lambda$, $x_1 = -x_2 - 2x_3 - 3x_4 = -2\lambda$.
Thus $\mathbf{x}_c = \begin{bmatrix} -2\lambda\\-11\lambda\\5\lambda\\\lambda \end{bmatrix}$ and $\mathbf{x} = \mathbf{x}_p + \mathbf{x}_c = \begin{bmatrix} p-2\lambda\\q=11\lambda\\r+5\lambda\\\lambda\\\lambda \end{bmatrix}$.
(i) Comparing $\mathbf{A}\mathbf{x} = p \begin{bmatrix} 1\\3\\4\\11 \end{bmatrix} + q \begin{bmatrix} 1\\2\\4\\9\\9 \end{bmatrix} + r \begin{pmatrix} 2\\3\\9\\17 \end{bmatrix}$ with $\mathbf{A}\mathbf{x} = \begin{bmatrix} 4\\8\\17\\37 \end{bmatrix}$, we have $p = q = r = 1$.
Thus the solution is $\mathbf{x} = \begin{bmatrix} 1-2\lambda\\1-11\lambda\\1+5\lambda\\\lambda\\\lambda \end{bmatrix}$. When $1 - 2\lambda = 0$, $\lambda = 0.5$ and
 $\mathbf{x} = (0 - 4.5 - 3.5 - 0.5)^T$
(i) $a^3 + \beta^2 + \gamma^2 + \delta^2 = (1 - 2\lambda)^2 + (1 - 11\lambda)^2 + (1 + 5\lambda)^2 + \lambda^2$
 $= 151\lambda^2 - 16\lambda + 3$
 $= 64\lambda^2 - 16\lambda + 1 + 87\lambda^2 + 2$
 ≥ 2
So there is not x satisfying $a^2 + \beta^2 + \gamma^2 + \delta^2 = 1$.

12 (i)(ii) By deducing \mathbf{M}_1 to a row-echelon, we can identify a basis for its column space,

 $\left\{ \begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix}, \begin{pmatrix} 8\\-5\\-2\\0 \end{pmatrix}, \begin{pmatrix} -5\\1\\0\\1 \end{pmatrix} \right\}$ which is also a basis for the range space for T_1 . Using the row-

echelon matrix to solve $\mathbf{M}_1 \mathbf{x} = \mathbf{0}$, we get a basis for the null space $\begin{cases} 1 \\ -1 \\ 1 \\ 1 \\ 1 \end{cases}$.

(Working omitted)

(iii) By solving $M_2 x = 0$, we can obtain a basis for the null space of T_2 , K_2

 $\begin{cases} \begin{vmatrix} -5 \\ 1 \\ 0 \\ 1 \end{vmatrix}, \begin{vmatrix} 8 \\ -5 \\ -2 \\ 0 \end{pmatrix} \end{cases}, \text{ which is obviously a subset of the basis for } R_1. (Working omitted) \\ * In a set of the basis for R_2. (Working omitted) \end{cases}$

*In case the vectors look different, show that each of them is a linear combination of the basis for $R_{\rm L}$.

(iv) For the null space of T₃, we use the equation $\mathbf{M}_2\mathbf{M}_1\mathbf{x} = \mathbf{0}$. This implies $\mathbf{M}_1\mathbf{x} \in K_2$.

When
$$\mathbf{M}_1 \mathbf{x} = \mathbf{0}$$
, a solution is $\mathbf{x} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}$; when $\mathbf{M}_1 \mathbf{x} = \begin{pmatrix} -5 \\ 1 \\ 0 \\ 1 \end{pmatrix}$, a solution is $\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$;

when $\mathbf{M}_1 \mathbf{x} = \begin{bmatrix} \mathbf{0} \\ -5 \\ -2 \\ 0 \end{bmatrix}$, a solution is $\mathbf{x} = \begin{bmatrix} \mathbf{0} \\ 0 \\ 0 \\ 1 \end{bmatrix}$. These are 3 such independent vectors.

