2020 SAJC JC1 H2 Mathematics **Assignment 5: Functions**

Name: ______ Marks: /15

Class: 20_____ Time: 30 min

1. [NYJC/2017/Prelim/P1/Q7] The functions f and g are defined by

f: $x \square e^{-x^2}$, $x \in \square$, x < 0, g: $x \square x 1 1 + 3$, $x \in \square$, $x \neq -3$. (i) Show that g^{-1} exists, and define g^{-1} in a similar form. [3] (ii) State the solution set for gg $^{-1}$ ()x = x [1] (iii) Explain why fg $^{-1}$ does not exist. [1]

Let the function h be defined by

h: $x \square$ g(x), $x \in \square$, x < k. Where k is a real constant.

(iv) Given that fh^{-1} exists, state the maximum value of k. [1]

(v) For the value of k found in (iv),

(a) find the exact range of fh⁻¹, [2]

(b) solve h(x) = $h^{-1}(x)$. [2]

2. [HCI/2017/Prelim/P1/Q1(modified)] The *floor function*, denoted by $x | \lfloor | \rfloor$, is the greatest integer less than or equal to *x*. For example, $| \lfloor -2.1 \rfloor | = -3$ and $| \lfloor 3.5 \rfloor$

|] = 3.

The function f is defined by

< 3.

It is given that f(x) = f(x+4). (i) Find the values of f(-1.2) and f(3.6) [2] (ii) Sketch the graph of y = f(x) for $-2 \le x \le 4$. [2] (iii) State the range of f. [1]