- 13 (Detailed working omitted) (i) Step 1. Explaining *K* is a subset of \mathbb{R}^4 Step 2. Explaining K is non-empty by verifying the zero vector is contained Step 3. Showing K is closed under vector addition Step 4. Showing K is closed under real scalar multiplication of vector
 - Assuming S is non-empty, and vector $\mathbf{u} \in S$, i.e. $A\mathbf{u} = \mathbf{b}$. It is obvious that (ii) $2\mathbf{u} \notin S$ since $\mathbf{A}(2\mathbf{u}) = 2(\mathbf{A}\mathbf{u}) = 2\mathbf{b} \neq \mathbf{b}$, so S is not a vector space.
 - (iii) Since dim (K) = 2, the two linearly independent vectors in K will form a basis

$$\{\mathbf{e}_{1}, \mathbf{e}_{2}\} \text{ . Since } \mathbf{A} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1-2+1+3\\2+1+5-7\\4-3+7-1\\3+14+15-43 \end{pmatrix} = \begin{pmatrix} 3\\1\\7\\-11 \end{pmatrix}, \ \mathbf{x}_{p} = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \text{ is a particular}$$

solution, and the general solution is in the form $\mathbf{x}_{p} + \lambda \mathbf{e}_{1} + \mu \mathbf{e}_{2}$.

14 (Verifying independence or spanning by reducing the corresponding matrix to rowechelon form, working omitted)

For null space,
$$L\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} y-z\\ x+z\\ x+y\\ 2x+y+z \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0\\ 0 \end{pmatrix}$$
. Let $z = \lambda$, then $y = \lambda$ and $x = -\lambda$. Thus the
null space is $\left\{\lambda \begin{pmatrix} -1\\ 1\\ 1\\ 1 \end{pmatrix} : \lambda \in \mathbb{R}\right\}$, and its dimension is 1.
 $L\begin{pmatrix} 1\\ 1\\ 0\\ 1 \end{pmatrix} = \begin{pmatrix} 1-0\\ 1+0\\ 1+1\\ 2+1+0 \end{pmatrix} = \begin{pmatrix} 1\\ 1\\ 2\\ 3 \end{pmatrix} = 2\begin{pmatrix} 1\\ 0\\ 1\\ 0\\ 1 \end{pmatrix} - 1\begin{pmatrix} 1\\ 1\\ 0\\ 0\\ 1 \end{pmatrix} + 2\begin{pmatrix} 0\\ 1\\ 0\\ 1\\ 0\\ 1 \end{pmatrix} + \begin{pmatrix} 0\\ 0\\ 0\\ 1\\ 0\\ 1 \end{pmatrix} - (x+z)\begin{pmatrix} 1\\ 0\\ 1\\ 0\\ 1\\ 0 \end{pmatrix} - (x+z)\begin{pmatrix} 1\\ 0\\ 1\\ 0\\ 0\\ 1 \end{pmatrix} + \begin{pmatrix} 0\\ 2x+2z\\ 0\\ 2x+y+z \end{pmatrix}$ $= (x+y)\begin{pmatrix} 1\\ 0\\ 1\\ 0\\ 1\\ 0 \end{pmatrix} - (x+z)\begin{pmatrix} 1\\ 0\\ 1\\ 0\\ 0\\ 1 \end{pmatrix} - (x+z)\begin{pmatrix} 1\\ 0\\ 1\\ 0\\ 0\\ 1 \end{pmatrix} + (2x+2z)\begin{pmatrix} 0\\ 1\\ 0\\ 1\\ 0\\ 1 \end{pmatrix} + (y-z)\begin{pmatrix} 0\\ 0\\ 0\\ 0\\ 1\\ 1 \end{pmatrix}$ $= L\begin{pmatrix} 1\\ 0\\ 0\\ 1\\ 0\\ 1 \end{pmatrix} - 2\begin{pmatrix} 1\\ 1\\ 0\\ 0\\ 1\\ 0\\ 1 \end{pmatrix} + 4\begin{pmatrix} 0\\ 1\\ 0\\ 1\\ 0\\ 1 \end{pmatrix} - 1\begin{pmatrix} 0\\ 0\\ 0\\ 1\\ 1 \end{pmatrix}$ and $L\begin{pmatrix} 0\\ 1\\ 1\\ 1 \end{pmatrix} = 1\begin{pmatrix} 1\\ 0\\ 1\\ 0\\ 0\\ 1 \end{pmatrix} + 2\begin{pmatrix} 0\\ 1\\ 0\\ 1\\ 0\\ 1 \end{pmatrix} + 0\begin{pmatrix} 0\\ 0\\ 0\\ 1\\ 1 \end{pmatrix}$. (1985 A Level / FM / Jun / P1)

15 The linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^4$ is represented by the matrix

$$\begin{pmatrix} 1 & 2 & -3 & -4 \\ 2 & 5 & -4 & -5 \\ 3 & a^2 + 5 & 2a - 7 & 3a - 9 \\ 6 & a^2 + 12 & 2a - 14 & 3a - 18 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -3 & -4 \\ 0 & 1 & 2 & 3 \\ 0 & a^2 & 2a + 4 & 3a + 6 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 2 & -3 & -4 \\ 0 & 1 & 2 & 3 \\ 0 & (a+1)(a-1) & 2(a+1) & 3(a+1) \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
. When $a \neq -1$, it can be further deduced to
$$\begin{pmatrix} 1 & 2 & -3 & -4 \\ 0 & 1 & 2 & 3 \\ 0 & a - 1 & 2 & 3 \\ 0 & a - 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -3 & -4 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 4 - 2a & 6 - 3a \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
. When $a \neq 2$, the third row does not

contain only 0's, then its row space has 3 vectors in a basis. The rank of A is 3. Thus the range space of T is 3 when $a \neq -1$ and $a \neq 2$.

(i) When a = 2, the third row contains only 0's, the rank of A becomes 2. Since rank (A) + nullity (A) = 4, the nullity of A (or T or the dimension of K) is 2.

(ii) To find a basis for K, we solve
$$\begin{pmatrix} 1 & 2 & -3 & -4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = 0. \text{ Let } z = \lambda \text{ and } t = \mu ,$$

16 Since $Ax = \lambda x$ and $Bx = \mu x$, $(AB)x = A(Bx) = A(\mu x) = \mu(Ax) = \lambda \mu x$. Therefore, x is an eigenvector of AB with eigenvalue $\lambda \mu$. (Working omitted)

C has eigenvalues -1, 3, 5 with corresponding eigenvectors $\begin{pmatrix} -17\\6\\7 \end{pmatrix}, \begin{pmatrix} 1\\-2\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix}$. D has eigenvalues -3, -2, -1 with corresponding eigenvectors $\begin{pmatrix} 1\\-2\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}$.

CD has an eigenvector $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ with corresponding eigenvalue $3 \times (-3) = -9$.

17

$$\begin{pmatrix} 1 & 0 & -2 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}, \text{ a basis for the range space is } \begin{cases} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \end{cases}.$$

By letting $z = \lambda$, we can find a basis for the null space $\{ \begin{pmatrix} 2 & -2 & 1 \end{pmatrix}^T \}$.

(i)
$$\begin{pmatrix} 1 & 0 & -2 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1+2\lambda \\ 2-2\lambda \\ -2 \end{pmatrix} = \begin{pmatrix} 5+2\lambda \\ 3 \\ -2+2\lambda \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$$

(ii) Let
$$\begin{pmatrix} 1 & 0 & -2 \\ 1 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \\ -2 \end{pmatrix}$$
 and perform row operations on its augmented matrix,
 $\begin{pmatrix} 1 & 0 & -2 & 5 \\ 1 & 1 & 0 & 3 \\ 0 & 1 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 & 5 \\ 0 & 1 & 2 & -2 \\ 0 & 1 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2 & 5 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Let $z = \mu$, then
 $y = -2 - 2\mu$ and $x = 5 + 2\mu$. Therefore the line is $\mathbf{r} = \begin{pmatrix} 5 \\ -2 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}, \mu \in \mathbb{R}$.

(iii) We first convert x - y + z = 2 to a parametric form by letting $y = \alpha$ and $z = \beta$.

The plane has equation $\mathbf{r} = \begin{pmatrix} 2+\alpha-\beta\\ \alpha\\ \beta \end{pmatrix}$. Under L, it becomes $\begin{pmatrix} 1 & 0 & -2\\ 1 & 1 & 0\\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2+\alpha-\beta\\ \alpha\\ \beta \end{pmatrix} = \begin{pmatrix} 2+\alpha-3\beta\\ 2+2\alpha-\beta\\ \alpha+2\beta \end{pmatrix} = \begin{pmatrix} 2\\ 2\\ 0 \end{pmatrix} + \alpha \begin{pmatrix} 1\\ 2\\ 1 \end{pmatrix} + \beta \begin{pmatrix} -3\\ -1\\ 2 \end{pmatrix}.$ Its normal vector can be $\begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix} \times \begin{pmatrix} -3\\ -1\\ 2 \end{pmatrix} = \begin{pmatrix} 5\\ -5 \end{pmatrix}$ or $\begin{pmatrix} 1\\ -1 \end{pmatrix}$ therefore a C

Its normal vector can be $\begin{pmatrix} 1\\2\\1 \end{pmatrix} \times \begin{pmatrix} -3\\-1\\2 \end{pmatrix} = \begin{pmatrix} 5\\-5\\5 \end{pmatrix}$ or $\begin{pmatrix} 1\\-1\\1 \end{pmatrix}$, therefore a Cartesian

equation for the plane is x - y + z = 2 - 2 + 0 = 0. (In gerenal, to find a Cartesian equation $k_1x + k_2y + k_3z = D$, we can let the eq $k_1(2 + \alpha - 3\beta) + k_2(2 + 2\alpha - \beta) + k_3(\alpha + 2\beta) = D$,

and solve for the values of k_1, k_2, k_3, D that makes α and β disappear.)

18 (i)(ii) By reducing M to its row-echelon form (working omitted), we can obtain a basis $\left[\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right]$

for
$$V$$
, $\left\{ \begin{bmatrix} -1\\1 \end{bmatrix}, \begin{bmatrix} 4\\-3 \end{bmatrix} \right\}$, and its dimension is 2.
(iii) Let $\begin{pmatrix} -1\\4\\5 \end{pmatrix} = \alpha \begin{pmatrix} 1\\-1\\1 \end{pmatrix} + \beta \begin{pmatrix} 1\\4\\-3 \end{pmatrix}$. From the *x*- and *y*- components, we get $\alpha = -1.6$ and

 $\beta = 0.6$. Check the z-component, RHS = $-1.6 - 3(0.6) = -3.4 \neq 5 =$ LHS. Thus the vector cannot be expressed as a linear combination of the vectors in the basis, so this vector is not in V.

$$(iv)(a) \begin{pmatrix} 1 & 1 & 2 \\ -1 & 4 & 3 \\ 1 & -3 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 5 & 5 \\ 0 & -4 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \text{ so } \begin{pmatrix} 2 \\ 3 \\ -2 \end{pmatrix} \text{ is in } V \text{ and it has a solution.}$$

$$(iv)(b) \begin{pmatrix} 1 & 1 & 1 \\ -1 & 4 & 7 \\ 1 & -3 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 5 & 8 \\ 0 & -4 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1.6 \\ 0 & 0 & 1 \end{pmatrix}, \text{ so } \begin{pmatrix} 2 \\ 3 \\ -2 \end{pmatrix} \notin V \text{ and it has no solution.}$$

$$(iv) \quad \begin{array}{c} 1 & -2 & -3 & a \\ -1 & 3 & a+3 & -a+1 \\ 1 & -1 & a-3 & a+1 \\ 2 & -3 & a-6 & 2a+1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -3 & a \\ 0 & 1 & a & 1 \\ 0 & 1 & a & 1 \\ 0 & 1 & a & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -3 & a \\ 0 & 1 & a & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \text{ so its rank is 2.}$$

$$(iv) \quad \begin{array}{c} \text{Given that } \mathbf{x}_0 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} -1 \\ 2 \\ 0 \\ -1 \end{pmatrix},$$

$$\begin{array}{c} \text{find the values of } a \text{ for which the equation } \mathbf{M}\mathbf{x} = \mathbf{b} \text{ has a solution of the form } \end{array}$$

find the values of *a* for which the equation $\mathbf{M}\mathbf{x} = \mathbf{b}$ has a solution of the form $\begin{pmatrix} v \\ v^{-1} \\ 1 \\ 1 \end{pmatrix}$ Since $\{\mathbf{e} \ \mathbf{e} \}$ is a basis for the null space $\mathbf{M}\mathbf{e} = \mathbf{0}$ $\mathbf{M}\mathbf{e} = \mathbf{0}$

- (i) Since $\{\mathbf{e}_1, \mathbf{e}_2\}$ is a basis for the null space, $\mathbf{M}\mathbf{e}_1 = \mathbf{0}$, $\mathbf{M}\mathbf{e}_2 = \mathbf{0}$. $\mathbf{M}\mathbf{x} = \mathbf{M}(\mathbf{x}_0 + \lambda \mathbf{e}_1 + \mu \mathbf{e}_2) = \mathbf{M}\mathbf{x}_0 + \lambda \mathbf{M}\mathbf{e}_1 + \mu \mathbf{M}\mathbf{e}_2 = \mathbf{b} + \mathbf{0} + \mathbf{0} = \mathbf{b}$
- (ii) If $\mathbf{M}\mathbf{x} = \mathbf{b}$, $\mathbf{M}(\mathbf{x} \mathbf{x}_0) = \mathbf{M}\mathbf{x} \mathbf{M}\mathbf{x}_0 = \mathbf{b} \mathbf{b} = \mathbf{0}$, then $\mathbf{x} \mathbf{x}_0 \in K$. Thus $\mathbf{x} \mathbf{x}_0$ is a linear combination of vectors in the basis $\{\mathbf{e}_1, \mathbf{e}_2\}$, so $\mathbf{x} = \mathbf{x}_0 + \lambda \mathbf{e}_1 + \mu \mathbf{e}_2$.

(iii) Vectors
$$\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in K$$
 satisfy $\begin{cases} x-2y-3z+at=0 \\ y+az+t=0 \end{cases}$. Let $z = \alpha$ and $t = \beta$, then
 $y = -a\alpha - \beta$ and $x = -2a\alpha - 2\beta + 3\alpha - a\beta = \alpha (3-2a) + \beta (-2-a)$.
Therefore so $\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \alpha \begin{pmatrix} 3-2a \\ -a \\ 1 \\ 0 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} -2-a \\ -1 \\ 0 \\ 1 \end{pmatrix}$. $\mathbf{e}_1 = \begin{pmatrix} 3-2a \\ -a \\ 1 \\ 0 \\ 1 \end{pmatrix}$, $\mathbf{e}_2 = \begin{pmatrix} -2-a \\ -1 \\ 0 \\ 1 \end{pmatrix}$.
(iv) $\begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} 3-2a \\ -a \\ 1 \\ 0 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} -2-a \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} v \\ v^{-1} \\ 1 \\ 1 \\ 1 \end{pmatrix}$. By comparing all the components, we have
 $\alpha = \beta = 1, v = 2 - 3a$ and $v^{-1} = -a$, so $(2 - 3a)(-a) = 1$. Solving this equation,
we obtain $a = -\frac{1}{3}$ or $a = 1$.

20 When $Ae = \lambda e$, $A^2e = A(Ae) = A(\lambda e) = \lambda(Ae) = \lambda\lambda e = \lambda^2 e$, so e is an eigenvector of a square matrix A^2 with corresponding eigenvalue λ^2 . (Working omitted)

B has eigenvalues are 1, 3, -4 with corresponding eigenvectors $\begin{pmatrix} 11 \\ -5 \\ -6 \end{pmatrix}, \begin{pmatrix} 5 \\ -7 \\ -5 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.

$$\mathbf{Q} = \begin{pmatrix} 11 & 5 & 1 \\ -5 & -7 & 0 \\ -6 & -5 & -1 \end{pmatrix}, \ \mathbf{D} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 16 \end{pmatrix}$$

- 21 (i) If A is non-singular, $\det(0\mathbf{I} \mathbf{A}) = \det(-\mathbf{A}) = (-1)^3 \det(\mathbf{A}) \neq 0$, so 0 is not an eigenvalue, i.e. $\lambda \neq 0$.
 - (ii) $\mathbf{x} = (\mathbf{A}^{-1}\mathbf{A})\mathbf{x} = \mathbf{A}^{-1}(\mathbf{A}\mathbf{x}) = \mathbf{A}^{-1}(\lambda \mathbf{x}) = \lambda \mathbf{A}^{-1}\mathbf{x}$. Since $\lambda \neq 0$, $\mathbf{A}^{-1}\mathbf{x} = \lambda^{-1}\mathbf{x}$, so \mathbf{x} is an eigenvector of the matrix \mathbf{A}^{-1} with corresponding eigenvalue λ^{-1} .

A has eigenvalues 1, 2, -3 with corresponding eigenvectors $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 5 \\ 1 \\ 0 \\ -5 \end{bmatrix}, \begin{bmatrix} -1 \\ 8 \\ -5 \end{bmatrix}$.

B has eigenvalues
$$\frac{1}{6}, \frac{1}{7}, \frac{1}{2}$$
 with corresponding eigenvectors $\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 3\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\8\\-5 \end{pmatrix}$

22 When \mathbf{e}_i is a common eigenvector of \mathbf{A} and \mathbf{B} with corresponding eigenvalues λ_i and μ_i , $\mathbf{A}\mathbf{e}_i = \lambda_i \mathbf{e}_i$, $\mathbf{B}\mathbf{e}_i = \mu_i \mathbf{e}_i$ and $(\mathbf{A} + \mathbf{B})\mathbf{e}_i = \mathbf{A}\mathbf{e}_i + \mathbf{B}\mathbf{e}_i = \lambda_i \mathbf{e}_i + \mu_i \mathbf{e}_i = (\lambda_i + \mu_i)\mathbf{e}_i$.

Therefore, $\mathbf{A} + \mathbf{B}$ has eigenvalues $\lambda_1 + \mu_1, \lambda_2 + \mu_2, \lambda_3 + \mu_3$ with the corresponding eigenvectors $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$.

- $\begin{pmatrix} 0 & -1 & 0 \\ -4 & -9 & -6 \\ 5 & 11 & 7 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \text{ the corresponding eigenvalue is 1.}$ $\begin{pmatrix} 0 & -1 & 0 \\ -4 & -9 & -6 \\ 5 & 11 & 7 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} = -1 \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}, \text{ the corresponding value is -1.}$ $\begin{pmatrix} 0 & -1 & 0 \\ -4 & -9 & -6 \\ 5 & 11 & 7 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} -2 \\ -4 \\ 6 \end{pmatrix} = -2 \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}, \text{ the corresponding value is -2.}$ $(i) \quad \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 2 \\ 1 & -2 & -3 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -4 & -3 \\ 1 & 3 & 2 \end{pmatrix}.$
- (ii) A + B has the same 3 eigenvectors with the corresponding eigenvalues 2, 1, -5. Thus $M = RER^{-1}$ and $M^5 = RE^5S = RDS$ where

$$\mathbf{R} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 2 \\ 1 & -2 & -3 \end{pmatrix}, \mathbf{S} = \mathbf{R}^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -4 & -3 \\ 1 & 3 & 2 \end{pmatrix} \text{ and } \mathbf{D} = \mathbf{E}^{5} = \begin{pmatrix} 32 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3125 \end{pmatrix}.$$

23 When $Ax = \lambda x$, $B(Ex) = EAE^{-1}(Ex) = EA(E^{-1}E)x = EAx = E(Ax) = E(\lambda x) = \lambda(Ex)$, so Ex is an eigenvector of the matrix **B** and that λ is the corresponding eigenvalue.

(i) (working omitted).

....

A has eigenvalues 1, -2, 3 with corresponding eigenvectors $\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} -a\\3\\0 \end{pmatrix}, \begin{pmatrix} ac+5b\\2c\\10 \end{pmatrix}$.

(ii) **B** has the same eigenvalues, the corresponding vectors are

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -a \\ 3 \\ 0 \end{pmatrix} = \begin{pmatrix} -a \\ 3 \\ -a \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} ac+5b \\ 2c \\ 10 \end{pmatrix} = \begin{pmatrix} ac+5b \\ 2c \\ ac+5b+10 \end{pmatrix}$$
(iii) $\mathbf{Q} = \begin{pmatrix} 1 & -a & ac+5b \\ 0 & 3 & 2c \\ 1 & -a & ac+5b+10 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & (-2)^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}.$

24 (i) Eigenvalues are 1, 2, -1 with corresponding eigenvectors $\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 7 \\ 44 \end{bmatrix}, \begin{bmatrix} 1 \\ -4 \end{bmatrix}$.

(ii) If μ is an eigenvalue for **B**, det $(\mu \mathbf{I} - \mathbf{B}) = det(\mu \mathbf{I} - \mathbf{A} - k\mathbf{I}) = det((\mu - k)\mathbf{I} - \mathbf{A})$ is 0 if $\mu - k$ is an eigenvalue for **A**. Thus the eigenvalues are 1 + k, 2 + k, -1 + k. Since $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$, $\mathbf{B}\mathbf{x} = (\mathbf{A} + k\mathbf{I})\mathbf{x} = \mathbf{A}\mathbf{x} + k\mathbf{I}\mathbf{x} = \lambda \mathbf{x} + k\mathbf{x} = (\lambda + k)\mathbf{x} = \mu\mathbf{x}$, so an eigenvector for **A** remains as an eigenvector for **B**, independent of k.

(iii)
$$\mathbf{Q} = \begin{pmatrix} 1 & 54 & -3 \\ 0 & 7 & 1 \\ 1 & 44 & -4 \end{pmatrix}$$
 and $\mathbf{D} = \begin{pmatrix} (1+k)^2 & 0 & 0 \\ 0 & (2+k)^2 & 0 \\ 0 & 0 & (-1+k)^2 \end{pmatrix}$

25 By GC (or Factor Theorem), $\lambda - a = \frac{1}{4}, \frac{1}{2}, \frac{3}{4}$, so the eigenvalues are $a + \frac{1}{4}, a + \frac{1}{2}, a + \frac{3}{4}$. The eigenvectors for **M** are the same as the eigenvalues for $\mathbf{M} - a\mathbf{I}$, i.e $\begin{pmatrix} \frac{3}{8} & -\frac{1}{8} & \frac{1}{8} \\ -\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ -\frac{1}{8} & \frac{1}{8} & \frac{5}{8} \end{pmatrix}$,

and are the same as the eigenvalues for $\begin{pmatrix} 3 & -1 & 1 \\ -2 & 4 & 2 \\ -1 & 1 & 5 \end{pmatrix}$, with corresponding eigenvalues

2, 4 and 6. The corresponding eigenvectors are
$$\begin{pmatrix} 1\\1\\0 \end{pmatrix}$$
, $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$ and $\begin{pmatrix} 0\\1\\1 \end{pmatrix}$ (Working omitted).

Therefore,
$$\mathbf{Q} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
, $\mathbf{D} = \begin{pmatrix} a + \frac{1}{4} & 0 & 0 \\ 0 & a + \frac{1}{2} & 0 \\ 0 & 0 & a + \frac{3}{4} \end{pmatrix}$.

For **D** \to **O**, $-1 < a + \frac{1}{4} < a + \frac{1}{2} < a + \frac{3}{4} < 1$, the set of values is $\{a \in \mathbb{R} : -\frac{5}{4} < a < \frac{1}{4}\}$.

26 $(k\mathbf{M})\mathbf{e} = k(\mathbf{M}\mathbf{e}) = k\lambda\mathbf{e}$ so \mathbf{e} is an eigenvector of the matrix $k\mathbf{M}$ with the corresponding eigenvalue $k\lambda$.

$$\begin{aligned} \mathbf{2I} - \mathbf{A} &= \begin{pmatrix} 1-a & 1-a & a-1 \\ -1-a & 3-a & 1+a \\ -2 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ -2 & 2 & 2 \\ -2 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \end{aligned}$$
To find a corresponding eigenvector, solve
$$\begin{cases} x+y-z=0 \\ y=0 \end{pmatrix}$$
. An eigenvector is
$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}. \\ -2\mathbf{I} - \mathbf{A} &= \begin{pmatrix} -3-a & 1-a & a-1 \\ -1-a & -1-a & 1+a \\ -2 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 1 & -1 \\ 0 & -2-2a & 2+2a \\ 0 & 4 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}. \end{aligned}$$
To find a corresponding eigenvector, solve
$$\begin{cases} x-y+z=0 \\ y-z=0 \end{pmatrix}$$
. An eigenvector is
$$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}. \\ 2a\mathbf{I} - \mathbf{A} &= \begin{pmatrix} a-1 & 1-a & a-1 \\ -1-a & 1+a & 1+a \\ -2 & 2 & 2a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & -a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}. \end{aligned}$$
To find a corresponding eigenvector, solve
$$\begin{cases} x-y+z=0 \\ y-z=0 \end{pmatrix}$$
. An eigenvector is
$$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}. \\ 2a\mathbf{I} - \mathbf{A} &= \begin{pmatrix} a-1 & 1-a & a-1 \\ -1-a & 1+a & 1+a \\ -2 & 2 & 2a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & -a \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$
To find a corresponding eigenvector, solve
$$\begin{cases} x-y+z=0 \\ z=0 \end{pmatrix}$$
. An eigenvector is
$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}. \\ \\ \text{Therefore, } \mathbf{Q} &= \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
and
$$\mathbf{D} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2a \end{pmatrix}.$$
(i) $a = 100$, so
$$\mathbf{D} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 200 \end{pmatrix}, \text{ Q remains as } \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$
Thus
$$\mathbf{D} = 0.001 \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1000 \end{pmatrix} = \begin{pmatrix} 0.002 & 0 & 0 \\ 0 & -0.002 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 and \mathbf{Q} remains as $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$
Thus
$$\mathbf{D} = 0.001 \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1000 \end{pmatrix} = \begin{pmatrix} 0.002 & 0 & 0 \\ 0 & -0.002 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 and \mathbf{Q} remains as $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$

27
$$\lambda_i = -5, -3, -2$$
 with $\mathbf{e}_i = \begin{pmatrix} 1 \\ -4 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 4 \\ 4 \end{pmatrix}$. (Working omitted).

If **e** is an eigenvector of **M**, with corresponding eigenvalue λ , then $k_1 (\mathbf{M} + k_2 \mathbf{I}) \mathbf{e} = k_1 \mathbf{M} \mathbf{e} + k_1 k_2 \mathbf{e} = k_1 \lambda \mathbf{e} + k_1 k_2 \mathbf{e} = k_1 (\lambda + k_2) \mathbf{e}$, i.e. **e** is an eigenvector of the matrix $k_1 (\mathbf{M} + k_2 \mathbf{I})$, with corresponding eigenvalue $k_1 (\lambda + k_2)$.

Let μ_i be the eigenvalues of **B** with corresponding eigenvectors \mathbf{e}_i . We observe that

$$\mu_i = \frac{1}{3}(\lambda_i + 5)$$
, so $\mathbf{B} = \frac{1}{3}(\mathbf{A} + 5\mathbf{I}) = \frac{1}{3} \begin{pmatrix} 3 & 1 & -1 \\ -4 & -2 & 4 \\ 0 & -1 & 4 \end{pmatrix}$.

Arranging the eigenvalues from largest to smallest, the corresponding eigenvectors form the matrix $\mathbf{P} = \begin{pmatrix} -1 & 1 & 1 \\ 4 & -2 & -4 \\ 1 & -1 & -1 \end{pmatrix}$, and $\mathbf{D} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \left(\frac{2}{3}\right)^n & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Solve $\left(\frac{2}{3}\right)^n < 0.001$, we have

least n = 18 by GC.

Application Problems

28 (a) (i) Reflect
$$Q$$
 about the x-axis; $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
(ii) Scaling Q parallel to the y-axis by a factor 3; $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$.
(b) (i) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. (ii) $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.
(d) Rotate Q through an angle θ about the origin in anticlockwise

29 (ii)
$$\mathbf{D} = \begin{pmatrix} 0 & 0 \\ 0 & 100 \end{pmatrix}, \ \theta = \tan^{-1} \left(-\frac{3}{4} \right).$$
 (iii) $100y'^2 + 25x' + 25 = 0$.

(iv) Rotate S about O through an angle $\tan^{-1}\frac{3}{4}$ in anticlockwise direction.

(v)
$$\left(-\frac{17}{16},0\right), x' = -\frac{15}{16}; \left(-\frac{17}{20},\frac{51}{80}\right), 64x - 48y + 75 = 0.$$

direction.